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Preface

Football is by far the world’s most popular game. Millions
play the game and hundreds of millions are entertained by
it, either at football grounds or through television. Despite
this the scientific aspects of the game have hardly been recog-
nised, let alone discussed and analysed. This is in contrast to
some other games which have received much more attention,
particularly so in the case of golf.

What is meant by ‘science’ in the context of football? This
book deals basically with two types of subject. The first is the
‘hard science’, which mainly involves using physics to uncover
basic facts about the game. This ranges fromunderstanding the
comparatively simple mechanics of the kick to the remarkably
complex fluid dynamics associated with the flight of the ball.
The second group of subjects is diverse. There is the role of
chance in deciding results and, more significantly, in influen-
cing which team wins the Championship or the Cup. Is the
winning team the best team? We look at the players and ask
how their success varies with age. We also ask, what is the
best height for footballers and, with almost incredible results,
what is the best time of year for them to be born? Further
subjects include analysis of the laws, various theoretical aspects
of the play, and the economics of the professional game.

In the first nine chapters of the book these subjects are
described without the use of mathematics. The mathematical
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analysis which underlies this description is saved for the tenth
and final chapter. Most of the material in the book is original
and in many areas the author has made progress only with the
assistance of others. I must thank David Goodall for the help
he gave in experiments on the bounce and flight of the ball,
and both him and Chris Lowry for the experiments which
produced the drag curve for a football. The on-field experi-
ments were carried out with the help of Mickey Lewis and
the Oxford United Youth team. My understanding of the
development of the ball was much improved in discussions
with Duncan Anderson of Mitre, and I have taken the infor-
mation on club finances from the Annual Review of Football
Finance produced by Deloitte and Touche.

I am grateful to John Navas, the Commissioning Editor
at Institute of Physics Publishing. Without his interest and
encouragement this book would not have seen the light of
day. Thanks are also due to Jack Connor and John Hardwick
who read the manuscript and made many helpful suggestions.
The book uses, and depends upon, a large number of figures.
These were all produced by Stuart Morris. I am very grateful
to him for his skill and unfailing helpfulness. Finally, I must
thank Lynda Lee for her care and dedication in typing the
manuscript and dealing with the many corrections and re-
writes this involved

John Wesson

January 2002
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1

The ball and the bounce

The ball

Ball-like objects must have been kicked competitively for
thousands of years. It doesn’t require much imagination to
picture a boy kicking a stone and being challenged for
possession by his friends. However the success of ‘soccer’
was dependent on the introduction of the modern ball with
its well-chosen size, weight and bounce characteristics.

When soccer was invented in the nineteenth century the
ball consisted of an ox or pig bladder encased in leather. The
bladder was pumped through a gap in the leather casing, and
when the ball was fully pumped this gap was closed with
lacing. While this structure was a great advance, a good
shape was dependent on careful manufacture and was often
lost with use. The animal bladder was soon replaced by a
rubber ‘bladder’ but the use of leather persisted until the 1960s.

The principal deficiency of leather as a casing material
was that it absorbed water. When this was combined with its
tendency to collect mud the weight of the ball could be
doubled. Many of us can recollect the sight of such a ball
with its exposed lacing hurtling toward us and expecting to
be headed.

The period up to the late 1980s saw the introduction of
multi-layer casing and the development of a totally synthetic
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ball. Synthetic fibre layers are covered with a smooth polymer
surface material and the ball is inflated with a latex bladder.
This ball resists the retention of water and reliably maintains
its shape.

The casing of high quality balls is made up of panels.
These panels, which can have a variety of shapes, are stitched
together through pre-punched stitch holes using threads which
are waxed for improved water resistance. This can require up
to 2000 stitches. The lacing is long gone, the ball now being
pumped through a tiny hole in the casing. Such balls are
close to ideal.

The general requirements for the ball are fairly obvious.
The ball mustn’t be too heavy to kick, or so light that it is
blown about, or will not carry. It shouldn’t be too large to
manoeuvre or too small to control, and the best diameter,
fixed in 1872, turned out to be about the size of the foot.
The optimisation took place by trial and error and the present
ball is defined quite closely by the laws of the game.

The laws state that ‘The circumference shall not be more
than 28 inches and not less than 27 inches. The weight of the
ball shall be not more than 16 ounces and not less than 14
ounces. The pressure shall be equal to 0.6 to 1.1 atmosphere.’
Since 1 atmosphere is 14.7 pounds per square inch this
pressure range corresponds to 8.8 to 16.2 pounds per square
inch. (The usually quoted 8.5 to 15.6 pounds per square inch
results from the use of an inaccurate conversion factor.)

From a scientific point of view the requirement that the
pressure should be so low is amusing. Any attempt to reduce
the pressure in the ball below one atmosphere would make it
collapse. Even at a pressure of 1.1 atmosphere the ball
would be a rather floppy object. What the rule really calls
for, of course, is a pressure difference between the inside and
the outside of the ball, the pressure inside being equal to 1.6
to 2.1 atmosphere.

Calculation of the ball’s behaviour involves the mass of
the ball. For our purposes mass is simply related to weight.
The weight of an object of given mass is just the force exerted
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on that mass by gravity. The names used for the two quantities
are rather confusing, a mass of one pound being said to have a
weight of one pound. However, this need not trouble us;
suffice it to say that the football has a mass of between 0.875
and 1.0 pound or 0.40 and 0.45 kilogram.

Although it will not enter our analysis of the behaviour of
the ball, it is of interest to know how the pressure operates.
The air in the atmosphere consists of very small particles
called molecules. A hundred thousand air molecules placed
sided by side would measure the same as the diameter of a
human hair. In reality the molecules are randomly distributed
in space. The number of molecules is enormous, there being
400 million million million (4� 1020) molecules in each inch
cube. Nevertheless most of the space is empty, the molecules
occupying about a thousandth of the volume.

The molecules are not stationary. They move with a speed
greater than that of a jumbo jet. The individual molecules
move in random directions with speeds around a thousand
miles per hour. As a result of this motion the molecules are
continually colliding with each other. The molecules which
are adjacent to the casing of the ball also collide with the
casing and it is this bombardment of the casing which provides
the pressure on its surface and gives the ball its stiffness.

The air molecules inside the ball have the same speed as
those outside, and the extra pressure inside the ball arises
because there are more molecules in a given volume. This
was the purpose of pumping the ball – to introduce the extra
molecules. Thus the outward pressure on the casing of the
ball comes from the larger number of molecules impinging
on the inner surface as compared with the number on the
outer surface.

The bounce

The bounce seems so natural that the need for an explanation
might not be apparent. When solid balls bounce it is the
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elasticity of the material of the ball which allows the bounce.
This applies for example to golf and squash balls. But the
casing of a football provides practically no elasticity. If an
unpumped ball is dropped it stays dead on the ground.

It is the higher pressure air in the ball which gives it its
elasticity and produces the bounce. It also makes the ball
responsive to the kick. The ball actually bounces from the
foot, and this allows a well-struck ball to travel at a speed of
over 80 miles per hour. Furthermore, a headed ball obviously
depends upon a bounce from the forehead. We shall examine
these subjects later, but first let us look at a simpler matter, the
bounce itself.

We shall analyse the mechanics of the bounce to see what
forces are involved andwill find that the duration of the bounce
is determined simply by the three rules specifying the size,
weight and pressure. The basic geometry of the bounce is illus-
trated in figure 1.1. The individual drawings show the state of
the ball during a vertical bounce. After the ball makes contact
with the ground an increasing area of the casing is flattened
against the ground until the ball is brought to rest. The velocity
of the ball is then reversed. As the ball rises the contact area
reduces and finally the ball leaves the ground.

It might be expected that the pressure changes arising
from the deformation of the ball are important for the
bounce but this is not so. To clarify this we will first examine
the pressure changes which do occur.

Pressure changes

It is obvious that before contact with the ground the air press-
ure is uniform throughout the ball. When contact occurs and

Figure 1.1. Sequence of states of the ball during the bounce.
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the bottom of the ball is flattened, the deformation increases
the pressure around the flattened region. However, this press-
ure increase is rapidly redistributed over the whole of the ball.
The speed with which this redistribution occurs is the speed of
sound, around 770 miles per hour. This means that sound
travels across the ball in about a thousandth of a second
and this is fast enough to maintain an almost equal pressure
throughout the ball during the bounce.

Although the pressure remains essentially uniform inside
the ball the pressure itself will actually increase. This is because
the flattening at the bottom of the ball reduces the volume
occupied by the air, in other words the air is compressed.
The resulting pressure increase depends on the speed of the
ball before the bounce. A ball reaching the ground at 20
miles per hour is deformed by about an inch and this gives a
pressure increase of only 5%. Such small pressure changes
inside the ball can be neglected in understanding the mechan-
ism of the bounce. So what does cause the bounce and what is
the timescale?

Mechanism of the bounce

While the ball is undeformed the pressure on any part of the
inner surface is balanced by an equal pressure on the opposite
facing part of the surface as illustrated in figure 1.2. Conse-
quently, as expected, there is no resultant force on the ball.
However, when the ball is in contact with the ground
additional forces comes into play. The casing exerts a pressure

Figure 1.2. Pressure forces on opposing surfaces cancel.
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on the ground and, from Newton’s third law, the ground
exerts an equal and opposite pressure on the casing. There
are two ways of viewing the resultant forces.

In the first, and more intuitive, we say that it is the
upward force from the ground which first slows the ball and
then accelerates it upwards, producing the bounce. In this
description the air pressure force on the deformed casing is
still balanced by the pressure on the opposite surface, as
shown in figure 1.3(a). In the second description we say that
there is no resultant force acting on the casing in contact
with the ground, the excess air pressure inside the ball balan-
cing the reaction force from the ground. The force which now
causes the bounce is that of the unbalanced air pressure on
that part of the casing opposite to the contact area, as illus-
trated in figure 1.3(b). These two descriptions are equally
valid.

Because the force on the ball is proportional to the area of
contact with the ground and the area of contact is itself deter-
mined by the distance of the centre of the ball from the
ground, it is possible to calculate the motion of the ball. The
result is illustrated in the graph of figure 1.4 which plots the
height of the centre of the ball against time.

As we would expect, the calculation involves the mass
and radius of the ball and the excess pressure inside it. These
are precisely the quantities specified by the rules governing
the ball. It is perhaps surprising that these are the only

Figure 1.3. Two descriptions of the force balance during the bounce.
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quantities involved, and that the rules determine the duration
of the bounce. This turns out to be just under a hundredth of a
second. The bounce time is somewhat shorter than the framing
time of television pictures and in television transmissions the
brief contact with the ground is often missed. Fortunately
our brain fills in the gap for us.

Apart from small corrections the duration of the bounce
is independent of the speed of the ball. A faster ball is more
deformed but the resulting larger force means that the accel-
eration is higher and the two effects cancel. During the
bounce the force on the ball is quite large. For a ball falling
to the ground at 35 miles per hour the force rises to a quarter
a ton – about 500 times the weight of the ball.

The area of casing in contact with the ground increases
during the first half of the bounce. The upward force increases
with the area of contact, and so the force also increases during
the first half of the bounce. At the time of maximum deforma-
tion, and therefore maximum force, the ball’s vertical velocity
is instantaneously zero. From then on the process is reversed,
the contact area decreasing and the force falling to zero as the
ball loses contact with the ground.

If the ball were perfectly elastic and the ground completely
rigid, the speed after a vertical bounce would be equal to that
before the bounce. In reality the speed immediately after the

Figure 1.4. Motion of ball during bounce.
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bounce is somewhat less than that immediately before the
bounce, some of the ball’s energy being lost in the deformation.
The lost energy appears in a very slight heating of the ball. The
change in speed of the ball in the bounce is conveniently
represented by a quantity called the ‘coefficient of restitution’.
This is the ratio, usually written e, of the speed after a vertical
bounce to that before it,

e ¼ speed after

speed before
:

A perfectly elastic ball bouncing on a hard surface would
have e ¼ 1 whereas a completely limp ball which did not
bounce at all would have e ¼ 0. For a football on hard

Figure 1.5. Showing how the bouncing changes with the coefficient of restitution.
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ground e is typically 0.8, the speed being reduced by 20%.
Grass reduces the coefficient of restitution, the bending of
the blades causing further energy loss. For long grass the
resulting coefficient depends on the speed of the ball as well
as the length of the grass.

Figure 1.5(a) shows a sequence of bounces for a hard
surface (e ¼ 0:8). This illustrates the unsatisfactory nature of
too bouncy a surface. Figure 1.5(b) shows the much more
rapid decay of successive bounces for a ball bouncing on
short grass (e ¼ 0:6).

The bounce in play

The bounce described above is the simple one in which the ball
falls vertically to the ground. In a game, the ball also has a hori-
zontal motion and this introduces further aspects of the
bounce. In the ideal case of a perfectly elastic ball bouncing
on a perfectly smooth surface the horizontal velocity of the
ball is unchanged during the bounce and the vertical velocity
takes a value equal and opposite to that before the bounce,
as shown in figure 1.4. The symmetry means that the angle to
the ground is the same before and after. In reality the bounce
is affected by the imperfect elasticity of the ball, by the friction
between the ball and the ground, and by spin. Even if the ball is
not spinning before the bounce, it will be spinning when it
leaves the ground. We will now analyse in a simplified way
the effect of these complications on the bounce.

In the case where the bounce surface is very slippy, as it
would be on ice for example, the ball slides throughout the
bounce and is still sliding as it leaves the ground. The
motion is as shown in figure 1.6. The coefficient of restitution
has been taken to be 0.8 and the resulting reduction in vertical
velocity after the bounce has lowered the angle of the trajec-
tory slightly.

In the more general case the ball slides at the start of the
bounce, and the sliding produces friction between the ball and
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the ground. There are then two effects. Firstly the friction
causes the ball to slow, and secondly the ball starts to
rotate, as illustrated in figure 1.7. The friction slows the
bottom surface of the ball, and the larger forward velocity
of the upper surface then gives the ball a rotation.

If the surface is sufficiently rough, friction brings the
bottom surface of the ball to rest. This slows the forward
motion of the ball but, of course, does not stop it. The ball
then rolls about the contact with the ground as shown in
figure 1.8. Since the rotation requires energy, this energy
must come from the forward motion of the ball. Finally, the

Figure 1.6. Bounce on a slippy surface.

Figure 1.7. Friction slows bottom surface causing the ball to rotate.
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now rotating ball leaves the ground. For the case we have
considered it is possible to calculate the change in the horizon-
tal velocity resulting from the bounce. It turns out that the
horizontal velocity after the bounce is three fifths of the initial
horizontal velocity, the lost energy having gone into rotation
and frictional heating.

Television commentators sometimes say of a ball boun-
cing on a slippy wet surface that it has ‘speeded up’ or
‘picked up pace’. This is improbable. It seems likely that we
have become familiar with the slowing of the ball at a
bounce, as described above, and we are surprised when on a
slippy surface it doesn’t occur, leaving the impression of
speeding up.

Whether a ball slides throughout the bounce, or starts to
roll, depends partly on the state of the ground. For a given

Figure 1.8. Sequence of events when the ball bounces on a surface sufficiently

rough that initial sliding is replaced by rolling.
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surface the most important factor is the angle of impact of the
ball. For a ball to roll there must be a sufficient force on the
ground and this force increases with the vertical component
of the velocity. In addition, it is easier to slow the bottom
surface of the ball to produce rolling if the horizontal velocity
is low. Combining these two requirements, high vertical vel-
ocity and low horizontal velocity, it is seen that rolling requires
a sufficiently large angle of impact. At low angles the ball slides
and, depending on the nature of the ground, there is a critical
angle above which the ball rolls as illustrated in figure 1.9.

With a ball that is rotating before the bounce the beha-
viour is more complicated, depending on the direction and
magnitude of the rotation. Indeed, it is possible for a ball to
actually speed up at a bounce, but this requires a rotation
which is sufficiently rapid that the bottom surface of the ball
is moving in the opposite direction to the motion of the ball
itself as shown in figure 1.10. This is an unusual circumstance
which occasionally arises with a slowly moving ball, or when
the ball has been spun by hitting the underside of the crossbar.

Players can use the opposite effect of backspin on the ball
to slow a flighted pass at the first bounce. The backspin slows
the run of the ball and can make it easier for the receiving
player to keep possession.

Figure 1.9. At low angles the ball slides throughout the bounce, at higher angles

it rolls before it leaves the ground.

14 The science of soccer



Bounce off the crossbar

When the ball bounces off the crossbar, the bounce is very
sensitive to the location of the point of impact. The rules
specify that the depth of the bar must not exceed 5 inches,
and an inch difference in the point of impact has a large effect.

Figure 1.11(a) shows four different bounce positions on
the underside of a circular crossbar. For the highest the top
of the ball is 1 inch above the centre of the crossbar and the
other positions of the ball are successively 1 inch lower.
Figure 1.11(b) gives the corresponding bounce directions,
taking the initial direction of the ball to be horizontal and
the coefficient of restitution to be 0.7. It is seen that over the
3 inch range in heights the direction of the ball after the
bounce changes by almost a right angle.

Figure 1.10. A fast spinning ball can ‘speed up’ during the bounce.

Figure 1.11. Bounce from the crossbar. (a) Positions of bounce. (b) Angles of

bounce.
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As with a bounce on the ground, the bounce from the
crossbar induces a spin. Calculation shows that a ball striking
the crossbar at 30 miles an hour can be given a spin frequency
of around 10 revolutions per second. This corresponds to the
lowest of the trajectories in figure 1.11. For even lower trajec-
tories the possibility of slip between the ball and bar arises.

When the ball reaches the ground the spin leads to a
change in horizontal velocity during the bounce. For example,
the 30 miles per hour ball which is deflected vertically down-
ward is calculated to hit the ground with a velocity of about
26 miles per hour and a spin of 9 rotations per second. After
the bounce on the ground the ball moves away from the
goal, the spin having given it a forward velocity of about 6
miles per hour.

This, of course, is reminiscent of the famous ‘goal’ scored
by England against Germany in the 1966 World Cup Final. In
that case the ball must have struck quite low on the bar, close
to the third case of figure 1.11. The ball fell from the bar to the
goal-line and then bounced forward, to be headed back over
the bar by a German defender. Had the ball struck the bar a
quarter of an inch lower it would have reached the ground
fully over the line.
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Chapter 2





2

The kick

The ball is kicked in a variety of ways according to the circum-
stances. For a slow accurate pass the ball is pushed with the flat
inside face of the foot. For a hard shot the toes are dipped and
the ball is struck with the hard upper part of the foot. The kick
is usually aimed through the centre of the ball, but in some
situations it is an advantage to impart spin to the ball. Backspin
is achieved by hitting under the centre of the ball, and sidespin
by moving the foot across the ball during the kick.

For a hard kick, such as a penalty or goal kick, there are
two basic elements to the mechanics. The first is the swinging
of the leg to accelerate the foot, and the second is the brief
interaction of the foot with the ball. Roughly, the motion of
the foot takes a tenth of a second and the impact lasts for a
hundredth of a second.

For the fastest kicks the foot has to be given the maximum
speed in order to transfer a high momentum to the ball. To
achieve this the knee is bent as the foot is taken back. This
allows the foot to be accelerated through a long trajectory,
producing a high final speed. The muscles accelerate the
thigh, pivoting it about the hip, and accelerate even faster the
calf and the foot. As the foot approaches impact with the ball
the leg straightens, and at impact the foot is locked firmly
with the leg. This sequence is illustrated in figure 2.1.

If the interaction of the foot with the ball were perfectly
elastic, with no frictional energy losses, the speed given to
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the ball would follow simply from two conservation laws. The
first is the conservation of energy and the second is the conser-
vation of angular momentum. These laws determine the fall in
speed of the foot during the impact, and the resulting speed of
the ball. If, further, the mass of the ball is taken to be negli-
gible compared with the effective mass of the leg, the speed
of the foot would be unchanged on impact. In this idealised
case, the ball would then ‘bounce’ off the foot and take a
speed equal to twice that of the foot.

In reality the leg and the foot are slowed on impact and
this reduces the speed of the ball. Frictional losses due to the
deformation of the ball cause a further reduction in speed.
This reduction can be allowed for by a coefficient of restitution
in a similar way to that for a bounce. When these effects are
taken into account it turns out that at the start of the
impact the foot is moving at a speed about three-quarters of
the velocity imparted to the ball. This means that for a hard
kick the foot would be travelling at more than 50 miles per
hour.

Mechanics

It was seen in figure 2.1 that in a hard kick the thigh is forced
forward and the calf and the foot are first pulled forward and

Figure 2.1. In a fast kick the upper leg is driven forward and the lower leg whips

through for the foot to transfer maximum momentum to the ball.
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then swing through to strike the ball. The mechanics of the
process can be illustrated by a simple model in which the
upper and lower parts of the leg are represented by rods and
the hip and knee are represented by pivots, as illustrated in
figure 2.2. Let us take the upper rod to be pulled through
with a constant speed and ask how the lower rod, representing
the lower leg, moves. Figure 2.3 shows what happens. Initially
the lower rod is pulled by the lower pivot and moves around
with almost the same speed as the pivot. However, the centri-
fugal force on the lower rod ‘throws’ it outward, making it
rotate about the lower pivot and increasing its speed as it

Figure 2.2. Model in which the upper and lower parts of the leg are represented

by two pivoting rods, the upper of which is driven around the (hip) pivot.

Figure 2.3. The lower rod is pulled around by the upper rod and is thrown

outward by the centrifugal force, accelerating the foot of the rod.
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does so. As the upper rod moves round, the lower rod ‘whips’
around at an increasing rate and in the final stage illustrated
the two rods form a straight line. The whipping action gives
the foot of the lower rod a speed about three times that of
the lower (knee) pivot.

Thismodel represents quite well themechanics of the kick.
The motion illustrated by the model is familiar as that of the
flail used in the primitive threshing of grain, and is also similar
to that of the golf swing. When applied to golf the upper rod
represents the arms and the lower rod represents the club.

Since students of elementary physics are sometimes
confused by the term centrifugal force used above, perhaps
some comment is in order. When a stone is whirled around
at the end of a string it is perfectly proper to say that the
force from the string prevents the stone from moving in a
straight line by providing an inward acceleration. But it is
equally correct to say that from the point of view of the
stone the inward force from the string balances the outward
centrifugal force. This description is more intuitive because
we have experienced the centifugal force ourselves, for
example when in a car which makes a sharp turn.

Forces on the foot

During the kick there are three forces on the foot, as illustrated
in figure 2.4. Firstly, there is the force transmitted from the leg
to accelerate the foot towards the ball. Secondly, and particu-
larly for a hard kick, there is the centrifugal force as the foot
swings through an arc. The third force is the reaction from
the ball which decelerates the foot during impact.

To see the magnitude of these forces we take an example
where the foot is accelerated to 50 miles per hour over a
distance of 3 feet. In this case the force on the foot due to
acceleration is 30 times its weight and the centrifugal force
reaches a somewhat greater value. On impact with the ball
the foot’s speed is only reduced by a fraction, but this
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occurs on a shorter timescale than that for its acceleration and
the resulting deceleration force on the foot during impact is
about twice the force it experiences during its acceleration.

Power

The scientific unit of power is the watt, familiar from its use
with electrical equipment. It is, however, common in English
speaking countries to measure mechanical power in terms of
horse-power, the relationship being 1 horse-power¼750 watts.
The name arose when steam engines replaced horses. It was
clearly useful to know the power of an engine in terms of the
more familiar power of horses. As would be expected, human
beings are capable of sustaining only a fraction of a horse-
power. A top athlete can produce a steady power approaching
half a horse-power.

The muscles derive their power from burning glucose
stored in the muscle, using oxygen carried from the lungs in
the bloodstream. The sustainable power is limited by the
rate of oxygen intake to the lungs, but short bursts of power
can use a limited supply of oxygen which is immediately avail-
able in the muscle. This allows substantial transient powers to
be achieved. What is the power developed in a kick?

Figure 2.4. The three forces on the foot during a kick.
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Both the foot and the leg are accelerated, and the power
generated by the muscles is used to produce their combined
kinetic energy. For a fast kick the required energy is developed
in about a tenth of a second, and the power is calculated by
dividing the kinetic energy by this time. It turns out that
about 10 horse-power is typically developed in such a kick.

The curled kick

To produce a curved flight of the ball, as illustrated in figure
2.5, it is necessary to impart spin to the ball during the kick.
The spin alters the airflow over the ball and the resulting
asymmetry produces a sideways force which gives the ball its
curved trajectory. We shall look at the reason for this in
chapter 4. Viewed from above, a clockwise spin curls the
ball to the right, and an anticlockwise spin to the left.

Figure 2.6(a) shows how the foot applies the necessary
force by an oblique impact. This sends the ball away spinning
and moving at an angle to the direction of the target. The ball
then curls around to the target as shown in figure 2.6(b). The
amount of bend depends upon the spin rate given to the ball,

Figure 2.5. Curved flight of spun ball.
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and the skill lies in achieving the required rotation together
with accuracy of direction. An analysis of the mechanics of
the kick is given in chapter 10.

Only a small part of the energy transferred to the ball is
required to produce a significant spin. If the energy put into
the spin in a 50 mile per hour kick is 1% of the directed
energy, the ball would spin at 4 revolutions per second.

Accuracy

The directional accuracy of a kick is simply measured by the
angle between the direction of the kick and the desired
direction. However, it is easier to picture the effect of any
error by thinking of a ball kicked at a target 12 yards away.
This is essentially the distance faced by a penalty taker.
Figure 2.7 gives a graph of the distance by which the target
would be missed for a range of errors in the angle of the
kick.

There are two sources of inaccuracy in the kick, both
arising from the error in the force applied by the foot. The
first contribution comes from the error in the direction of
the applied force and the second from misplacement of the

Figure 2.6. To produce a curved flight the ball is struck at an angle to provide the

necessary spin.
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force. These two components are illustrated separately in
figure 2.8.

It is seen from figure 2.7 that placing the ball within one
yard at a distance of 12 yards requires an accuracy of angle of
direction of the ball of about 58. The required accuracy of
direction for the foot itself is less for two reasons. Firstly,

Figure 2.7. Error at a distance of 12 yards resulting from a given error in the

direction of the kick.

Figure 2.8. The kick can have errors in both direction and placement on the ball.

In (a) and (b) these are shown separately.
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the ball bounces off the foot with a forward velocity higher
than that of the foot by a factor depending on the coefficient
of restitution and, secondly, part of the energy supplied by
the sideways error force goes into rotation of the ball rather
than sideways velocity. For a 5% accuracy of the ball’s direc-
tion these two effects combine to give a requirement on the
accuracy of the foot’s direction more like 158. The geometry
of this example is illustrated in figure 2.9.

The accuracy of the slower side-foot kick is much better
than that of the fast kick struck with the top of the foot.
Because of the flatness of the side of the foot the error from

Figure 2.9. When there is an error in the direction of the applied kick the error in

the direction of the ball is much less.
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placement of the foot on the ball is virtually eliminated,
leaving only the error arising from the direction of the foot.
This makes the side-foot kick the preferred choice when
accuracy is more important than speed.

How fast?

The fastest kicks are normally unhindered drives at goal, the
obvious case being that of a penalty-kick struck with maxi-
mum force. To take an actual case we can look at the penalty
shoot-out between England and Germany in the 1996
European Championships. Twelve penalty-kicks were taken
and the average speed of the shots was about 70 miles per
hour. The fastest kick was the last one, by Möller, with a
speed of about 80 miles per hour. Goal-kicks usually produce
a somewhat lower speed, probably because of the need to
achieve range as well as speed.

It is possible to obtain a higher speed if the ball is moving
towards the foot at the time of impact. The speed of the foot
relative to the ball is increased by the speed of the incoming
ball and consequently the ball ‘bounces’ off the foot with a
higher speed. When allowance is made for the unavoidable
frictional losses and the loss of momentum of the foot, the

Figure 2.10. A kick produces a higher ball speed when the ball is initially moving

toward the foot. In this example the kick is such that it would give a stationary

ball a speed of 80 miles per hour.
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increment in the speed of the ball leaving the kick is about half
the incoming speed of the ball. Taking a kick which would give
a stationary ball a speed of 80 miles per hour we see that a
well-struck kick with the ball moving toward the player at
40 miles per hour, which returns the ball in the direction
from which it came, could reach 80þ 1

2 40 ¼ 100 miles per
hour, as illustrated in figure 2.10.
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3

Throwing, heading, punching,

catching, receiving, trapping

Acceleration, g, and forces

The subjects of this chapter are all concerned with acceleration
or deceleration of the ball. In order to give some intuitive feel
for the accelerations and forces involved the accelerations will
be expressed in terms of the acceleration due to gravity, which
is written as g, and forces will be described by the force of an
equivalent weight. Because most British people think of speeds
in terms of miles per hour and weight in terms of pounds these
units will be used. In scientific work the basic units are the
metre, kilogram and second and in the final, theoretical,
chapter we shall change to these units.

Objects falling freely under gravity have an acceleration
of 22 miles per hour per second (9.8 metres per second per
second), so in each second the vertical velocity increases by
22 miles per hour. Thus an acceleration of 220 miles per
hour per second is 10g.

Forces will be given in pounds. For example a force of
140 pounds is equal to the gravitational force of 140 pounds
weight (10 stone). The gravitational force on an object
produces an acceleration g and, correspondingly, an accelera-
tion, g, of the object requires a force equal to its weight.
Similarly, to accelerate an object by 10g, for example, requires
a force equal to 10 times its weight.
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Conversion table

1 yard ¼ 0.91 metre
1 mile/hour ¼ 1.47 feet/second

¼ 0.45 metre/second
1 pound ¼ 0.45 kilogram

The throw-in

Usually the throw-in is used to pass the ball directly to a
well-placed colleague. The distance thrown is generally not
great and the required accuracy is easily achieved by any
player. A more difficult challenge arises when the ball is to
be thrown well into the penalty area to put pressure on
the opponent’s goal. To reach the goal-area calls for a
throw approaching 30 yards, and long throws of this type
often become a speciality of players with the necessary
skill.

A short throw of, say, 10 yards needs a throw speed of
around 20 miles per hour. Taking a hand movement of 1 foot
the required force is typically 10–15 pounds.

A throw to the centre of the pitch, as illustrated in figure
3.1, requires a throw of almost 40 yards. In the absence of air
resistance this challenging throw would require the ball to be
thrown with a speed of 40 miles per hour. The effect of air
drag increases the required speed to about 45 miles per

Figure 3.1. Throw to centre of the pitch.
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hour. To give the ball such a high speed the thrower must
apply a large force over as long a path as possible. Although
a short run up to the throwing position is helpful, both feet
must be in contact with the ground during the throw. This
limits the distance the arms can move. The back is initially
arched with the ball behind the head, and the muscles of the
body and arms are then used to push the ball forward and
upward. For a long throw the ball remains in contact with
the hands over a distance of about 2 feet. Taking this figure
the average acceleration of the ball needed to reach 45 miles
per hour is 34g. Since the ball weighs approximately a
pound this means that the average force on the ball must be
about 34 pounds; the maximum force will of course be some-
what larger.

The record for the longest throw was achieved by the
American college player Michael Lochnor, who threw the
ball 52.7 yards in 1998. The record was previously held by
David Challinor of Tranmere Rovers who reached 50.7
yards, and this throw remains the British record.

Goalkeeper’s throw

Goalkeepers often trust their throw rather than their kick. The
ball can be quite accurately rolled or thrown to a nearby
colleague. Sometimes the goalkeeper chooses to hurl the ball
toward the half-way line rather than kick it, and an impressive
range can be obtained in this way. Despite the use of only one
arm these throws can carry farther than a throw-in. This is
partly because of the longer contact with the ball during the
throw, allowing the force to be applied for more time, and
partly because of the greater use of the body muscles. The
greater ease of obtaining the optimum angle of throw for a
long range is probably another factor. For a long throw the
hand remains in contact with the ball for about 6 feet, and
the contact time for the throw is typically several times as
long as for a throw-in.
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Heading

A well-headed ball is struck with the upper part of the forehead
and the ball essentially bounces from the head. The types of
header are characterised by the way in which momentum is
transferred between the head and the ball.

When a defender heads away a long ball his neck is
braced and the bounce of the ball from his head transfers
momentum to his body. Another situation in which momen-
tum is taken by the body is in the diving header. In this case
the whole body is launched at the ball and it is the speed of
the body which determines the resulting motion of the ball.

In more vigorous headers the muscles are used to thrust
the head at the ball. This type of header is commonly used
by strikers to propel a cross from the side of the pitch
toward the goal. When the head strikes the ball, momentum
is transferred to the ball and the head is slowed. Because the
head weighs several times as much as the ball and because it
is anchored at the neck the change in speed of the head
through the impact is typically less than 10% of the speed
given to the ball. In heading the ball the movement of the
head is restricted to a few inches, and the velocity given to
the ball is much less than that possible for a kick.

Sometimes the head is struck by an unseen ball, or before
the player can prepare himself. It is then possible for all the
ball’s loss of momentum to be transferred to the head. In a
severe case of a 50 mile per hour ball, the head could be
moved an inch in a hundredth of a second, the force on the
head corresponding to an acceleration of 50g. Accelerations
larger than this can lead to unconsciousness.

The punch

Wherever possible, goalkeepers aim to take charge of a ball
close to goal by catching it. There are two circumstances
where this is not possible. Firstly there is the ball which is
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flighted into a group of players near the goal and goalkeeper
doesn’t have sufficient access to the ball to be confident of
catching it. If he can he will then punch the ball as far away
from the goal as possible. The punch is less powerful than
the kick and the distance of movement of the fist is limited
to about a foot. However, the ball bounces off the fist,
taking a higher speed than the fist speed. Typically a range
of about 20 yards is obtained, corresponding to a fist speed
of about 20 miles per hour.

The second situation where a punch is called for is where
a shot is too far out of the goalkeeper’s reach for a catch to be
safely made and a punch is the best response. When the punch
follows a dive by the goalkeeper, considerable accuracy is
called for because of the brief time that a punch is possible.
For example, a ball moving at 50 miles per hour passes
through its own diameter in one hundredth of a second.

While the punch is usually the prerogative of the goal-
keeper, it is also possible to score a goal with a punch.
Figure 3.2 shows a well-known instance of this.

The catch

Goalkeepers make two kinds of catch. The simpler kind is the
catch to the body. In this case most of the momentum of the
ball is transferred to the body. Because of the comparatively
large mass of the body the ball is brought to rest in a short
distance. The goalkeeper then has to trap the ball with his
hands to prevent it bouncing away.

In the other type of catch the ball is taken entirely with the
hands.With regard to themechanics, this catch is the inverse of
a throw. The ball is received by the hands with its incoming
speed and is then decelerated to rest. During the deceleration
the momentum of the ball is transferred to the hands and
arms through the force on the hands. The skill in this catch is
to move the hands with the ball while it is brought to rest.
Too small a hand movement creates a too rapid deceleration
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of the ball and the resulting large force makes the ball difficult
to hold. The movement of the hands during the catch is
nevertheless usually quite small, typically a few inches.

Taking as an example a shot with the ball moving at 50
miles per hour, and the goalkeeper’s hands moving back 6
inches during the catch, the average deceleration of the ball
is 170g, so the transient force on the hands is 170 pounds,
which is roughly the weight of the goalkeeper. The catch is
completed in just over a hundredth of a second.

Receiving

When a pass is received by a player the ball must be brought
under control, and in tight situations this must be done

Figure 3.2. Maradona bending the rules. (# Popperfoto/Bob Thomas Sports

Photography.)
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without giving opponents a chance to seize the ball. The basic
problem with receiving arises when the ball comes to the
player at speed. If the ball is simply blocked by the foot, it
bounces away with a possible loss of possession. The ball is
controlled by arranging that the foot is moving in the same
direction as the ball at the time of impact. The mechanics
are quite straightforward – essentially the same as for a
bounce, but with a moving surface. Thus, allowing for the
coefficient of restitution, the speed of the foot can be chosen
to be such that the ball is stationary after the bounce. It
turns out that the rule is that the foot must be moving at a
speed equal to the speed of the ball multiplied by e=ð1þ eÞ
where is the coefficient of restitution. If, say, the ball is
moving at a speed of 25 miles per hour and the coefficient of
restitution is 2

3, then the foot must be moving back at a
speed of 10 miles per hour. This ideal case, where the ball is
brought to rest, is illustrated in figure 3.3.

To receive a fast ball successfully it is not only necessary
to achieve the correct speed of the foot, but also requires good
timing. A ball travelling at 30 miles per hour moves a distance
equal to its own diameter in about a sixtieth of a second, and
this gives an idea of the difficulty involved. The player’s
reaction time is more than ten times longer than this, showing
that the art lies in the anticipation.

Trapping

Trapping the ball under the foot presents a similar challenge to
that of receiving a fast pass in that the time available is very
brief. A particular need to trap the ball arises when it reaches
the player coming downwards at a high angle. To prevent the
ball bouncing away the foot is placed on top of it at the
moment of the bounce. Easier said than done.

As the ball approaches, the foot must be clear of it so that
the ball can reach the ground. Then, when the ball reaches the
ground the foot must be instantly placed over it, trapping the
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ball between the foot and the ground. This is sometimes done
with great precision. The ‘window’ of time within which
trapping is possible is determined by the requirement that
the foot is placed over the ball in the time it takes for the
ball to reach the ground and bounce back up to the foot, as
illustrated in figure 3.4.

We can obtain an estimate of the time available by taking
the time for the top of the ball to move downwards from the
level of the foot and then to move upwards to that level
again. The upward velocity will be reduced by the coefficient
of restitution but for an approximate answer this effect is
neglected. If the vertical distance between the ball and the
foot at the time of bounce is, say, 3 inches then taking a

Figure 3.3. Controlling the ball.
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hundredth of a second for the duration of the bounce, a ball
travelling at 30 miles per hour will allow about a fiftieth of a
second to move the foot into place. As with receiving a fast
pass, anticipation is the essential element.

Figure 3.4. Trapping the ball requires a well timed placement of the foot.
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4

The ball in flight

In professional baseball and cricket, spinning the ball to
produce a curved flight and deceive the batsman is a key
part of the game. Footballers must have known from the
early days of organised football in the nineteenth century
that their ball can be made to move in a similar way. But it
was the Brazilians who showed the real potential of the
‘banana’ shot. Television viewers watched in amazement as
curled free kicks ignored the defensive wall and fooled the
goalkeeper. The wonderful goals scored by Roberto Rivelino
in the 1974 World Cup and by Roberto Carlos in the Tournoi
de France in 1997 have become legends. This technique is now
widespread, and we often anticipate its use in free kicks taken
by those who have mastered the art.

We shall later look at the explanation of how a spinning
ball interacts with the air to produce a curved flight, but we
first look at the long range kick. What is surprising is that
understanding the ordinary long range kick involves a very
complicated story. Long range kicks require a high speed,
and at high speed the drag on the ball due to the air becomes
very important. If there were no air drag, strong goal-kicks
would fly out at the far end of the pitch as illustrated in
figure 4.1. In exploring the nature of air drag we shall uncover
the unexpectedly complex mechanisms involved. However, we
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best start by looking at the idealised case of the flight of the
ball without air drag.

Flight without drag

It was in the seventeenth century that the Italian astronomer
and physicist Galileo discovered the shape of the curved
path travelled by projectiles. He recognised that the motion
could be regarded as having two parts. From his experiments
he discovered that the vertical motion of a freely falling object
has a constant acceleration and that the horizontal motion has
a constant velocity. When he put these two parts together, and
calculated the shape of the projectile’s path, he found it to be a
parabola.

We would now say that the vertical acceleration is due to
the earth’s gravity, and call the acceleration g. Everyone
realised, of course, that Galileo’s result only applies when
the effect of the air is unimportant. It was obvious, for
instance, that a feather does not follow a parabola.

When the air drag is negligible, as it is for short kicks, a
football will have a parabolic path. Figure 4.2 shows the
parabolas traced by balls kicked at three different angles,

Figure 4.1. Flight of a goal-kick compared with that which would occur without

air drag.
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but with the same initial speed. The distance travelled by the
ball before returning to the ground depends only on the
angle and speed with which the ball leaves the foot. For a
given speed the maximum range is obtained for a kick at
458, as illustrated in the figure. The range for 308 and 608
kicks is 13% less.

To better understand this, we look at the velocity of the
ball in terms of its vertical and horizontal parts. The distance
the ball travels before returning to the ground is calculated by
multiplying its horizontal velocity by the time it spends in the
air. If the ball is kicked at an angle higher than 458, its time in
the air is increased, but this is not sufficient to compensate for
the reduction in horizontal velocity, and the range is reduced.
Similarly, at angles below 458 the increased horizontal velocity
doesn’t compensate for the reduction of the time in the air. In
the extreme cases this becomes quite obvious. For a ball

Figure 4.2. Neglecting air drag the ball flies in a parabola, the shape depending

on the angle of the kick. The figure shows the paths of three balls kicked with the

same initial speed but at different angles.
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kicked vertically the range is zero, and a ball kicked horizon-
tally doesn’t leave the ground.

These effects are brought out more fully in figure 4.3,
which shows the horizontal velocity and the time of the
flight for all angles. When multiplied together they give the
range shown, with its maximum at 458.

The time the ball takes to complete its flight can also be
calculated. This time depends only on the vertical part of the
ball’s initial velocity, and the time in seconds is approximately
one tenth of the initial vertical velocity measured in miles per
hour. A ball kicked with an initial vertical component of
velocity of 20 miles per hour would therefore be in the air
for 2 seconds.

Figure 4.3. For parabolic paths the range is given by multiplying the constant

horizontal velocity by the time of flight. For balls kicked with the same speed,

both of these depend on the angle of the kick. As the angle of the kick is

increased, the horizontal part of the velocity falls and the time of flight increases,

giving a maximum at 458.
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For slowly moving balls the air drag is quite small and for
speeds less than 30 miles per hour the effect of air drag is not
important. However, for long range kicks, such as goal-kicks,
calculations ignoring the effect of the air give seriously incor-
rect predictions. To understand how the air affects the ball we
need to look at the airflow over the ball.

The airflow

Figure 4.4 gives an idealised picture of the airflow around a
ball. The airflow is shown from the ‘point of view’ of the
ball – the ball being taken as stationary with the air flowing
over it. This is a much easier way of looking at the behaviour
than trying to picture the airflow around a moving ball.

The lines of flow are called streamlines. Each small piece
of air follows a streamline as it flows past the ball. The air
between two streamlines remains between those streamlines
throughout its motion. What the figure actually shows is a
cross-section through the centre of the ball. Considered in
three dimensions the stream lines can be thought of as
making up a ‘stream surface’, enclosing the ball, as shown in
figure 4.5. The air arrives in a uniform flow. It is then

Figure 4.4. Cross-section of the airflow over the ball, the flow following the

streamlines.
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pushed aside to flow around the ball and, in this simplified
picture, returns at the back of the ball to produce a uniform
flow downstream from the ball.

The surprising thing is that the simple flow described
above produces no drag on the ball, a result first appreciated
by the French mathematician d’Alembert in the eighteenth
century. In simple terms this can be understood from the
fact that the downstream flow is identical to the upstream
flow, no momentum having been transferred from the air to
the ball.

To understand what really happens we need to take
account of the viscosity of the air. Viscosity is more easily
recognised in liquids, but its effect on air can be observed,
for example, when it slows the air driven from a fan, and
ultimately brings it to rest.

The simplest model of viscous flow over a sphere is that
given by the Irish physicist Stokes in the nineteenth century.
Many physics students will have verified ‘Stokes’s law’ for
the viscous drag on a sphere, by dropping small spheres
through a column of oil or glycerine. A crucial, and correct,
assumption of this model is that the fluid, in our case the
air, is held stationary at the surface of the sphere, so that the
flow velocity at the surface is zero. The difference in velocity
which then naturally arises between the slowed flow close to
the ball and the faster flow further away gives rise to a viscous
force, which is felt by the ball as a drag.

Figure 4.5. Three dimensional drawing of a stream surface, showing how the air

flows around the ball.
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The boundary layer

Now it turns out that Stokes’s viscous model will not explain
the drag on a football. In fact the model is only valid for ball
velocities much less than one mile per hour. Not much use to
us. The essential step to a fuller understanding the flow around
solid bodies had to wait until the twentieth century when the
German physicist Prandtl explained what happens.

Imagine taking a ball initially at rest, and moving it with a
gradually increasing velocity. At the beginning, the region
around the ball which is affected by viscosity is large –
comparable with the size of the ball itself. As the velocity is
increased the viscous region contracts towards the ball, finally
becoming a narrow layer around the surface. This is called the
boundary layer. The drag on the ball is determined by the
behaviour of this layer, and outside the layer viscosity can
be neglected. With a football the boundary layer is typically
a few millimetres thick, becoming narrower at high speed.

The boundary layer doesn’t persist around to the back of
the ball. Before the flow in the boundary layer completes its
course it separates from the surface as shown in figure 4.6.
Behind the separation point the flow forms a turbulent

Figure 4.6. The boundary layer is a narrow region around the surface of the ball

in which the effect of viscosity is concentrated. Viscosity slows the airflow

causing it to separate from the ball.
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wake. In this process the air in the wake has been slowed, and
it is the reaction to this slowing which is the source of the air
drag on the ball. In order to understand how this separation
happens we must see how the velocity of the air changes as
it flows around the ball, and how these changes are related
to the variation of the pressure of the air. This leads us to
the effect explained by the Swiss mathematician Bernoulli,
and named after him.

The Bernoulli effect

Figure 4.7 shows streamlines for an idealised flow. If we look
at the streamlines around the ball we see that they crowd
together as the air flows around the side of the ball. For the
air to pass through the reduced width of the flow channel it

Figure 4.7. To maintain the flow where the channel between the streamlines

narrows at the side of the ball, the air has to speed up. It slows again as the

channel widens behind the ball. Pressure differences arise along the flow to

drive the necessary acceleration and deceleration.
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has to move faster. The air speeds up as it approaches the side
of the ball and then slows again as it departs at the rear.

For the air to be accelerated to the higher speed, a
pressure difference arises, the pressure in front of the ball
being higher than that at the side, the pressure drop accelerat-
ing the air. Similarly a pressure increase arises at the back of
the ball to slow the air down again.

This effect can be seen more simply in an experiment
where air is passed through a tube with a constriction as
shown in figure 4.8. For the air to pass through the constric-
tion it must speed up and this requires a pressure difference
to accelerate the air. Consequently the pressure is higher
before the constriction. Similarly the slowing of the air when
it leaves the constriction is brought about by the higher press-
ure downstream. If pressure gauges are connected to the tube
to measure the pressure differences they show a lower pressure
at the constriction, where the flow speed is higher.

Separation of the flow

Why does the flow separate from the surface of the ball? As we
have seen, the air is first accelerated and then decelerated but,

Figure 4.8. In this experiment air is passed down a tube with a constriction, and

pressure gauges measure the pressure changes. The pressure falls as the flow

speed increases, following Bernoulli’s law.
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in addition to this, viscosity slows the air. As a result, the flow
around the surface is halted towards the rear of the ball, and
the flow separates from the surface.

This effect has been compared with that of a cyclist free-
wheeling down a hill. His speed increases until he reaches the
valley bottom. If he continues to free-wheel up the other side
the kinetic energy gained going down the hill is gradually lost,
and he finally comes to rest. If there were no friction he would
reach the same height as the starting point, but with friction he
stops short of this.

Similarly, the air in the boundary layer accelerates
throughout the pressure drop and then decelerates throughout
the pressure rise. Viscosity introduces an imbalance between
these parts of the flow, and the air fails to complete its journey
to the back of the ball. Figure 4.9 shows how the forward
motion of the air is slowed and the flow turns to form an eddy.

The turbulent wake

The flow beyond the separation is irregular. Figure 4.10
illustrates the turbulent eddies which are formed, these
eddies being confined to a wake behind the ball. The eddies
in the flow have kinetic energy, and this energy has come
from the loss of energy in the slowing of the ball.

Figure 4.9. Viscosity slows the separated airflow, producing eddies behind the

ball.
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With increasing ball speed the drag initially increases as
the square of the speed, doubling the speed producing four
times the drag. However, with further increase in speed there
is a surprising change, and above a certain critical speed the
drag force behaves quite differently.

The critical speed

There have been precise experimental measurements of the
drag on smooth spheres. This allows us to calculate the drag
force on a smooth sphere the size of a football, and the
result is shown in figure 4.11. It is seen that there is an
abrupt change around 50 miles per hour, a critical speed
which is clearly in the speed range of practical interest with
footballs. Above this critical speed the drag force actually
falls with increasing speed, dropping to about a third of its
previous value at a speed just over 60 miles per hour before
increasing again.

However, although a football is smooth over most of its
surface, the smoothness is broken by the stitching between
the panels. Again surprisingly, the indentation of the surface
caused by this stitching has a very large effect on the drag.
There is little experimental evidence available on the drag on
footballs, but measurements by the author indicate that the
critical speed is much lower than for a smooth sphere, with

Figure 4.10. The separated flow is unstable and forms a turbulent wake.
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a much less abrupt drop below the ‘speed squared’ line. Using
these results, figure 4.12 shows how the drag on a football falls
below that for a smooth sphere at low speeds and rises above it
at high speeds. Also marked on the figure is the deceleration

Figure 4.11. The graph shows how the drag force varies with speed for a smooth

sphere the same size as a football. The dashed line gives a (speed)2 extrapolation.

Figure 4.12. Drag force on a football. Above a critical speed the drag falls below

the ‘speed squared’ dependence and below that for a smooth sphere. At high

speeds the drag on the ball is greater than that for a smooth sphere. The decel-

eration which the drag force produces is shown on the right side in units of g.
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which the drag force produces. With a deceleration of 1g the
drag force is equal to the weight of the ball.

What happens at the critical speed?

Because the drag at low speeds is comparatively small, it is
mainly for speeds above the critical speed that the flight of
the ball is significantly affected by the drag. Our interest, there-
fore, is concentrated on these speeds.

The change in drag above the critical speed arises from a
change in the pattern of the air flow. Above the critical speed
the narrow boundary layer at the surface of the ball becomes
unstable as illustrated in figure 4.13. This allows the faster
moving air outside the boundary layer to mix with the
slower air near the surface of the ball, and to carry it further
toward the back of the ball before separation occurs. The
result is a smaller wake and a reduced drag.

The onset of instability in the boundary layer around a
sphere depends on the roughness of the surface. Rougher
surfaces produce instability at a lower speed and consequently
have a lower critical speed. A well-known example of this is

Figure 4.13. Above the critical speed the boundary layer becomes turbulent and

this delays the separation, reducing the wake and the drag.
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the dimpling of the surface of golf balls. Dimpling was
introduced when it was found that initially-smooth golf balls
could be driven further as their surface became rougher. The
dimpling deliberately lowers the critical speed, reducing the
drag in the speed range of interest, and allowing longer
drives. With footballs the indentations along the stitching
play a similar role, lowering the speed for the onset of
instability in the boundary layer. At higher speeds the effect
of roughness is to increase the drag above that for a smooth
sphere.

Speed and range

There are two situations where players need to kick the ball at
high speed. The first is when a striker or a penalty-taker has to
minimise the time the goalkeeper has to react and launch
himself toward the ball. In a penalty-kick the ball reaches
the goal in a fraction of a second and in this brief time air
drag only reduces the speed of the ball by about 10%.

The objective of a fast penalty kick is to put the ball over
the goal-line before the goalkeeper can reach it. The time it
takes for a ball to travel from the foot to cross the goal-line
is given by the distance travelled divided by the speed of the
ball. Provided accuracy is maintained, the faster the kick the
better. With this objective, penalty-takers achieve ball speeds
up to 80 miles per hour.

The distance of the penalty spot from the goal-line is 12
yards. In a well-struck penalty kick the ball travels further to
the goal, being aimed close to the goal post, but never needing
to travel more than 13 yards to the goal. An 80 miles per hour
penalty kick travels at 39 yards per second and so its time of
flight is about a third of a second. This is comparable with
the reaction time of a goalkeeper, and so the only chance a
goalkeeper has with a well-struck penalty kick is to anticipate
which side the ball will go and use the one third of a second
diving through the air.
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The second type of kick which needs a high speed is the
long kick. In particular, the goalkeeper is often aiming to
achieve maximum range, whether kicking from his hand or
from the six-yard box. In the absence of air drag the distance
reached would increase as the square of the initial speed, twice
the speed giving four times the range. Because of air drag this
doesn’t happen. At higher speed the drag is more effective in
reducing the speed during the flight of the ball, and we shall
find that this greatly reduces the range.

A goal-kick can be kicked at a similar speed to a penalty
shot but, because of the longer time of flight, the air drag
significantly affects its path. For a well-struck kick with a
speed of 70 miles per hour, the force due to the drag is
about the same as the force due to gravity. The range of a
kick in still air is determined by the initial speed of the ball
and the initial angle to the horizontal. For a slow kick the
effect of drag is negligible. In that case there is practically no
horizontal force on the ball, and the horizontal part of the
velocity is constant in time. For high speed kicks the air
drag rapidly reduces the speed of the ball, as illustrated in
figure 4.14 which shows the fall in the horizontal velocity for
a 70 mile per hour kick.

The range depends on the average horizontal velocity of
the ball, and on the time of flight. Both of these factors are
reduced by air drag, the fall in horizontal velocity having the
larger affect. Figure 4.15 shows how the range depends on
the initial speed for a kick at 458. In order to bring out the
effect of air drag, the range calculated without air drag is
shown for comparison. It is seen that, for high speed kicks,
air drag can reduce the range by half.

The effect of air drag on the path of the ball is illustrated
in figure 4.16, which shows the flight of a 70 miles per hour
kick at 458. The drag reduces both the vertical and the
horizontal velocities but the greater effect on the horizontal
velocity means that the ball comes to the ground at a steeper
angle than that of the symmetric path which the ball would
take in the absence of drag. When air drag is allowed for, it
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turns out that 458 no longer gives the maximum range for a
given speed. Because the main effect of the drag is to reduce
the horizontal velocity, the maximum range is obtained by
making some compensation for this by increasing the initial
horizontal velocity at the expense of the vertical velocity.
This means that the optimum angle is less than 458. Although
at high speeds the optimum angle can be substantially lower
than 458, it turns out that the gain in range with the lower
angle is slight, typically a few yards.

Nevertheless goalkeepers do find that they obtain the
longest range goal-kicks with an angle lower than 458, but
this might be unrelated to air drag. The reason possibly
follows from the fact that the achievable speed depends on
the angle at which the ball is kicked. The mechanics of the
kick are such that it is easier to obtain a high speed with a
low angle than a high angle. Just imagine trying to kick a
ball vertically from the ground.

Figure 4.14. The drag on the ball reduces its velocity during the ball’s flight. The

graph shows the fall in the horizontal part of the velocity with time for a 70 miles

per hour kick at 458. The horizontal velocity starts at 50 miles per hour and is

roughly halved by the time the ball reaches the ground.
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Generally long range goal-kicks are kicked at an angle
closer to 308 and a typical goal-kick lands just beyond the
centre circle. The speed needed for a given range has been
calculated and it can be seen from figure 4.17 that such a
goal-kick requires an initial speed of 70 miles per hour. The
calculation also gives the time of flight of the ball, and the
dependence of this time on the range is shown in figure 4.18.

Figure 4.15. For balls kicked at a given angle the range depends only on the

speed with which the ball is kicked. The graph shows the dependence of range

on the initial speed for kicks at 458. The range calculated without air drag is

given for comparison.

Figure 4.16. Path of ball kicked at 70 miles per hour and 458. Comparison with

the path calculated without air drag shows the large effect of the drag.
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Figure 4.17. Range calculated for kicks at 308 to the horizontal.

Figure 4.18. The graph shows how the time of flight increases with range for

balls kicked at 308.
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Most long range goal-kicks have a time of flight of about 3
seconds.

Balls kicked after being dropped from the goalkeeper’s
hands are easier to kick at a higher angle than are goal-
kicks, and generally goalkeepers do make such kicks at an
angle closer to 458.

Effect of a wind

When there is a wind, the speed of the air over the ball is
changed and there is an additional force on the ball. This
force depends on the speed of the ball and is approximately
proportional to the speed of the wind. It is clear that a tail
wind will increase the range of a kick and a head wind will
decrease the range. For a goal-kick, a rough approximation
is that the range is increased or decreased by a yard for each
mile per hour of the wind. For example a goal kick which with-
out a wind would reach the back of the centre circle, would be
carried by a 30 mile per hour tail wind into the penalty area. It
is kicks of this sort which occasionally embarrass the goal-
keeper who comes out to meet the ball, misjudges it, and
finds that the bounce has taken it over his head into the goal.

A strong head wind can seriously limit the range. Figure
4.19 shows the path of the ball in two such cases. The first is
for a 70 miles per hour kick into a 30 miles per hour head
wind. It is seen that the forward velocity is reduced to zero
at the end of the flight, the ball falling vertically to the
ground. The second is that for an extreme case with a 40
miles per hour gale. The horizontal velocity is actually
reversed during the flight, and the ball ends up moving back-
wards.

When there is a side wind the ball suffers a deflection. As
we would expect, this deflection increases with the wind speed
and with the time of flight. A 10 miles per hour side wind
displaces the flight of a penalty kick by a few inches. This is
unlikely to trouble a goalkeeper but a 1 foot deflection in a
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30 miles per hour wind might, especially as the wind causes the
flight to be curved.

A 10miles per hour side wind would deflect a 20 yard kick
by about a yard, and a goal kick by about 5 yards. It is clear
from this how games can be spoilt by strong winds, especially
if gusty. Players learn to anticipate the normal flight of the
ball, and there is some loss of control when the ball moves
in an unexpected way.

The banana kick

The simple theory of the flight of the ball predicts that, in the
absence of wind, the ball will move in a vertical plane in the
direction it is kicked. It is surprising, therefore, to see shots
curling on their way to the goal. The same trick allows
corner kicks to cause confusion in the defence by either an
inward- or outward-turning flight of the ball.

Viewed from above a normal kick follows a straight line.
This is consistent with Newton’s law of motion which tells us
that the appearance of a sideways movement would require a

Figure 4.19. The effect of a strong head wind on the paths of 70 miles per hour

kicks at 458.
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sideways force. We see, therefore, that to understand the
curled flight of a ball we must be able to identify and describe
this sideways force.

The first clue comes from the kicking of the ball. To
produce a curled flight the ball is not struck along the line of
its centre. The kick is made across the ball and this imparts
a spin. It is this spin which creates the sideways force, and
the direction of the spin determines the direction of the
curve in flight.

Attempts to explain the curved flight of a spinning ball
have a long history. Newton himself realised that the flight
of a tennis ball was affected by spin and in 1672 suggested
that the effect involved the interaction with the surrounding
air. In 1742 the English mathematician and engineer Robins
explained his observations of the transverse deflection of
musket balls in terms of their spin. The German physicist
Magnus carried out further investigations in the nineteenth
century, finding that a rotating cylinder moved sideways
when mounted perpendicular to the airflow. Given the history,
it would seem appropriate to describe the phenomenon as the
Magnus–Robins effect but it is usually called the Magnus
effect.

Until the twentieth century the explanation could only be
partial because the concepts of boundary layers and flow
separation were unknown. Let us look at the simple descrip-
tion of the effect suggested in earlier days. It was correctly
thought that the spinning ball to some extent carried the air
in the direction of the spin. This means that the flow velocity
on the side of the ball moving with the airflow is increased and
from Bernoulli’s principle the pressure on this side would be
reduced. On the side moving into the airflow the air speed is
reduced and the pressure correspondingly increased. The
resulting pressure difference would lead to a force in the
observed direction. However, this description is no longer
acceptable.

With the understanding that there is a thin boundary
layer around the surface comes the realisation that the viscous
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drag on the air arising from the rotation of the ball is limited to
this narrow layer, and because of the viscous force in this layer
Bernoulli’s principle does not hold.

There are two steps to an understanding of what actually
happens with a spinning ball. The first is to see the pattern of
flow over the ball and the second is to understand how this
implies a sideways force.

We saw earlier how, with a non-spinning ball, the air
flows over the surface of the ball until it is slowed to the
point where separation occurs. With spin an asymmetry is
introduced as illustrated in figure 4.20. On the side of the
ball moving with the flow the viscous force from the moving
surface carries the air farther around the ball before separa-
tion occurs. On the side of the ball moving against the flow
the air is slowed more quickly and separation occurs earlier.
The result of all this is that the air leaving the ball is deflected
sideways.

We can see from the flow pattern that the distribution of
air pressure over the ball, including that of the turbulent wake,
will now be rather complicated. There is, therefore, no simple
calculation which gives the sideways force on the ball.
However, we can determine the direction of the force. The
simplest way is to see that the ball deflects the air to one side
and this means that the air must have pushed on the ball in
the opposite direction as illustrated in figure 4.21. In more

Figure 4.20. Rotation of the ball leads to an asymmetric separation.
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technical terms the sideways component of the airflow carries
momentum in that direction and, since the total momentum is
conserved, the ball must move in the opposite direction taking
an equal momentum. This is the Magnus effect.

Having determined the direction of the force we can now
work out the effect of spin on the flight. In figures 4.20 and
4.21 the airflow comes to the ball from the left, meaning
that we have taken the motion of the ball to be to the left.
The direction of the Magnus force is then such as to give the
curved flight shown in figure 4.22. If the spin imparted at
the kick were in the other direction the ball would curve the
other way.

With a very smooth ball, like a beach-ball, a more
irregular sideways motion can occur. The ball can move in
the opposite direction to the Magnus effect and can even
undergo sideways shifts in both directions during its flight.

Figure 4.21. Airflow is deflected by spin, with a sideways reaction force on the

ball.

Figure 4.22. Showing the direction the ball curls in response to the direction of

the spin.
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We can see how an inverse Magnus effect can occur by
recalling that there is a critical speed above which the bound-
ary layer becomes unstable. With a spinning ball the air speed
relative to the ball’s surface is higher on the side where the
surface is moving against the air. We would, therefore,
expect that over a range of ball speeds the critical flow speed
can be exceeded on this side of the ball and not exceeded on
the other. Since the effect of the resulting turbulence is to
delay separation, we see that the asymmetry of the flow
pattern can now be the opposite of that occurring with the
Magnus effect and the resulting force will also be reversed.

The more predictable and steady behaviour of a good
football must be due to a more regular flow pattern at the
surface of the ball initiated by the valleys in the surface
where the ball is stitched.
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5

The laws

Football was first played with codified rules in the middle of
the nineteenth century. Although the game bore some relation
to the modern game there were fundamental differences. For
example in the early games the ball could be handled as in
rugby, and ‘hacking’ was allowed. One dominant concept
was that the ball should be ‘dribbled’ forward and that players
should keep behind the ball. Later, forward passing was
allowed but the idea that the ball should be worked forward
persists in the present off-side rule.

Initially there was a variety of rules, each school or club
being free to decide for itself. The growth of competition
demanded a uniform set of rules and by 1870 ‘soccer’ was
completely separated from rugby and was recognisable as
the modern game.

The process by which the present laws emerged was of
course empirical. The laws were refined to improve the game
for both players and spectators. However, this does not
mean that no principles are involved and we can ask why
the laws have their present form. Of course the issues are
complex and the laws are interdependent, so we cannot
expect simple answers. Nevertheless it is of interest to try to
uncover some of the underlying principles.

To take an example, we can ask why the goals are the size
they are – 8 feet high, 8 yards wide. The basic determining
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factor is the number of goals desirable in a match. If the goal
were twice as wide the scoring rate would be phenomenal, and
if it were half as wide there would be a preponderance of 0–0
draws. So the question becomes what is the optimum scoring
rate, or goals per match, and we shall return to this later.

Further questions are why the pitch is the size it is, and
why eleven players? In the early days the pitch would be
whatever piece of land was available but it would soon be
clear that it would best be large enough that the goal could
not be bombarded by kicks from the whole of the pitch. In
more recent times commercial factors demand that the pitch
be a suitable size for the spectators. However, it is probably
a coincidence that the chosen size of the pitch allows even
the largest number of spectators to be accommodated with a
reasonable view of the game. The question of how many
players leads to an even more basic question as to whether
there is a relationship between the various fundamental
factors involved. If there is such a relation this might provide
the starting point for a ‘theory of football’. Let us now
examine this question.

With respect to the play there must be a general relation
between the number of players and the best size of the pitch,
six-a-side matches obviously needing a smaller pitch. It
seems likely that the essential factor is that there be pressure
on the players to quickly control the ball and decide what to
do with it. This means that opposing players must typically
be able to run to the player with the ball in a time comparable
with the time taken to receive, control and move the ball. If the
distance between players is larger the game loses its tension. If
this distance is much less the game has the appearance of a pin-
ball machine. We cannot expect to be able to do a precise
calculation, but we can carry out what is often called a
back-of-envelope calculation to see the rough relationship
between the quantities involved and to check that the numbers
make sense.

If there areN outfield players in each team and the area of
the pitch is A, the number of these players per unit area is
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n ¼ N=A. A simple calculation gives the average distance to
the nearest opponent as approximately d ¼ 1

2 =
ffiffiffi
n

p
. If the

speed with which players move to challenge is s, the time to
challenge is d=s. Thus, if the time to receive, control and
decide is t and we equate this to the time to challenge, we
obtain the optimal relationship between the four basic factors
t, A, s and N as

t ’ 1

2s

ffiffiffiffi
A

N

r

where the symbol ’ indicates the lack of precision in the
equality. Taking the area of the pitch to be 110 yards� 70
yards¼ 7700 square yards and the speed of the players as
5 yards/second we obtain t ’ 9=

ffiffiffiffi
N

p
and figure 5.1 gives the

corresponding plot of t against N. We see that for N ¼ 10,
as specified by the rules, the characteristic time has the quite

Figure 5.1. The allowed time depends on the number of players.
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reasonable value of 3 seconds. This might typically allow a
second for the pass a player receives, a second to control
and a second to either release the ball or start running with it.

How many goals?

Perhaps the most frequently raised issue concerning the laws is
whether the number of goals scored in a match should be
increased. The number could easily be adjusted, for example,
by changing the height and width of the goal. This leads us to
ask what factors are involved in deciding the optimum number
of goals per match.

That there is an optimum is clear. Obviously zero goals
is no good and, on the other hand, no-one wants to see
basketball scores. Since both of these limits are completely
unsatisfactory there has to be an optimum in between.

Basically, very low scoring is not acceptable because we
miss the excitement of goals being scored. This is particularly
true of 0–0 drawswhich are generally regarded as disappointing.

The case against high scoring is less clear. In basketball
and rugby high scores are found quite acceptable. One argu-
ment is that the larger the number of goals, the less significant
and exciting is each goal. Another is that the results of matches
become more predictable. With opposing teams of equal
ability both teams have an equal chance of winning no
matter what the average scoring rate, but for teams of unequal
ability the average scoring rate matters. As we shall see, the
weaker team has a better chance of providing an ‘upset’ if
the scoring is lower. This must be regarded as an argument
against a high scoring rate because the enjoyment is reduced
if the result is predictable and the better team almost always
wins. We shall shortly examine the reason why the weaker
team benefits from a lower scoring rate, but in order to do
so we need to introduce the concept of probability.

Probability is measured on a scale of 0 to 1, zero applying
to impossibility and 1 to certainty. Thus a probability of 1 in 4
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is 0.25 and 1 in 2 is 0.5 and so on. It is sometimes convenient to
express the probability as a percentage, thus 0.25 and 0.5
become 25% and 50% for example. In considering the
probabilities of the various outcomes we know that, since
there must be some outcome, the sum of the probabilities of
all possible outcomes will be 1.

We now return to the effect of the scoring rate on the
chance of the weaker team winning. This can be illustrated
by considering matches in which the better team has twice
the potential scoring rate of its opponent. The probability of
the weaker team winning depends on whether the total
number of goals scored is odd or even, a draw being
impossible with an odd number of goals. First we look at
matches with an odd number of goals.

If only one goal is scored, the probability that it is scored
by the stronger team is 2/3 and the probability that is scored
by the weaker team is 1/3. The weaker team has, therefore a
33% chance of being the winner.

With three goals the situation is more complicated.
We must take account of the possible orders of goal scoring
and calculate the probability of each. If the weaker team
wins 3–0 there is only one possible sequence of three goals,
which we can write www where w denotes a goal by the
weaker team. The probability of this sequence is
1
3 � 1

3 � 1
3 ¼ 1

27. For a 2–1 win for the weaker team there are
three possible sequences. Denoting a goal by the stronger
team by s these are wws, wsw and sww. The probability of
each of these sequences with two goals to the weaker team
and one to the stronger is 1

3 � 1
3 � 2

3 ¼ 2
27, so allowing for the

three possible sequences the probability of a 2–1 win for the
weaker team is 3� 2

27 ¼ 6
27. Since 3–0 and 2–1 are the only

scores for a win, the total probability of a win for the
weaker team is 1

27 þ 6
27 ¼ 7

27 or 26%. We see that with three
goals as compared with one goal the probability of the
weaker team winning is reduced from 33% to 26%.

As the number of goals in the match increases the
probability of the weaker team winning continues to fall.
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Figure 5.2 gives a graph showing the probability of a win for
each number of goals. At nine goals it has fallen below 15%.

Similar calculations with an even number of goals scored
in the match give the results shown in figure 5.3, which also

Figure 5.2. The probability of the weaker team winning depends on the total

number of goals scored in the match. The graph shows the dependence when

the number of goals is odd.

Figure 5.3. Probability of a draw and a win for the weaker team when the total

number of goals is even.

76 The science of soccer



includes the probability of a draw. It is seen that with an even
number of goals the reduction in the weaker team’s chance of
winning as the total number of goals is increased is only slight.
However, the chance of coming away with a draw falls very
rapidly.

The choice of a two to one scoring ratio in the above
example is, of course, arbitrary. It does, however, illustrate
an important advantage of the rules not allowing too high a
scoring rate. The excitement from the uncertainty as to the
outcome with the improved chance of the weaker team getting
a surprise result outweighs the occasional ‘injustice’ to the
stronger team.

Imprecision of the laws

Some imprecision in the laws of a game may be valuable if it
allows the referee or umpire to use his common sense. In the
case of football the imprecision is sometimes unhelpful or
unnecessary.

The off-side law is such a case. The law states that a player
shall not be declared off-side by the referee merely because of
being in an off-side position. He shall only be declared off-side
if, at the moment the ball touches or is played by one of his
team, he is in the opinion of the referee (a) interfering with
play or with an opponent, or (b) seeking to gain an advantage
by being in that position.

The use of the phrase ‘interfering with play’ is rather
mysterious. Presumably it is influencing the play which is
precluded. Regarding (b), even if the player is not gaining an
advantage from being where he is, it seems a curious idea
that he is not seeking an advantage, and if he is seeking an
advantage surely he is influencing the play.

The problem is actually deeper, for if we allow that an
attacking player is not ‘interfering’ and not seeking an advan-
tage, his intentions may not be clear to the defenders, whose
positioning and attention are then affected. This means that
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a player whose intentions are benign can nevertheless influ-
ence the play. It is not clear how the referee is supposed to
assess all of this in the brief time available.

A minor irritation in football is the imprecision with
which the law relating to the ball being out-of-play is applied
by linesmen. Whether this is due to vagueness as to the rule, or
carelessness in its application, is not clear. The law states that
the ball is out of play ‘when it has wholly crossed the goal-line
or touch-line, whether on the ground or in the air’. Linesmen
often seem to be interpreting ‘wholly’ as meaning ‘the whole of
the ball over the centre of the line’ or ‘the centre of the ball
over the whole of the line’.

The law should actually read ‘The ball is out of play when
the whole of the ball has crossed a vertical plane containing
the outside edge of the line’. More simply, but less precisely,
the ball is out of play when the whole of the ball has crossed
the whole of the line. The various cases are illustrated in
figure 5.4.

Free-kicks

Free-kicks are partly a deterrent against unacceptable play,
and partly a compensation to the aggrieved team for the loss

Figure 5.4. The ball is out of play when the whole of the ball has crossed the

whole of the line.
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of opportunity arising from the infringement of the rules. The
present law regarding free-kicks seems to be generally
accepted as satisfactory. One reason for this is that they
contain an implicit variation of significance according to the
position on the field. An infringement by a team in its
opponent’s half of the pitch does not usually affect their
opponent’s chances a great deal, and the value of the resulting
free-kick to the opponents is appropriately small. On the other
hand an infringement 20 yards out from the goal by the
defending team can mean a substantial loss of opportunity
to the attacking team, and the resulting free-kick provides
the proper compensation of a useful shot on goal.

Penalties

The award of a penalty-kick is almost, but not quite, the same
as the award of a goal. The probability of a goal being scored
from a penalty kick is typically 70 to 80% depending, of
course, on the penalty-taker. Penalty-kicks provide only a
rough form of justice. Sometimes a marginal handling offence
leads to a penalty-goal, whereas a penalty-kick awarded for
illegally preventing an almost certain goal can fail. The uncer-
tainty of penalties actually contributes to the excitement of the
game.

The strategy of the penalty-taker is to aim the shot wide
of the goalkeeper but sufficiently clear of the goal-post to
allow for a range of error. Until 1997 the goalkeeper was
constrained to keep his feet still on the goal-line until the
ball was kicked. The rule was then changed to allow the
keeper to move, but only along his line. Clearly the goal-
keeper’s best strategy is to give himself a chance by guessing
which side of him the ball will be placed, and to start his initial
movement before the ball is struck. On the other hand he must
not start so early as to betray his choice to the penalty-taker.

The high scoring rate from penalties is implicit in the
rules. The choice of 12 yards for the distance of the penalty
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spot from the goal-line clearly implies a judgement as to what
is fair. The average scoring rate from penalties could be
adjusted by altering the distance of the penalty spot.

If the distance were zero, the penalty-kick being taken
from the goal-line, the goalkeeper could obviously block the
shot by standing behind the ball. Indeed the introduction of
penalty-kicks in 1891 was very much influenced by the block-
ing of a free-kick on the goal-line in an F.A. Cup quarter-final.
The free-kick had been awarded to Stoke when a Notts
County defender punched the ball off the line to prevent an
otherwise certain goal. The Notts County goalkeeper success-
fully blocked the free-kick, Stoke lost 1–0, and Notts County
went through to the semi-final.

As the penalty spot is moved away from the goal-line it
initially becomes easier to score, the scoring probability
approaching certainty at a few yards. For larger distances
the probability falls and at very large distances becomes
zero. Figure 5.5, which is based on a session of experimental
penalty-kicks taken by skilled players, gives an indication of
what the scoring rate would be for different distances of the
penalty spot.

Figure 5.5. The probability of scoring from a penalty kick depends on the

distance of the kick. The crosses mark the experimental results.
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For a penalty spot distance of around 3 yards the scoring
probability approaches 100% because the ball can be safely
kicked at high speed beyond the goalkeeper’s reach, but well
away from the goal-post. For example, a 60 mile per hour
low shot from 3 yards out, aimed 3 feet from the goal-post,
would pass the goal-line 9 feet away from the goalkeeper in
1
7 of a second, giving the goalkeeper virtually no chance. As
we move the penalty spot further away the scoring probability
begins to fall, reducing in the experimental case to a 70% rate
for 12 yards and falling continuously as the distance is
increased farther.

A top-class goalkeeper can cover the whole of the goal
given a little more than a second. A good penalty taker can
kick the ball at 80 miles per hour. This gives us an estimate
of the maximum distance from which a penalty kick could
be successful. Allowing for air drag, a perfectly taken penalty
kick at 80 miles per hour driven into the top corner of the goal
could defeat the goalkeeper from about 35 yards.

We see from the above analysis that the choice of 12 yards
for the penalty spot implies a choice of scoring probability.
However, the matter is rarely discussed and presumably this
means that, taking all factors into account, the distance
chosen in 1891 is about right.

Competitions

In addition to the question of the rules of the game, we can ask
about the rules of competitions. Should we, for example, have
penalty shoot-outs and ‘golden goals’? Some care is needed in
deciding the rules of competitions, as can be illustrated by the
wonderful fiasco in a match between Barbados and Grenada.
It was the final group match of the Shell Caribbean Cup and
this is what happened.

A rule of the competition was that, in a match decided by
a sudden-death ‘golden goal’ in extra time, victory would be
deemed equivalent to a 2–0 win. Barbados needed to win by
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at least two goals to reach the finals. Otherwise Grenada quali-
fied. The Barbados team was on its way midway through the
second half, leading 2–0. However, Grenada pulled one
back, making the score 2–1. If the score remained unchanged
Barbados was out. With three minutes to go the Barbados
team realised that they would be more likely to win in extra
time than score the required goal in the remaining minutes.
They therefore turned their attack on their own goal and
scored, bringing the scores level at 2–2, with the consequent
possibility of victory in extra time.

Grenada saw the point, and tried to lose the match,
attempting to achieve qualification by scoring an own goal
to make the score 3–2. However, Barbados sprang to the
defence of the Grenada goal and kept the score at 2–2. After
four minutes of extra time Barbados scored the golden goal
and qualified for the finals.
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6

Game theory

Football is the best of games. Its superiority derives from two
sources, variety and continuity. At each point in the game the
players are faced with a wide range of options – take the ball
past the opponent on this side or that, to pass – short or long,
low or high, to shoot – or to lay the ball off – and to whom.
Compared with other games the flow of the game is continu-
ous, the ball being in play for most of the time. Even the
delays for free kicks and corner kicks add to the excitement
and penalty kicks are often times of high drama.

The richness of the game makes it difficult to give a
theoretical description. The unexpected, imaginative touches
which are crucial to the game defy a theoretical approach.
However, it is often the case in science that by giving up any
attempt to include the detail, and allowing as much simplifica-
tion as possible, a description of the broader features of a
subject can be achieved. This is also the case with football.

Random motion?

At any time during a match the play (one hopes) appears
purposeful. But if we take a bird’s eye view of the motion of
the ball it has the appearance of random motion. Figure 6.1
shows the movement of the ball during the six minutes
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between Sheringham’s first goal and Shearer’s second in the
1996 European Championship match between England and
Holland. The behaviour of the ball is reminiscent of a
phenomenon called Brownian motion. It was noticed by the
Scottish botanist Robert Brown that, when viewed under a
microscope, pollen grains suspended in water are seen to
undergo erratic motion. The theory of this behaviour was
provided by Einstein in terms of the impact of the water
molecules on the suspended pollen grains.

In the case of football the strength and deployment of the
team is the factor which moderates the random motion. For
example, with unequal teams the ball spends more time in
the weaker team’s half and with two defensive teams the ball
becomes trapped in midfield. These two cases are illustrated
in figure 6.2 in which the randomness is averaged out to give
graphs of the average time spent in each part of the pitch.

A proper theoretical treatment would call for quite
sophisticated techniques and no such theory has been devel-
oped. However, some introductory thoughts are discussed in
chapter 10.

Figure 6.1. Movement of the ball over the pitch in a European Championship

match between England and Holland.
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Scoring

We now look at the scoring during a game. The simplification
we shall allow is that each team has an average scoring rate
against the type of opponent they face. For a particular team
the average scoring rate can be derived by taking the total
number of goals scored against similar standard opposition
over several games and dividing by the total playing time.
For simplicity we first consider a match with one team
having an average scoring rate of 1 goal per hour. With the
chosen scoring rate the probability of the team scoring a goal
in the first minute is 1 in 60. After 5 minutes the probability
of having scored a goal is approximately 1 in 12 – ‘approxi-
mately’ because we cannot just add probabilities. We have to
be more careful and also take account of the possibility of 2
or more goals being scored. It is possible to calculate the prob-
ability for each number of goals, and the results are shown in
figure 6.3. Since at all times it is certain that the team has
scored some number of goals (including zero) the probabilities
of each number of goals must add up to 1.

Examining the figure we see that, as we would expect, at
the outset the probability of zero goals is 1, it being certain

Figure 6.2. Distribution of time spent over the length of the pitch.
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that no goals have been scored. As time goes on the prob-
ability that the team has scored no goals falls, reaching 0.22
after 90 minutes. So, with the chosen rate of 1 goal per
hour, there is just over a 1 in 5 chance that the team would
not score. In the Premiership the average probability of not
scoring in a match is about 1 in 4. Correspondingly, the
probability that the team has scored increases with time. At
half-time the probability that they have scored just 1 goal is
0.35. After an hour the probability that the team has scored
just 1 goal begins to decrease reaching 0.33 at full time. The
reason for the fall, of course, is the increasing likelihood
that the team has scored more goals. At the end of the game
it is more likely that they have scored more than 1 goal,
than only 1 goal.

Let us now imagine that the team is playing a somewhat
weaker opponent with an average scoring rate of a goal every
90 minutes. Again we can calculate the probability of this team
having scored any number of goals at each time. The result is
shown in figure 6.4. We see that the most likely score for this
team is zero throughout the match, with an equal likelihood
of 1 goal at full time. This doesn’t mean, of course, that
the stronger team will necessarily win, and we can use the

Figure 6.3. Probability of number of goals scored during a match for a team with

an average scoring rate of one goal per hour.
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probabilities given in the two graphs to calculate the prob-
ability of the various results.

For example, what is the probability that the stronger
team wins 1–0? From the first graph the probability that the
stronger team has scored 1 goal after 90 minutes is 0.33, and
from the other graph the probability that the weaker team
scores no goals is 0.37. The required probability is obtained
by multiplying these separate probabilities together. So the
probability that the result is 1–0 is 0:33� 0:37 ¼ 0:123.

The same procedure can be used to calculate the prob-
ability of any result and table 6.1 gives the probabilities for
the 10 most likely scores. It also gives the probabilities
expressed as a frequency. For example the 1–0 result has a
probability of 0.123 or approximately 1/8, as this result
would be expected in 1 in 8 such matches. The probability
that the stronger team wins is obtained by adding the prob-
abilities of all the scores for which this team wins including
those not listed in table 6.1. This gives a probability of 0.49,
just less than evens. The probability of a draw is 0.26 and of
win for the weaker team is 0.25 – both about 1 in 4.

Clearly the scoring rates chosen for the above example
were arbitrary and a similar calculation could be carried

Figure 6.4. Probability of number of goals scored during a match for a teamwith

an average scoring rate of one goal per 90 minutes.
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out for any pair of rates. In fact it would be possible to make
the model more sophisticated in many ways. For example, the
scoring rate at any time could be allowed to depend on the
score at that time as the teams adapt their strategies.

So far we have regarded the calculations as purely
descriptive, but it is interesting that calculations of this sort
can have implications for strategy. We shall now consider
such a situation.

Strategy – a case study

In the previous chapter it was shown how, implicitly, the rules
have been chosen to give a scoring rate which leaves the
weaker team with a reasonable chance of winning. Looking
at this from the point of view of teams in a match it is clear
that a low scoring match benefits the weaker team and a
high scoring match benefits the stronger team. This should,
and no doubt does, affect the strategy of the teams. We shall
examine this by considering matches between teams near the
bottom and near the top of the Premiership.

Taking an average over four seasons the ratio of scoring
rates in matches between teams finishing in the bottom five

Table 6.1

Score Probability Odds

1 in –

Result for

stronger team

1–0 0.123 8 win

1–1 0.123 8 draw

2–0 0.092 11 win

2–1 0.092 11 win

0–0 0.082 12 draw

0–1 0.082 12 lose

1–2 0.062 16 lose

3–0 0.046 22 win

3–1 0.046 22 win

2–2 0.046 22 draw
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and the top five is approximately 3 to 7 so that, taking an
average over these matches, the bottom teams score 3 goals
while the top teams score 7. Assuming this ratio we can
calculate the probability of each team winning the match.
Putting this assumption another way, the probability that
the weaker team will score the next goal is 0.3 and that the
stronger team will score the next goal is 0.7. If only one goal
is scored in the match the probability that the weaker team
scored the goal, and hence won the match, is 0.3. The prob-
ability that the stronger team won is obviously 0.7.

Now consider a match with two goals. The only way to
win the match is by scoring both goals. The probability of
the weaker team scoring both goals and winning is
0:3� 0:3 ¼ 0:09 and the probability that the stronger team
wins is 0:7� 0:7 ¼ 0:49. The probability of a draw is
1� 0:09� 0:49 ¼ 0:42. We see that the probability of the
weaker team winning the two goal match is 0.09 compared
with 0.30 for the one goal match, the probability of winning
being reduced by a factor of more than three.

With higher numbers of goals the calculation is somewhat
more complicated. For example with three goals there are four
possible results: 3–0, 2–1, 1–2 and 0–3. Nevertheless the calcu-
lations are straightforward and table 6.2 gives the probabilities

Table 6.2

No. of goals Probabilities

Weaker team wins Draw Stronger team wins

0 0 1 0

1 0.30 0 0.70

2 0.09 0.42 0.49

3 0.22 0 0.78

4 0.08 0.27 0.65

5 0.16 0 0.84

6 0.07 0.19 0.74
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of the teams winning, losing and drawing for each number of
goals in the match.

The pattern is rather complicated because of the possi-
bility of draws with an even number of goals. However, the
diminishing fortunes of the weaker team in higher scoring
games is apparent. In games with an odd number of goals
the chance of the weaker team winning decreases rapidly as
the number of goals increases. With an even number of
goals the probability of the weaker team winning is quite
small although the decrease with the number of goals is
slow. The compensatory probability of a draw falls rapidly.
It seems that the defensive, low scoring, strategy adopted
intuitively by weak teams playing stronger teams conforms
to logic.

The basis of the scientific method is comparison of theory
with the experimental facts. We can make such a comparison
for the present theory by using results from the Premiership.
Again we take matches between the teams finishing in the
bottom five against teams finishing in the top five over
four seasons. Figure 6.5 shows a comparison of the fraction
of games won by the weaker teams with the theoretical

Figure 6.5. Dependence of fraction of games won by the weaker team on the

number of goals in the match. Premiership results are compared with theory.
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calculation. We see that, even though the model is a simple
one, theory gives reasonable agreement with the results.

We need a goal!

It is a common situation that as the end of a match approaches
it is essential to a team that they score a goal. For example, a
team down 1–0 in a cup match needs a goal to take the match
into extra time or to a replay. The strategy is clear – the team
plays a more attacking game. In doing so its defence is
weakened with an increased probability that their opponents
will score. Can we give a quantitative description of these
intuitive ideas?

We can define a team’s chance of scoring in terms of a
scoring rate, measured say in goals per hour. As our cup
match approaches 90 minutes the losing team must increase
its scoring rate and, for them unfortunately, increase their
opponents’ scoring rate also. Figure 6.6 shows the situation

Figure 6.6. Dependence of probability of the losing team scoring in the remain-

ing time for cases where the losing team has twice and half the scoring rate of

their opponents.
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at a given time, giving the probability of scoring the required
goal in the remaining time without the opposition scoring.
This clearly depends on the ratio of the scoring rates and the
graphs given are for the cases where the losing team has a
scoring rate of half, and twice, that of their opponents.

It is clear that the team must go all out for a high scoring
rate and this is true independent of the quality of the oppo-
sition. However, while a very high scoring rate gives the team
a probability of approaching 2/3 if they have twice the scoring
rate of their opponent this is reduced to 1/3 when this ratio is a
half. Nevertheless, the losing teammust go for a higher scoring
rate even when it makes it more likely that their opponents will
score first.

A further insight can be obtained by recognising that the
horizontal axis in figure 6.6 can be more completely defined as
(scoring rate� time remaining). The consequence of this is
illustrated in figure 6.7 for the case of equal scoring rates.
The graph illustrates how, no matter what the scoring rate,
the probability of scoring the required goal remorselessly
approaches zero as time runs out.

Figure 6.7. Probability of scoring plotted against the product scoring rate� time

remaining, for teams of equal scoring rates.
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The off-side barrier

The need for an off-side rule has been accepted from the
earliest days. Indeed the first off-side rule was more stringent,
requiring that there be three opposing players in front of an
attacking player when a pass is made, rather than the present
two. The rule has a crucial influence on the way the game is
played. Without it, attacking players could congregate
around the goal to receive long passes from their colleagues,
as happens at corner kicks.

Essentially the rule allows the defenders to create a
barrier beyond which the attackers cannot stray. The barrier
can be broken by an attacking player either by his taking
the ball past the defenders, or by a well-timed run. To achieve
a well-timed run the attacker must either react more quickly
than the defenders to a pass aimed behind their line, or he
must anticipate the pass and be running at the time it is made.

The most efficient way of thwarting the defence is for a
colleague to kick his pass when the attacker is already
moving at full speed past the last defender. The maximum
advantage is gained if the defenders only react at the time of
the pass. Figure 6.8 illustrates the movement of the attacker

Figure 6.8. Diagram showing the movement of an attacker attempting to defeat

the off-side barrier and the response of a defender.
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and a defender during this tactic. The attacker has the advan-
tage, firstly of the defender’s reaction time, and secondly of the
defender’s need to accelerate. Typically each of these factors
gives the attacker half a second and if he is running at, say,
12 miles per hour, this means that he would be clear of the
defender by 6 yards. The figure shows the time this makes
available to the attacker to make his next move, free of the
defenders’ attention. Whether he can fully exploit this will,
of course, depend on the quality of the pass and his ability
to bring the ball quickly under control.

Intercepting a pass

When the ball is passed along the ground to a colleague care is
taken to avoid the pass being intercepted. Conversely, opposing
players look for an opportunity of preventing a successful pass.
What is the requirement for a successful interception? There are
three situations to consider as illustrated in figure 6.9.

Figure 6.9. (i) Opponent too distant to intercept. (ii) Receiver too distant to

intervene, opponent may or may not be able to intercept. (iii) Both players

can run for the ball.
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The first case is the simple one of the short pass where the
receiving player is sufficiently close to the passing player that
the nearest opponent cannot intervene. The second case is
that of the long pass where the receiving player is so distant
that he cannot affect the outcome by moving toward the
ball. The question then is whether the opponent can intercept
the ball on its path to the receiver. In the third, more complex,
case the movements of both the receiver and the opponent are
involved.

In the second case the ball is passed at an angle � to the
line joining the passing player and the potentially intercepting
opponent as shown in figure 6.10. For an interception there
must be a point along the ball’s path which the opponent
can reach in less time than that taken by the ball. If the ball
travels with a speed sb the time taken for it reach the point
X, a distance ‘ from the passer, is ‘=sb. The time taken
for the opponent to reach X at speed sp is ‘p=sp. From the
geometry these times can both be calculated.

Figure 6.11 gives the result of such a calculation for the
case where the player runs at half the speed of the ball. The
first part of the figure plots the time taken for the ball and
the opponent to reach the distance ‘ along the ball’s path

Figure 6.10. Diagram showing the positions of the passing player and an oppo-

nent together with the paths of the ball and the opponent’s intercepting run.

Game theory 97



for an angle � ¼ 158. It is seen that, provided the receiving
player is at too great a distance to intervene, there is a band
of ‘ where the opposing player can reach a point X before
the ball, and can therefore successfully intercept it. The
second part of the figure plots the same quantities for a
more conservative pass with � ¼ 458. In this case it is not
possible for the opponent to intercept the pass no matter
which direction he takes.

Figure 6.11. Times for the ball and the opponent to reach X over the range of

distances, ‘. For the � ¼ 158 case the lines cross and interception is possible.

For � ¼ 458 no interception is possible. In this example the speed of the ball is

twice that of the opponent.
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It turns out that for any angle � of the pass there is a critical
ratio of the speed of the player to that of the ball which must be
exceeded if a successful interception is to be made. Figure 6.12
gives a graph of the critical ratio of sp=sb against �.

Figure 6.12. Graph of the critical ratio sp=sb against the angle �. Interception is

possible for ratios above the curve.

Figure 6.13. The direct pass in (a) would be intercepted whereas an angled pass

as in (b) would be successful.
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We have made two simplifications in the analysis. It has
been assumed that the intercepting player reaches his speed
sp without delay and the slowing of the ball during the pass
has been neglected. The first of these effects benefits the
passer of the ball and the second benefits the opponent.

The third case, where both the receiver and the opponent
move to the ball, includes the situation where a pass aimed
directly to the receiving player can be intercepted as in figure
6.13(a), whereas an angled pass would be successful as in (b).
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Chapter 7

FOOTBALL LEAGUE 1888–89

P W D L F A Pts

1 Preston 22 18 4 0 74 15 40

2 Aston Villa 22 12 5 5 61 43 29

3 Wolves 22 12 4 6 50 37 28

4 Blackburn 22 10 6 6 66 45 26

5 Bolton 22 10 2 10 63 59 22

6 WBA 22 10 2 10 40 46 22

7 Accrington 22 6 8 8 48 48 20

8 Everton 22 9 2 11 35 46 20

9 Burnley 22 7 3 12 42 62 17

10 Derby 22 7 2 13 41 60 16

11 Notts County 22 5 2 15 39 73 12

12 Stoke 22 4 4 14 26 51 12





7

The best team

Football clubs covet trophies as a symbol of their success. For
many clubs the most satisfying achievement is to win their
league championship. This is certainly true in the Premiership
where the strongest teams proclaim the importance of the
Championship as compared with the winning of the F.A.
Cup. If a team wins the Championship they have demon-
strated that they are the best team in England. Or have they?

If the Championship is won by a single point, then it is
possible to reflect on the occasions during the season where
a point was won through a lucky shot, a goalkeeping error
or a wrong decision by a linesman or referee. The team that
came second could just as well have won the Championship.

On the other hand, if the winning team finishes well ahead
of its competitors we feel more confident that it has shown
itself to be the best team. Can we quantify this subjective
assessment to obtain a probability that the winning team is
the best team?

A thought experiment

Let us start by imagining a league in which all of the teams are
equally good. For simplicity let us first assume that each
match is equally likely to be won by each contestant. What

103



will the final league table look like? It is obvious that the teams
will not all obtain the same number of points. There will be a
‘champion team’ (or teams) and there will be a spread of
points throughout the league determined entirely by chance.

To make our ‘thought experiment’ more precise we shall
allocate probabilities to each type of result. The concept of
probability was introduced in chapter 5 and we recall that
mathematical probability is measured on a scale of 0 to 1, a
probability of 1 corresponding to certainty, and a probability
of 0 to no chance. For example, with a thrown dice the prob-
ability of each number is 1/6, the sum of their probabilities
being 1 as we would expect. The probability of an even
number being thrown is 1/2. The probability 1/2 can also be
described as 50% (50/100) and we shall sometimes use the
percentage terminology for convenience.

Returning to our experiment we allocate 1 point to each
team for a draw. In professional matches the frequency of
drawn games is close to one in four, and so in our model we
shall take the probability of a draw to be 1/4. The probability
that the match is won is therefore 1� 1

4 ¼ 3
4, and since the

teams are equal they both have a 3/8 chance of winning. A
winning team takes 3 points and a losing team none. This
gives us the probability table for each match (table 7.1).

We can now ‘play’ a season’s matches with these prob-
abilities. This is easily done using a computer or a calculator
to provide random numbers. A ‘league table’ from such a
calculation is given in table 7.2. Our league has 20 teams
who play each other twice.

Table 7.1

Result Points Probability

Win 3 3
8 (37.5%)

Draw 1 1
4 (25%)

Lose 0 3
8 (37.5%)
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We see that there is a clear champion with 67 points
and that the spread between the top and bottom teams is 36
points – all this with precisely equal teams. In the Premiership
the champion teams obtain an average of about 80 points
and the spread from top to bottom is about 50 points. It is
clear, therefore, as we would expect, that the spread of abilities
of the real competing teams adds to the spread of points. It
is also clear, however, that randomness makes a large con-
tribution.

A better team

Before looking at the question of whether the champion team
is the best team let us carry out one more computer simulation.

Table 7.2

W D L Points

1 19 10 9 67

2 18 9 11 63

3 18 8 12 62

4 17 10 11 61

5 16 10 12 58

6 16 8 14 56

7 13 16 9 55

8 15 9 14 54

9 16 5 17 53

9 15 8 15 53

9 15 8 15 53

9 14 11 13 53

13 13 13 12 52

14 14 9 15 51

14 13 12 13 51

16 15 4 19 49

17 11 11 16 44

18 9 16 13 43

19 9 8 21 35

20 8 7 23 31
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We will add to the egalitarian league of the previous simula-
tion one team which is better than the rest. We shall still
give it a probability of a quarter for a draw for its games
against the other teams, but make it more likely to win than
lose the remaining games with probabilities in the ratio 3 to
2. Thus the probability is as shown in table 7.3.

The better team is now allowed to play the rest and the
results are included with the previous ones to compile a new
league table as shown in table 7.4.

With the allocated probabilities the average number of
points expected for the better team from 40 matches is

40�
��

9

20
� 3

�
þ
�
1

4
� 1

��
¼ 64 points:

In the simulation the team actually did better than this,
scoring 67 points. Nevertheless it only came second. A less
able but more lucky team scored 71 points. Of course, other
simulations using the same probabilities would give different
results, and sometimes the best team would be ‘champion’.
However, for the given probabilities it can be shown mathe-
matically that most times the better team will not come out
on top.

We see, therefore, that even without a difference of ability
there is a spread in the distribution of points, and that with a
difference in ability a team with greater ability than the rest is
not guaranteed top place.

In the simulations described above the probabilities were
given and the distribution of points was calculated. We now

Table 7.3

Result Points Probability for

the better team

Probability for the rest

(against each other)

Win 3 9
20 (45%) 3

8 (37.5%)

Draw 1 1
4 (25%) 1

4 (25%)

Lose 0 6
20 (30%) 3

8 (37.5%)
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come to the more realistic but more difficult problem where, at
the end of the season, the distribution of points is given and we
would like to know the probability that the champion team is
the best team. However, before analysing this problem we
examine two general features of probability theory.

Concerning probability

Our assessment of probability depends on the information
available. For instance, let us ask the probability that a
randomly chosen Premiership match was drawn. Since
about a quarter of such matches are drawn the answer is
approximately 25%. If we are then told that one of the

Table 7.4

W D L Points

1 20 11 9 71

2 17 16 7 67 Better team

3 18 11 11 65

4 17 12 11 63

5 18 8 14 62

6 17 9 14 60

7 16 10 14 58

8 16 9 15 57

9 15 11 14 56

10 14 13 13 55

10 13 16 11 55

12 16 6 18 54

12 15 9 16 54

14 16 5 19 53

14 15 8 17 53

16 14 11 15 53

17 13 12 15 51

18 11 13 16 46

18 10 16 14 46

20 9 10 21 37

21 8 8 24 32
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teams scored more than one goal, a draw is less likely, the
probability being reduced to about 5%. If we are told that
the total number of goals in the match is odd, the probability
of a draw is zero. We see that information alters probability.

Another situation arises when we want to extract
information from a sample of data. The larger the sample
the more confident we can be about our conclusions. Imagine,
for example, that we are supplied with a team’s results for a
particular completed season and that they are given one at a
time. With a few results we obtain only a hint as to how
many points the team obtained that season. As the number
of results supplied increases the probable outcome becomes
clearer, and finally becomes certain when all of the results
have been given. It is clear that increasing the size of the data-
base improves our assessment of probability.

The best team in the Premiership

We now turn to the problem of deciding the probability that
the team winning the Premiership is the best team. Clearly
the top team is the most likely to be the best team, but can
we put a probability to it? There is no limit to how sophisti-
cated our method could be, but we will aim for the simplest
procedure which satisfies some basic requirements.

First, it should say that if two teams finish equal top, they
are equally likely to be the best team. Next, the probability of
the top team being best should increase with increased points
difference over the rest of the teams. If the top team has a few
points more than the runner-up it is more likely to be the best
team than with only a one point difference. Finally, with a very
large points difference the probability that the top team is the
best must approach 100%.

We will measure a team’s quality by its ‘points ability’.
We define this as the number of points it would have obtained
if the random effects had averaged out, there then being no
advantage or disadvantage from these effects. The most
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likely value of a team’s points ability is the number of points it
actually achieved, but because of random effects there will be
spread of possible values. We shall take the probability of a
given points ability to have the bell-shaped form shown in
figure 7.1. Technically this is called a normal distribution.
For simplicity we take the spread in possible points ability
to be given by the spread which purely random results
would give. It is seen from the graph that the most probable
points ability is the actual number of points gained, the
probability being 0.05 (5%). For a difference of 8 points the
probability has fallen to 3% and for a difference of 16
points to less than 1%.

The calculation required is quite subtle.Wemust consider
all possible values of the top team’s points ability and for each
one we must take account of all the possible points abilities of
all the competing teams. We shall illustrate the procedure by
taking an example. For a chosen value of the top team’s
conjectured points ability we shall first determine the prob-
ability that the runner-up has a lower points ability. This
then has to be repeated for all possible values of the top
team’s points ability and the probabilities for each case then
added to give the probability that the top team is better than
the runner-up. This example will illustrate the procedure.

Figure 7.1. Smoothed graph giving the probability (per point interval) of a

team’s points ability differing from the actual number of points achieved.
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The actual calculation allows for all contenders, not just the
runner-up.

In our example we take a case where the top team has
achieved 80 points and the runner-up 70. To determine the
likelihood that the top team has a higher points ability than
the runner-up we need the bell-shaped curves for both, and
these are shown in figure 7.2. Again for example, we first
take the points ability of the top team to be lower by 4 than
the points actually obtained, as shown in figure 7.3. The prob-
ability of this is measured by the height, p1, of the curve at this
point, which is 0.044. The top team will then be a better team
than its rival if the rival’s points ability is lower still. This is
illustrated in figure 7.3, where the range of the rival’s points

Figure 7.2. Probability curves for the top team and the runner-up for a case

where their actual points difference is 10.

Figure 7.3. Illustrating the calculation for the case where the top team’s points

ability is 4 points below its actual number of points.
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abilities over which it is less than the top team’s is shown
shaded. The probability that the runner-up’s points ability
lies in the shaded region is the sum, p2, of the probabilities in
this region, in the present example 0.77. The combined prob-
ability that the top team’s points ability has the chosen value
and that the runner-up’s points ability is less is the product
p1p2, which here is 0:044� 0:77 ¼ 0:034 or 3.4%.

But this was just for the example of the points ability of
the top team being 4 points lower than the points it actually
obtained, a points difference of �4. We must now take all
possible points differences . . .�4, �3, �2, �1, 0, þ1, þ2,
þ3,þ4 . . . and repeat the calculation for each. The total prob-
ability that the top team is the better is then the sum over all
these cases. In the present example, with a points difference
over its rival of 10 points, the probability that the top team
is the better team is 81%. Correspondingly the probability
that the rival team is actually the better team is 19%.

We now have to recognise that for a team to be the best it
is not sufficient just that it be better than its closest rival. It
must be better than all of the other teams. The required calcu-
lation is similar in principle to that described above but is a
little more complicated. For each value of the top team’s
possible points ability it is necessary to calculate the prob-
ability that all the other teams have a lower ability. These
probabilities are then summed to obtain the probability that
the top team is the best. This calculation can be repeated for
any other team to determine the probability that, although it
didn’t come top, it is the best team. Using this procedure we
can carry out the calculation for any season’s results. Let us
first look at the first season of the Premiership, 1992–93.

The first Premiership season

In the first Premiership season Manchester United won the
Championship and were 10 points clear of the second team,
Aston Villa. Aston Villa were followed closely by Norwich
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City and Blackburn, there then being a large gap down to the
next team Queen’s Park Rangers. This means that we only
have to consider the top four teams. Their part of the points
table is given below.

Points

Manchester United 84
Aston Villa 74
Norwich City 72
Blackburn 71

The calculation gives Manchester United a probability of
being the best team of 68%. The table of probabilities for
the four clubs is

Probability that team
is the best team

Manchester United 68%
Aston Villa 14%
Norwich City 10%
Blackburn 8%

Manchester United have a five times higher probability of
being the best team than Aston Villa.

It might seem that with a 10 point lead the probability
that Manchester United be the best team should be more
than 68%. However, such a judgement is probably influenced
by the prestige associated with the team actually being
Champions. It perhaps makes the level of uncertainty implied
by 68% more plausible when we note that of Manchester
United’s 42 matches, the result of 28 could have been changed
by a single goal. This gives some insight into the role of chance
in determining the number of points obtained. The other three
teams involved all had a similar number of results decided by
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one goal, further indicating the part randomness plays in
determining the outcome.

Other years

In the first nine years of the Premiership the competition was
won seven times byManchester United. The Champions in the
other two years were Blackburn and Arsenal. In both cases
these teams were only one point clear of Manchester United.
It is not surprising therefore that, allowing for all the other
teams involved, the probability that Blackburn and Arsenal
were the best teams in the Championship in their winning
years was less than 50%, being 48% for Blackburn and 49%
for Arsenal.

Manchester United’s best season was 1999–2000 when
they were 18 points ahead of their rivals, with a 92% prob-
ability that they were the best team. Our judgement of these
figures for each year is very likely affected by the fact that
we are aware of the results over several years. The analysis
can be extended to cover any number of years and as an
example we can look at the first five years of the Premiership.
The result, which coincides with our intuition, is that the
probability that Manchester United were the best team over
this period is 99.99%.

The difference between this figure, which corresponds
almost to certainty, and the results for the individual seasons
might be a little surprising. It is explained by the factors
mentioned in the earlier discussion of probability. Firstly,
that our assessment of probability depends on the information
available and, secondly, that a larger sample allows greater
confidence.

Another view

Some readers might find the distinction between the ‘best
team’ and the team which wins the Championship difficult
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to accept. That is quite reasonable since the concepts involved
are rather theoretical and the assumptions made for the
purpose of simplicity were not treated rigorously.

An alternative view of the calculations is that they
provide a figure-of-merit which enables us to rank champions
according to their superiority over all the other teams. This
provides a more sophisticated measure than just taking
their points lead over the runner-up. Seen as a figure-of-
merit the results of the calculations fit quite well our intuitive
assessments. Clearly Manchester United’s performance in
their record season 1999–2000 with a figure of merit of
0.92 was better than in its first Premiership Championship
with 0.68 and was certainly better than Blackburn and
Arsenal’s narrow wins for which the figures-of-merit were
0.48 and 0.49.

The Cup

It is regarded as a special event when a team wins ‘the double’
– the League Championship and the F.A. Cup. This happened
only seven times in the years from 1946 to 2001. Since we
have been involved with probabilities in this chapter it is
perhaps appropriate to analyse the performance of the
Champion teams to see why they have a low success rate in
the Cup.

Looking at the statistics since 1946 the team destined to
win the Championship has a better than 50/50 chance of
winning in each round of the Cup, including the Final. In
the first four rounds in which they play (third round to quarter
final) they are three-to-one favourites to win in each round
(before the draw is made). In terms of probabilities the prob-
ability that they will win through the round is 3/4.

Using this figure we can calculate the probability that
they will win through all the first four rounds. This is obtained
by multiplying together the probabilities for winning each
round. So the probability is 3

4 � 3
4 � 3

4 � 3
4 ¼ 0:32, which is
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close to 1/3, giving them only a one-in-three chance of reach-
ing the semi-final.

A top team playing in a semi-final or final match has a 5/8
chance of winning and so the probability of their winning both
matches is 5

8 � 5
8 ¼ 0:39. We can now calculate the probability

that the team due to win the Championship will also win the
Cup. To do this it must win through the first four rounds
with a probability 0.32 and then win the semi-final and final
with a probability of 0.39. The overall probability is therefore
0:32� 0:39 ¼ 0:125 ¼ 1

8.
So the chance of the team which wins the League or

Premiership also winning the Cup is one-in-eight. For the 56
seasons from 1946 this predicts seven double wins which, as
mentioned earlier, is the actual number.
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8

The players

Footballers with outstanding ability are usually recognised
while still at school. Those who succeed and play at the
highest level are either identified and chosen by a top club
at an early age or have demonstrated their ability playing at
a lower level.

Many players showing early potential only have brief
stays in the professional game, but the most successful players
have professional careers lasting about 15 years, typically
between the ages of 20 and 35. Most players reach their
peak of ability in their middle 20s. Once past 30 it becomes
increasingly difficult to hold a place at the top. This is
illustrated by the graph in figure 8.1 which gives the number
of players at each age in the Premiership. The graph has
been smoothed to remove statistical variations.

A more selective measure of the peaking in ability of the
best players is the readiness of clubs to pay a high transfer
fee. Figure 8.2 shows a graph of the percentage of transfer
fees of over a million pounds taking place at each age. It is
seen to be more sharply peaked than the first graph, its
maximum occurring at the age of 26 as compared with 22.
This is partly due to the fact that clubs are buying proven
players. On the other hand, the clubs are investing in the
future of the players, some of whom will not have reached
their peak.
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A remarkable statistic

In analysing the age structure of the profession it becomes
apparent that, in addition to the dependence on age, there is
a dependence on birth date. Figure 8.3 shows the percentage
of players in the Premiership born in each month of the

Figure 8.1. Number of players of each age in the Premiership.

Figure 8.2. Percentage of transfers in excess of a million pounds at each age in

the Premiership.
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year. The amazing result is that the probability of reaching this
level is more than twice as high for boys born in the autumn as
for those born in the summer.

The likely explanation seems to be that the intake to each
school year is defined by the child’s age around the summer
holidays. This means that those born in the autumn will be
the best part of a year older than those born in the summer.
On average, therefore, they will be slightly taller and stronger,
and the effect of an almost one year difference will be particu-
larly important at an early age. Consequently those born in the
autumn will have a better chance of being selected for the
school team. This advantage is then amplified by the practice
which results from playing in the team. Presumably the
cumulative effect of this process throughout their school
careers leads to their higher level of success.

It seems unlikely that innate ability depends on birth-date,
and perhaps professional clubs could gain some advantage by
making an allowance for this factor in identifying prospective
players.

It will no doubt occur to the reader that the distribution
of birth-dates in the general population might also show a
seasonal bias. In fact the birth rate has only a small variation
throughout the year and is highest in the summer.

Figure 8.3. Percentage of Premiership players born in each month of the year.
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Careers

Almost all boys have the opportunity to play football at some
time and those with aptitude or enthusiasm will play for their
school or local team. It seems likely that many, if not most, of
the youngsters would accept an offer of a place in professional
football. This means that the market is very competitive.
Something like one in a thousand boys will play at some
time in one of the top four professional leagues, nowadays
the Premiership plus Divisions 1 to 3.

Most professionals spend their careers in the lower
leagues and only one in a hundred English professionals will
play for the England team. Many players who reach the
professional ranks have rather brief stays and the average
professional career is about six years. Figure 8.4 gives a
smoothed graph of the percentage of players who have careers
of a given length in the top four leagues, and the percentage
whose careers exceed a given length. We see from the first
graph that almost a quarter of the players spend only one
season in the top leagues. The second graph shows that
most players stay in the top leagues for less than five years.

It is not surprising that the better players have a longer
career, sometimes extending it by taking an Indian summer
in the lower leagues. The best players typically play profes-
sional football for about 20 years. The record is held by
Stanley Matthews who played until he was 50 years old and
had a playing career lasting 33 years.

Heights of players

One of the merits of football is that players of all sizes can
enjoy the game and succeed at the highest level. This gives
soccer an advantage over many other games in which height
or weight are crucial.

Nevertheless, height can have an influence in deciding
the role which best suits each player. The clearest example is
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that of goalkeepers. There is obviously an advantage in
being tall because of the need to deal with high shots and
with balls crossed into the goal area. This is reflected in the
heights of successful goalkeepers. To illustrate this figure 8.5
compares the distribution of heights of young men generally
with those of goalkeepers, defenders and forwards in the
Premiership. It is seen that it is rare for a goalkeeper to be
under 50 1000 and that the most common height is about 60 200,

Figure 8.4. Graph of (i) the percentage of careers against the career duration and

(ii) the percentage of careers exceeding a given number of years.
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several inches above the average height of the general male
population.

Although less pronounced than for goalkeepers there is a
tendency for defenders to be above average height. This
presumably arises from the need to compete to head high
balls. Forwards are seen to have a height distribution close
to that of the general population with a peak at about 50 1000.

Strikers

Strikers receive much of the glory in football matches but are
vulnerable to the constant attention given to their scoring
performance, which is readily measured. Figure 8.6 gives a
graph of the average scoring rate for professional strikers
plotted against age. It is seen that they typically reach their
peak around the age of 23. It is rare for strikers to carry a
high scoring rate into their thirties, John Aldridge being a
remarkable example of one who did.

Figure 8.5. Distribution of heights for goalkeepers, defenders and forwards

compared with the general adult male population of similar age.
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The number of times a player is selected to play for his
country gives some measure of his success. Apart from this
there is no quantitative measure which is generally applicable.
For strikers goal-scoring provides such a measure. However,
this is not straightforward because the number of goals
scored depends upon the degree of opportunity. Let us look
at the elite among England’s strikers.

The simplest measure for international strikers is the total
number of goals scored. This is given in table 8.1 for the top

Figure 8.6. Smoothed graph of goals scored per season by strikers at each age.

Table 8.1. Top England goalscorers

Goals

Charlton 49

Lineker 48

Greaves 44

Finney 30

Lofthouse 30

Shearer 30

Platt 27

Robson 26

Hurst 24

Mortensen 23
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ten scorers among those who have played since 1945. Charlton
and Lineker appear at the top with Greaves not far behind.
But this table does not allow for the number of games
played. Lawton, for example played only 23 games, but
scored 20 goals.

We cannot take the scoring rate, that is goals per game, as
a measure because, for example, a player who played once and
scored two goals would go above all of the players in our list.
A proper measure calls for a ‘figure of merit’. Unfortunately
figures of merit are bound to be subjective. Nevertheless, let
us look at a figure of merit which gives equal weight to the
total number of goals scored and to the scoring rate. This is
obtained by multiplying the two together. Table 8.2 shows
the result; each person can judge whether this procedure has,
for them, caught the essence of success for goalscorers.

Taking a longer perspective, Steve Bloomer (1895–1907)
with 28 goals in 23 matches also has a figure of merit of 34,
and George Camsell (1929–36) who averaged two goals per
match over 9 matches has a figure of merit of 36.

Composition of teams

The composition of teams has attracted a lot of interest in
recent years, mainly due to the large influx of foreign players
attracted by the large salaries which the Premiership can
offer. An extreme example was the Chelsea team which won

Table 8.2

Matches Goals � Scoring rate ¼ Figure of merit

Greaves 57 44 0.77 34

Lineker 80 48 0.60 29

Lofthouse 33 30 0.91 27

Charlton 106 49 0.46 23

Mortensen 25 23 0.92 21

Lawton 23 22 0.96 21
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the F.A. Cup in the year 2000. The team fielded had only one
British player, Wise. This can be compared with the Chelsea
team which won the Cup in 1970. That team was entirely
British and five of the players were born in London.

When football started in the late nineteenth century the
players in each team were drawn from the same school or
the same locality, so the players had that in common with
each other and also with their supporters. It is easy to under-
stand why people would support a team if they know the
players, or at least could feel that the team represented the
local community. While this situation persists at the lower
levels of football it has long since been transformed in the
professional game.

The final of the first F.A. Cup competition after the
second world war was played in 1946. The winning team
was Derby County. That team had only three players born
in Derbyshire. Since then teams have typically had two or
three local players but there has of course been some variation.
When Everton won the Cup in 1966 they had five Mersey-
siders in their team but Liverpool, winners in 1986, had no
English players at all.

It is perhaps surprising that the pattern of mainly non-
local players goes back a hundred years. For example, at the
end of the nineteenth century the Leicester team, then
Leicester Fosse, typically had two players born in the
county. This has remained roughly the same for a hundred
years. It is interesting to note that throughout the twentieth
century the Leicester team usually had as many Scots as
Leicester born players.

No-one would have predicted the modern developments
or the remarkable fact that most football fans give their
continuous support to teams which in almost no way represent
them. Youngsters often confer their allegiance on teams they
have never seen, and remain loyal thereafter. The whole busi-
ness is mysterious but, without a doubt, club loyalty is a
crucial part of the modern game and provides much excite-
ment for the fans.

The players 127



Although any player can be eligible to play for any club
the situation for international players is of course quite differ-
ent. To play for a national team the normal qualification is
that you were born in the country. For some countries the
national identity is diluted by players whose qualification
comes from having a parent born in the country. Almost all
the players who play for England were born there.

The continuity of the players’ allegiance to their country
gives a continuity to the national team which is largely absent
from professional club teams. The composition of the national
team changes slowly as young players develop and replace the
older stalwarts.

Players’ origins

A simple investigation of the origins of top players can be
made by looking at the birthplaces of most successful
members of England teams. The list below gives the birth
places of England players who have played more than 60
times for England since 1945, and the locations are shown
on the map of England (figure 8.7). It is seen that there is a
general correlation with the centres of large populations,
with London, the Midlands and the North being well repre-
sented. It would be interesting to carry out a statistical
analysis, allowing for population levels, to find out which
places contribute more than their share of top players.

T. Adams Romford
A. Ball Greater Manchester
G. Banks Sheffield
J. Barnes Jamaica
T. Butcher Singapore
R. Charlton Ashington, Northumberland
R. Clemence Skegness
T. Finney Preston
E. Hughes Barrow
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K. Keegan Doncaster
G. Lineker Leicester
R. Moore Barking
S. Pearce Hammersmith
M. Peters Plaistow, London
D. Platt Oldham
B. Robson Chester-le-Street, Durham
K. Sansom Camberwell
D. Seaman Rotherham
A. Shearer Newcastle
P. Shilton Leicester
C. Waddle Newcastle
D. Watson Stapleford, Nottinghamshire
R. Wilkins Hillingdon
R. Wilson Shirebrook, Derbyshire
W. Wright Ironbridge, Shropshire

Figure 8.7. Map showing the birthplaces of top England players.
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Historically many of the great players in the English
league have come from the other countries of the United
Kingdom – Scotland, Wales and Northern Ireland. The
reason for this arises from the comparatively large population
of England, comprising over 80% of the UK’s population.
This means that the large and wealthy clubs are predomi-
nantly in England, and players in the smaller countries are
then attracted to these clubs by the higher wages.

However, there is more to be explained. We can assess the
contributions from different countries by analysing the list of
‘players of the year’ chosen annually since 1948 by the
Football Writers’ association. Table 8.3 gives the number of
awards to players born in each country. It also measures the
contribution of each country by taking the number of these
awards per million of the country’s population. We see that,
not only do players move to England, but the smaller coun-
tries also produce substantially more of the top players than
we would expect from their populations.

The latest development has been the rapid increase in the
number of outstanding players from abroad, particularly from
Continental Europe. For the years 1995 to 1999 the Football
Writers’ choices were Klinsmann, Cantona, Zola, Bergkamp
and Ginola.

Table 8.3

Footballer of the Year Awards

Number

of awards

Awards per million

of population

England 29 0.062

Wales 2 0.072

Scotland 9 0.172

N. Ireland 4 0.262
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9

Economics

When modern football started in England in the middle
of the nineteenth century the economics were very simple.
The players usually had free access to a field, and the goal
posts and playing kit could be bought by the players
themselves.

The next stage arrived when it was found that football’s
popularity had grown to the point where spectators were
willing to pay to watch it. The income so provided allowed
clubs to attract players by giving them payments. For some
years there was resistance to professionalism, but it was finally
legalised in 1885.

It was not long before the clubs themselves expected a
payment when a player moved to another club, leading to
the development of the transfer system. This pattern persisted
for many years and the economics remained quite straight-
forward.

Basically clubs with a large catchment area of potential
spectators could achieve a good income from gate money.
This was used to pay the players and support general expenses
such as ground maintenance. Any remainder was available
to buy players from other clubs. Transfer fees could provide
a source of income for smaller clubs but generally the
higher transfer fees were paid in transfers between larger
clubs.
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Until 1961 the full force of economic competition for
players did not operate, there being a maximum wage which
could be paid in each Division of the League. By present
standards this maximum was incredibly low. Before the
second world war it was typically three times average earnings.
By the time the maximum wage was scrapped it had fallen to
one and a half times. Today the top players have incomes a
hundred times greater than the earnings of those who pay at
the gate to watch them.

Over recent years the financing of professional football
has changed dramatically, with new sources of income being
exploited, particularly by the larger clubs. The first of these
is sponsorship, the clubs being paid by a company to advertise
its products, for example by carrying the company’s name on
the players’ shirts. The second source of income is television. It
was realised that the viewing public was eager to watch more
football on television, and the introduction of satellite and
cable television allowed this market to be tapped. The
Premiership was able to negotiate a fee which originally was
quite modest but has risen to tens of millions of pounds per
club. Finally there is merchandising. There has been an
unexpected enthusiasm of supporters, particularly the young,
to buy replica football kits and other items carrying their
club’s name. The change is evident from a breakdown of the
average Premiership club’s turnover.

Match day receipts 37%
Television 29%
Commercial etc. 34%

Rather surprisingly the smaller clubs also receive most of
their income from sources other than gate receipts. A typical
breakdown is

Match day receipts 48%
Television 13%
Commercial etc. 39%
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Size and success

The success of a football club depends on a number of factors
but most directly on the ability of its players. In professional
football this is related to the club’s income since the more
able players cost more money in transfer fees and command
high wages. The club’s income, in turn, depends on several
factors but the basic element is the level of spectator support
available to the club. It is quite obvious that a small town
cannot compete with cities such as Manchester and Liverpool
which have catchment areas with over a million people.
Although, as we have seen, the gate money is only part of
the club’s income, it is also an indicator of the potential for
income from commercial sales and other sources.

One measure of the support available to clubs is the atten-
dance at matches. Let us start our analysis by looking at the
relationship between success and attendance. The success of
a club will be measured by taking its rank in the league tables
averaged over three years. Thus the top team in the Premier-
ship is ranked 1, the top team in the First Division is ranked
21 and the bottom team in the Third Division is ranked 92.
Figure 9.1 gives the plot of attendance against rank.

Figure 9.1. Graph of average attendance against the club’s rank.
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The correlation of attendance and rank is clear from the
figure. However this, by itself, is not convincing evidence that
high attendance produces a high rank since the correlation
arises also from the fact that successful clubs attract greater
support. These effects cannot be separated using the atten-
dance/rank relation alone.

A more fundamental determining factor is the catchment
area for potential support. This is, of course, difficult to define,
but we can look at the broad trend by comparing rank with
population. In the case of the large cities with wide surround-
ing areas of population, a mean of the populations of the city
itself and of its broader conurbation area has been used. For
each town only the highest ranked club has been included.
London is obviously a complication because of its size and
the large number of clubs, and is therefore excluded. Using
this procedure a plot of rank against population is given in
figure 9.2.

There is a wide spread of points in the graph, showing
that small towns can be ambitious and that some large

Figure 9.2. Graph of club’s rank against size of town’s population.
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towns, such as Bristol, do not reach their potential. The graph
does indicate the best a town can reasonably hope for, with a
sufficiently large population being needed to achieve a place in
each Division. As a rough guide the required populations are

Minimum population

(thousands)

Average population

(thousands)

Premiership 100 300

1st Division 80 180

2nd Division 70 160

3rd Division 45 130

The minimum population is that required to reach each
Division, and the average is the middle value for the Division.
Of course the advent of a multi-millionaire benefactor can
broaden a town’s horizons.

Transfer fees

Nowadays the usual way that upper echelon clubs look to
improve their teams is by paying transfer fees to acquire
better players. The extent to which the club is able to do this
depends on its income. The judgement as to how much of
this income to spend on transfers is something of a balancing
act. If buying better players leads to success and a higher
income to balance the expenditure, that is fine. If not, the
club can be in trouble.

The first thousand pound transfer fee was paid by Sunder-
land to Middlesborough for Alf Common in 1905. The British
record fee has risen over the years to reach the £23.5 million
paid by Manchester United for Juan Veron in 2001.

Figure 9.3 gives a graph of the British record transfer fee
over almost a century. The early values are not resolved in the
graph and it is useful therefore to move to a logarithmic scale.
The resulting graph is shown in figure 9.4. The slight upward
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curvature of the graph shows that overall growth is somewhat
faster than exponential. However, over the past 50 years the
growth has been approximately exponential, fees doubling
every 5 years. One wonders how long can this continue?

Figure 9.3. Graph of record transfer fee against time.

Figure 9.4. Graph of record transfer fee, plotted logarithmically, against time.
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Part of the growth in transfer fees results from the fall in
value of the currency, inflation having reduced the value of the
pound by a factor of 70 during this period. The general stan-
dard of living has also improved during this time as reflected in
the growth in the real value of average earnings. A graph of
the record transfer fee measured in terms of the average
annual earnings of the time is given in figure 9.5.

The graph shows a remarkable growth. Alf Common was
bought in 1905 for 13 years average earnings. It took more
than a thousand years of average earnings to buy Juan
Veron. Much of the growth has taken place in the past 20
years, during which the extra sources of income have
become available to clubs.

Transfer fees make a big impact on the finances of some
clubs, particularly the larger ones. Table 9.1 gives the average
net amount of transfer fees per club in each Division as a
percentage of the average turnover per club for a typical
year. It is seen that the expenditure on transfer fees for
Premiership clubs is quite substantial. For the First and
Second Division clubs there is a small net income and for

Figure 9.5. Graph of record transfer fee, in terms of the average wage of the

general population.
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the Third Division a somewhat more significant income, being
15% of turnover.

These figures cover a wide variation among the clubs.
While some Premiership clubs have a low transfer expendi-
ture, for others the cost can be more than the turnover of
the whole Third Division.

Players’ wages

The temptation for clubs in the lower Divisions is to buy
players to achieve promotion. This is particularly true in the
First Division where the rewards of the Premiership provide
a great incentive. However, not only does the purchase of
good players cost the transfer fees, it implies a continual
drain on resources through the payment of wages. It is not
uncommon for clubs to have a wage bill which exceeds the
club’s turnover. This clearly involves a gamble on the part
of these clubs.

Interestingly Premiership clubs generally spend a smaller
percentage of their turnover on wages than those in the lower
divisions. Nevertheless the average Premiership expenditure
on wages is more than half their turnover and many players
now have million pound annual wages.

Table 9.1

Division Transfer payments

as % of turnover

Premiership �31%

First þ7%

Second þ7%

Third þ15%
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10

Mathematics

This chapter presents the mathematical calculations which
underlie the models and examples given in the earlier chapters.
The mechanics of the ball’s behaviour are based on Newton’s
laws of motion and in particular the second law which states
that the rate of change of momentum of a body is equal
to the applied force. For us this usually takes the form
force¼mass� acceleration, but where rotation is involved it
is more appropriate to describe the motion in terms of the
change of angular momentum brought about by an applied
torque. The models described all make the maximum use of
simplifying assumptions tomake the calculations as transparent
as possible.

The account of the aerodynamics of the ball follows
standard procedures for dealing with drag and the Magnus
force. For anything but the simplest problems it is not possible
to obtain algebraic solutions of the equations involved and the
examples given in chapter 4 are the result of numerical calcu-
lations.

The equations for probabilities are given without deriva-
tion, which would be out of place here. However, their
application is straightforward and the reader might find it
interesting to substitute numbers for trial cases to check that
they agree (or not) with their intuition.

The subjects dealt with are listed below, the first index
number referring to the corresponding chapter.
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1.1. Ideal bounce
1.2. Inelastic bounce
1.3. Angular momentum
1.4. Bounce at an angle
1.5. Bounce with ball sliding
1.6. Bounce with ball rolling
1.7. Condition for rolling
1.8. Angle of rebound
1.9. Rebound from the crossbar
2.1. The kick
3.1. The throw
3.2. The catch
4.1. Flight of the ball
4.2. Flight with drag
4.3. Effect of a wind
4.4. Effect of a side wind
4.5. The Magnus effect
4.6. Producing targeted flight with spin
5.1. Probability of scoring
6.1. Probability of scoring n goals in time t
6.2. Probability of the score (n, m)
6.3. Probability of scoring first in time t
6.4. Random motion
6.5. Intercepting a pass
7.1. Spread in league points.

1.1. Ideal bounce

During a bounce the ball initially undergoes an increasing
deformation as the bottom surface is flattened against the
ground. The resulting force, F, on the ball is given by the
product of the excess air pressure, p, in the ball and the area
of contact A, that is

F ¼ pA: ð1Þ
For velocities of interest the deformation is sufficiently small
that we can neglect the change in air pressure during the
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bounce. In addition we shall initially neglect the frictional
losses.

Figure 10.1 shows the geometry of the deformation,
where a is the radius of the ball, s is the deformation depth
and r is the radius of the circular surface of the ball in contact
with the ground. From Pythagoras’s theorem

a2 ¼ r2 þ ða� sÞ2

so that

r2 ¼ 2as� s2:

Usually s is sufficiently small that we can neglect the s2 term
and write the area

A ¼ pr2 ¼ 2pas: ð2Þ
During the bounce the vertical velocity, v, of the centre of the
ball is related to s by

v ¼ � ds

dt
: ð3Þ

The motion is described by Newton’s second law and for an
ideal bounce this takes the form

m
dv

dt
¼ F ð4Þ

where m is the mass of the ball. Combining equations (1) to

Figure 10.1. Geometry of the deformation.
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(4), we obtain the equation of motion

d2s

dt2
¼ � cp

m
s ð5Þ

where c is the circumference of the ball, 2pa. The solution of
equation (5) is

s ¼ v0

ðcp=mÞ1=2 sin
ffiffiffiffiffi
cp

m

r
t

 !
ð6Þ

where t ¼ 0 is the time of the initial contact and v0 is the
magnitude of the vertical velocity of the ball at initial contact.
At the time the ball leaves the ground, s ¼ 0 again and this
occurs when ffiffiffiffiffi

cp

m

r
t ¼ p

giving the duration of the bounce

tb ¼ p
ffiffiffiffiffi
m

cp

r
: ð7Þ

We notice that, with our assumptions, the duration of the
bounce does not depend on the initial velocity of the ball.
Indeed it only depends on the mass, circumference and
pressure of the ball, all of which are specified by the rules.
Taking the average of the values allowed by the rules

m ¼ 15 ounces ¼ 0:43 kg

c ¼ 27:5 inches ¼ 0:70m

p ¼ 0:85 atmospheres ¼ 0:86� 105 Newtonsm�2;

equation (7) gives the bounce time tb ¼ 8:4 milliseconds,
which is just under a hundredth of a second.

The maximum deformation depends on v0 and occurs at
t ¼ tb=2. From equations (6) and (7) its magnitude is

smax ¼
v0tb
p

;
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and substituting tb ¼ 8:4� 10�3 seconds

smax ¼ 2:7� 10�3v0 metres v0 in m s�1:

Since v0ðms�1Þ ¼ 0:45v0ðmphÞ and 1m ¼ 39:4 inches

smax ¼
v0
21

inches v0 in mph :

For example, a ball reaching the ground at 20 miles per hour
would have a deformation of about an inch.

The maximum force on the ball occurs at maximum
deformation. This occurs at t ¼ tb=2 and, from equations
(3), (4), (6) and (7),

Fm ¼ pmv0
tb

¼ 160v0 Newtons v0 in m s�1

¼ 72v0 Newtons v0 in mph:

Since

1Newton ¼ 0:102 kgwt ¼ 0:225 lbswt ¼ 1:00� 10�4 tons

the maximum force can be written

Fm ¼ v0
140

tons v0 in mph: ð8Þ

1.2. Inelastic bounce

The assumption of a perfect bounce was quite adequate to
obtain an approximate estimate of the bounce time and the
deformation of the ball, but obviously cannot be used to
describe the change of energy and spin brought about by the
bounce.

When a ball bounces from a hard surface some of its
kinetic energy is lost in inelastic deformation of the ball. In
the case of a football on grass there is a further loss due to bend-
ing of the blades of grass, the loss depending on the length of
the grass. Quantitatively this loss is measured by the coefficient
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of restitution, e, which is determined by the change of speed for
a ball impacting a surface at a right angle. The definition is

e ¼ speed after impact

speed before impact
:

Because of the dependence on the playing surface this coeffi-
cient is quite variable, but on a good pitch it is typically
around 0.5. The effect of the change of speed can be seen
from the height of successive bounces. The height, h, of a
bounce is found by equating the kinetic energy 1

2mv2 when
leaving the ground to the potential energy mhg when the
ball reaches the top of its bounce, g being the gravitational
acceleration. Thus

h ¼ v2

2g
:

If the ball now falls back to the ground it will again have a
speed v on reaching the ground, but on leaving the ground
after its second bounce it will have a velocity ev, and will
now only bounce to a height h2 given by

h2 ¼
ðevÞ2
2g

¼ e2h:

We see therefore that for e ¼ 0:5 successive bounces are
reduced to 1

4 the height of the previous bounce. Players gener-
ally find this to be satisfactory. When plastic pitches were
introduced into professional football for a while, they some-
times produced too high a bounce, making it more difficult
to play a controlled game.

1.3. Angular momentum

Bounces usually involve spin and to investigate the role of spin
it is necessary to introduce the concept of angular momentum.
We shall take a brief diversion to look at this and to illustrate
the basic elements involved in rotational motion.
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For rotation about a fixed axis it is convenient to express
Newton’s second law in a form which gives the change of
rotation in terms of the applied force. In this form the
equations say that the rate of change of the angularmomentum
is equal to the applied torque. To understand these concepts,
consider the simple example of a thin rod pivoted about one
end, with a perpendicular force applied to the other, as illus-
trated in figure 10.2. For simplicity we shall assume there is
no gravitational force. Let the rod have a varying mass distri-
bution along its length, giving it a density � per unit length.

The energy of the rod is

E ¼
ð‘
0

1
2 �v

2 dx;

and since the velocity v ¼ !x, where ! is the angular velocity,

E ¼ 1
2 I!

2 ð9Þ
where

I ¼
ð‘
0
�x2 dx:

The quantity I is called the moment of inertia.
The rate of change of energy is given by the rate of work

done by the force F. This is equal to the force times the velocity
at its point of application, that is

dE

dt
¼ Fv ¼ F‘! ¼ �!: ð10Þ

Figure 10.2. Pivoted rod.
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The quantity � , called the torque, is the product of the perpen-
dicular force and its distance from the pivot, in this case F‘.

The angular momentum, J, is defined as

J ¼ I!

and from equation (9) its rate of change is given by

I
d!

dt
¼ 1

!

dE

dt
:

Using equation (10) we now obtain the required equation of
motion

I
d!

dt
¼ �: ð11Þ

This result applies more generally to all rigid bodies, each
body with its specific mass distribution having a moment of
inertia, I, for rotation about a given axis. Equation (11) then
gives the change of rotation which results from a torque � .

1.4. Bounce at an angle

Having examined the vertical bounce of a ball without spin we
now turn to the general case in which a spinning ball strikes
the ground at an angle. If the ball bounces on a rough surface
its spin will change during the bounce, and even a ball without
spin will acquire a spin during the bounce.

First let us define the quantities involved in the bounce.
Figure 10.3 indicates the velocity components and spin before
and after the bounce.

In the diagram the ball bounces from left to right and a
clockwise spin is taken to be positive. The angular velocities
before and after the bounce are !0 and !1. The corresponding
horizontal velocities are u0 and u1, and the vertical velocities
are v0 and v1. It should be noted that the initial vertical vel-
ocity v0 is here taken to be positive.

The analysis of the bounce is different for the cases where
the ball slides throughout the bounce, and where the ball is
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rolling on leaving the bounce. We shall consider these cases in
turn. However, one aspect of the bounce is common to both –
the vertical velocities are related by the coefficient of restitu-
tion, and

v1 ¼ ev0: ð12Þ
Consequently the change in vertical velocity, �v, from v0
downwards to v1 upwards is given by

�v ¼ v1 � ð�v0Þ ¼ v0 þ v1 ¼ ð1þ eÞv0: ð13Þ

1.5. Bounce with ball sliding

If the ball slides throughout the bounce there is a horizontal
friction force, Fh, acting on the bottom of the ball as illustrated
in figure 10.4. This force slows the ball and also imposes a
torque Fha about the centre of gravity where a is the radius
of the ball. The friction force is given by

Fh ¼ �Fv ð14Þ
where � is the coefficient of sliding friction and Fv is the
vertical force between the ball and the ground.

Figure 10.3. Showing the conditions before and after the bounce.

Mathematics 151



Newton’s second law gives the equations for the horizon-
tal and vertical velocities during the bounce

m
du

dt
¼ �Fh and m

dv

dt
¼ Fv ð15Þ

so that

du

dv
¼ �Fh

Fv

ð16Þ

and the change in the horizontal velocity, �u ¼ u1 � u0,
during the bounce is given by integrating equation (16)
through the bounce using equation (14). This gives

�u ¼ ���v;

and using equation (13)

�u ¼ ��ð1þ eÞv0: ð17Þ
The change in rotation due to the force, Fh, is given by the
equation of motion (11)

I
d!

dt
¼ Fha ð18Þ

where I is the moment of inertia of the ball and Fha is the
torque. Equations (15) and (18) give

d!

dt
¼ �ma

I

du

dt

Figure 10.4. Friction force Fh resulting from vertical force Fv.
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and integrating this equation, the change in ! is

�! ¼ �ma

I
�u: ð19Þ

Substitution of equation (17) into equation (19) gives

�! ¼ �ð1þ eÞ ma

I
v0: ð20Þ

The moment of inertia of a hollow sphere about an axis
through its centre is

I ¼ 2
3ma2

and substituting this relation into equation (20) gives the
change of rotation frequency during the bounce

�! ¼ 3

2
�ð1þ eÞ v0

a
: ð21Þ

Summarising these results, equations (12), (17) and (21) give
the velocities and rotation resulting from a sliding bounce

v1 ¼ ev0; u1 ¼ u0 � �ð1þ eÞv0 ð22Þ

!1 ¼ !0 þ
3

2
�ð1þ eÞ v0

a
: ð23Þ

1.6. Bounce with ball rolling

When the ball touches the ground and slides, the friction force,
Fh, on the ball slows the lower surface. For rougher surfaces
and for higher angles of approach the force brings the lower
surface to a halt and the ball then rolls through the bounce
as illustrated in figure 10.5.

In this case equation (14), describing the sliding friction
force, is no longer applicable. It is replaced by the condition
that the ball finishes the bounce rolling, that is

u1 ¼ !1a: ð24Þ
The other relationship between u1 and !1 comes from
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equation (19), and since I ¼ 2
3ma2 this gives

!1 � !0 ¼ � 3

2

u1 � u0
a

: ð25Þ

Equation (12), giving the change in vertical velocity, still holds
and equations (24) and (25) together with equation (12) give
the conditions resulting from the rolling bounce.

v1 ¼ ev0 ð26Þ

u1 ¼
3

5
u0 þ

2

5
!0a ð27Þ

!1 ¼
2

5
!0 þ

3

5

u0
a
: ð28Þ

1.7. Condition for rolling

The rolling relation given by equation (24) can be written
u1=!1a ¼ 1. Provided the ratio u1=!1a predicted by the
‘sliding’ equations (22) and (23) is greater than 1 the bounce
is in the sliding regime. If the equations predict u1=!1a < 1
they are no longer valid and the bounce is in the rolling
regime. Using equations (22) and (23) this gives the condition
for rolling to take place

�ð1þ eÞv0 > 2
5 ðu0 � !0aÞ: ð29Þ

Figure 10.5. Ball rolling during bounce.
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If the ball is not spinning before the bounce the condition for
rolling becomes simply a requirement that the angle of
approach to the bounce, �, be sufficiently large. From figure
10.6, tan � ¼ v0=u0 and so, from inequality (29), the condition
for rolling becomes

tan � >
2

5�ð1þ eÞ :

For example if � ¼ e ¼ 0:7, rolling occurs for � > 198.

1.8. Angle of rebound

The angle of rebound can be calculated from the vertical and
horizontal components of the velocity which we have already
determined. The geometry is shown in figure 10.7.

Figure 10.6. Tan � ¼ v0=u0.

Figure 10.7. Geometry of bounce.
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The angle of rebound to the vertical, �1, is given by

tan�1 ¼
u1
v1

and using equations for the case where the ball slips

tan�1 ¼
u0 � �ð1þ eÞv0

ev0
:

Since

u0
v0

¼ tan�0

we have the relation of the angle of rebound to the angle of
incidence, �0,

tan�1 ¼
1

e
tan�0 � �

�
1þ 1

e

�
:

Similarly for the case of a bounce where the ball leaves the
ground rolling, equations (26) and (27) give

tan�1 ¼
3

5e
tan�0 þ

2

5e

!0a

v0
: ð30Þ

1.9. Rebound from the crossbar

The geometry of the bounce from the crossbar is shown in
figure 10.8. �0 and �1 are the angles of the ball’s velocity to
the horizontal, before and after impact.

There are two parts to the calculation of the bounce.
Firstly we use the results of the previous section to determine
the relationship of the angles of incidence and rebound. In this
case the surface from which the bounce takes place is replaced
by the tangent AB through the point of contact. The second
part of the calculation relates the angle of this tangent to the
height of the ball at the bounce in relation to the position of
the bar. The ball will actually move on the bar during the
bounce, but to keep the calculation simple we shall take the
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contact position on the bar to be that in the middle of the
bounce.

From figure 10.8 the angle of incidence is

�0 ¼ �� �0

and the angle of the rebound is

�1 ¼ �1 � �:

Taking the ball to be rolling from the bounce, �1 and �0 are
related by equation (30). Assuming, for simplicity, that the
ball is not spinning before the bounce, this gives an equation
for �1

tanð�1 � �Þ ¼ 3

5e
tanð�� �0Þ: ð31Þ

It now remains to relate � to the height at which the ball
bounces on the bar. The geometry is shown in figure 10.9.

If the radius of the ball is a and the radius of the bar is b,
the difference in height, h, between the centre of the bar and
centre of the ball is

h ¼ ðaþ bÞ sin �: ð32Þ

Figure 10.8. Geometry of bounce from the crossbar.
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Thus for a given h, equation (32) determines �, and using this
value in equation (31) gives the angle of a rebound �1, given
the angle of incidence, �0.

To calculate the rotation of the ball after the rebound we
use equation (28). To do this we need an equation for u0. From
figure 10.8 the angle between the incoming velocity, V0, and
the normal to the line AB is �� �0. The required tangential
velocity u0 is therefore given by

u0 ¼ V0 sinð�� �0Þ
and, from equation (28), the rotation frequency after the
bounce, with !0 ¼ 0, is

!1 ¼
3

5

V0

a
sinð�� �0Þ

where � is given by equation (32).

2.1. The kick

In a hard kick the leg is swung like a double pendulum,
pivoted at the hip and jointed at the knee. The leg is first
accelerated and then decelerated to rest. The ball is struck
close to the time of maximum velocity, and at this time the

Figure 10.9. Relating h to a, b and �.
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leg is almost straight. Essentially the ball bounces off the
moving foot. Since this bounce takes some time the ball
remains in contact with the foot for a finite distance. For a
kick in which the foot is moving at 50 miles per hour with a
bounce time of one hundredth of a second, contact is main-
tained for about 9 inches, roughly the diameter of the ball.

The mechanics of the kick are rather complex but we can
simplify the analysis by assuming that during contact with the
ball the leg just pivots about the hip. When the foot has
reached its maximum velocity the process is then that of
transferring momentum from the leg to the ball. If the leg,
including the foot, has a moment of inertia I about the hip,
its angular momentum at the start of impact is I�0, where
�0 is the initial angular velocity of the leg. At the end of the
impact the angular velocity is reduced to �1 and the angular
momentum is I�1. The lost angular momentum is transferred
to the ball whose angular momentum about the hip is m‘vb
where m is the mass of the ball, ‘ the length of the leg and
vb is the velocity given to the ball. Thus

Ið�0 � �1Þ ¼ m‘vb

and writing the initial velocity of the foot as v0 ¼ �0‘, and the
velocity after impact as v1 ¼ �1‘

Iðv0 � v1Þ ¼ m‘2vb: ð33Þ
If we describe the bounce of the ball from the foot in terms of a
coefficient of restitution e,

ðvb � v1Þ ¼ ev0: ð34Þ
Then, using equation (34) to eliminate v1 in equation (33), we
obtain the velocity of the ball in terms of the initial velocity of
the foot

vb ¼ v0
1þ e

1þ ðm‘2=IÞ : ð35Þ

Because the mass of the leg is much greater than that of the
ball, I is several times m‘2 and consequently m‘2=I is less
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than e. This means that the ball leaves the foot with a higher
velocity than the velocity of the foot.

Using equations (33) and (35) the fractional change in the
velocity of the foot is

v1 � v0
v0

¼ � 1þ e

1þ ðI=m‘2Þ
and since I=m‘2 � 1, this shows that the foot is only slightly
slowed by the impact with the ball.

3.1. The throw

For a throw-in a continuous force is applied to the ball as it is
moved forward together with the hand and arms. The momen-
tumwhich can be given to the ball is limited by the distance the
arms can be moved before the ball is released. If a constant
force, F, were applied for a time t, the acceleration F/m
would produce a velocity

v ¼ Ft

m
ð36Þ

and, since the distance covered is d ¼ Ð v dt,
d ¼ Ft2

2m
: ð37Þ

Equations (36) and (37) give the velocity achieved over the
distance d

v ¼
ffiffiffiffiffiffiffiffiffi
2Fd

m

r
: ð38Þ

However, as the arms move forward and the ball speeds up it
becomes difficult to maintain the force and the acceleration.
The force starts at a high value and probably falls close to
zero if the arms are extended well forward. Thus, for long
throws the force appearing in equation (38) must be replaced
by an average value. For short throws contact with the ball is
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only maintained for a short distance. For a given applied force
this distance falls off as the square of the required velocity.

When the ball is hurled by the goalkeeper the same
equations apply but the distance over which the force can be
maintained is longer.

3.2. The catch

Since a catch is the inverse of a throw it is described by the
same equations. However, in this case it is the initial velocity,
v, which is known, and for a given take-back distance, d, of
the hands, equation (38) gives the average force on the
hands

F ¼
1
2mv2

d
:

This equation brings out the fact that the decelerating force
applied by the hands is that necessary to remove the kinetic
energy, 1

2mv2, of the ball in the distance d.

4.1. Flight of the ball

The flight of the ball is determined by Newton’s second law of
motion

force ¼ mass� acceleration:

In the general case there are three forces acting on the ball, the
force of gravity and two forces arising from interaction with
the air. The simplest force from the air is drag, which acts in
the opposite direction to the ball’s velocity. The other, more
subtle, force is the Magnus force which, in the presence of
spin, acts at right angles both to the velocity and to the axis
of spin. With spin about a horizontal axis the Magnus force
can provide lift; with spin about a vertical axis the flight of
the ball is made to bend.
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When the effect of the air is negligible the equations of
motion are easily solved. Since there is no horizontal force
the equation for the horizontal velocity, u, is

m
du

dt
¼ 0

and so the horizontal velocity is constant, and u is equal to the
initial horizontal velocity u0. The horizontal displacement, x,
is therefore

x ¼ u0t: ð39Þ
The equation for the vertical velocity, v, is

m
dv

dt
¼ �mg

where g is the acceleration due to gravity. This equation has
the solution

v ¼ v0 � gt

where v0 is the initial vertical velocity. Since v ¼ dy=dt the
vertical displacement is obtained by integrating

dy

dt
¼ v0 � gt

to obtain

y ¼ v0t� 1
2 gt

2: ð40Þ
Using equation (39) to eliminate t in equation (40) gives the
equation for the trajectory

y ¼ v0
u0

x� 1

2

g

u20
x2: ð41Þ

and this is the equation of a parabola.
The range of the flight is obtained by putting y ¼ 0

in equation (41). Obviously y ¼ 0 for x ¼ 0, but the other
solution for x gives the range

R ¼ 2v0u0
g

: ð42Þ
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The time of flight is given by the time, t ¼ T , at which the
displacement y returns to zero. From equation (40) this is
given by

T ¼ 2v0
g

:

If the initial angle between the trajectory and the ground is �0,
then

v0 ¼ V0 sin �0 and u0 ¼ V0 cos �0 ð43Þ
where the initial total velocity, V0, is given by

V2
0 ¼ v20 þ u20:

In terms of V0 and �0 the range given by equation (42)
becomes

R ¼ 2V2
0 sin �0 cos �0

g

and, using the identity 2 sin �0 cos �0 ¼ sin 2�0,

R ¼ V2
0 sin 2�0

g
:

Since sin 2�0 has its maximum value at �0 ¼ 458, this angle
gives the maximum range for a given V0,

Rmax ¼
V2

0

g
:

4.2. Flight with drag

The drag force on a body moving in air is conventionally
written

Fd ¼ 1
2CD�AV

2 ð44Þ
where the drag coefficient CD depends on the velocity, � is the
density of the air, V is the velocity of the body, and A is its
cross-sectional area, in our case pa2.
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Although equation (44) is simple, the solution of the
associated equations of motion is rather involved. This is
partly because of the velocity dependence of CD but is also
due to the fact that the drag force couples the equations for
the horizontal and vertical components of the velocity.
Newton’s equations now become

m
du

dt
¼ �Fd cos � ð45Þ

and

m
dv

dt
¼ �Fd sin ��mg ð46Þ

where � is the angle between the trajectory and the ground at
time t, given by

tan � ¼ v

u
: ð47Þ

Even for constant CD, equations (44) to (47) do not have an
algebraic solution, but they are easily solved numerically for
any particular case using a computer.

If CD is taken to be a constant during the flight then,
using v ¼ V sin � and u ¼ V cos �, equations (45) and (46)
can be conveniently written.

du

dt
¼ ��uV ð48Þ

dv

dt
¼ ��vV � g ð49Þ

where

V2 ¼ v2 þ u2 ð50Þ
and

� ¼ 1
2CD�A=m:

In the calculations for the cases presented in chapter 4,
equations (48) to (50) were solved with CD taken to be 0.2.
The density of air is 1.2 kgm�3, the mass of the ball is
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0.43 kg, and its cross-sectional area is 0.039m2, giving the value
� ¼ 0:011m�1.

Having solved for u and v it is straightforward to obtain x
and y by integrating dx=dt ¼ u and dy=dt ¼ v.

4.3. Effect of a wind

The drag on the ball is determined by its velocity with respect
to the air. Thus for a wind having a velocity w along the direc-
tion of the ball’s flight the equations of motion (48) and (49)
take the form

du

dt
¼ ��ðu� wÞV ð51Þ

dv

dt
¼ ��vV � g ð52Þ

with V now given by

V2 ¼ ðu� wÞ2 þ v2: ð53Þ
A positive value of w corresponds to a trailing wind, and a
negative value corresponds to a headwind.

Again, the equations can be solved directly using a
computer. It is interesting to note, however, that if we make
the transformation u� w��" u0 with v��" v0, equations (51)
to (53) take the form of equations (48) to (50) with u and v
replaced by u0 and v0. If the equations are solved for u0 and
v0, and x0 and y0 are calculated from dx0=dt ¼ u0 and
dy0=dt ¼ v0, the required solutions can then be obtained
using the inverse transformations.

u ¼ u0 þ w v ¼ v0

x ¼ x0 þ wt y ¼ y0:

This does not mean that the values of the vertical velocity and
position, v and y, are unchanged by the wind since the wind-
modified value of V enters into the calculation of v0. As
usual, the range and time-of-flight are determined by the
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condition that the ball has returned to the ground, that is
y ¼ 0.

4.4. Effect of a sidewind

If there is a sidewind with velocity w, the motion in the
direction, z, of this wind is obtained from the equation for
the velocity, vz, in this direction

dvz
dt

¼ ��ðvz � wÞV ð54Þ

with

V2 ¼ u2 þ v2 þ ðvz � wÞ2:
Again this equation can be solved numerically together with
the equations for u and v. However a simple procedure gives
a formula for the sideways deflection of the ball’s trajectory
which is sufficiently accurate for most circumstances.

The equation for the forward motion is

du

dt
¼ ��uV ð55Þ

and dividing equation (54) by equation (55) gives

dvz
du

¼ vz � w

u
: ð56Þ

Integration of equation (56) gives the solution

vz ¼ w

�
1� u

u0

�
ð57Þ

where u0 is the initial value of u and vz ¼ 0 initially.
The deflection z is obtained by solving

dz

dt
¼ vz:
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Thus, using equation (57) for vz

z ¼ w

�
t�
Ð t
0 u dt

u0

�
:

The deflection, d, over the full trajectory is therefore

d ¼ w

�
T � R

u0

�

where T is the time of flight and R is the range. Since T and R
are little affected by the sidewind, a good approximation for d
is obtained using their values with no wind. If there were no air
drag, then T ¼ R=u0 and deflection would, of course, be zero.

4.5. The Magnus effect

When the ball is spinning the Magnus effect produces a force
on the ball which is perpendicular to the spin and perpendicu-
lar to the ball’s velocity, as illustrated in figure 10.10. Conven-
tionally this force is written

FL ¼ 1
2CL�AV

2

by analogy with the drag force given in equation (44). This
formula has its origin in aeronautics and the subscript L

Figure 10.10. Illustrating the relation of the Magnus force to the ball’s velocity

and spin.
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stands for the lift which would occur, for example, on a wing.
For our purpose this expression is somewhat misleading
because CL depends on both the spin and the velocity.

For a spinning ball CL is proportional to !a=V provided
!a=V is not too large and it is, therefore, convenient to write

CL ¼ !a

V
Cs

where ! is the angular frequency of the spin and a is the radius
of the ball. Then

FL ¼ 1
2Cs�Aa!V : ð58Þ

Substituting for the air density, � ¼ 1:2 kgm�3, the radius
a ¼ 0:11m and the cross-sectional area A ¼ 0:039m2,
equation (58) becomes

FL ¼ 2:6� 10�3Cs!V Newtons V in m s�1: ð59Þ
This sideways force produces a curved trajectory and the force
is balanced by the centrifugal force mV2=R, where R is the
radius of curvature of the trajectory. Using equation (59)
with a mass of 0.43 kg, the resulting radius of curvature is

R ¼ 165
V

Cs!
metres V in m s�1: ð60Þ

If we measure the rotation by the number of revolutions per
second, f, then since f ¼ !=2p, equation (60) becomes

R ¼ 26
V

Cs f
metres V in m s�1: ð61Þ

It is more natural to think in terms of sideways displacement
of the ball as illustrated in figure 10.11. If we approximate
by taking the trajectory to have a constant curvature then
using Pythagoras’s equation

L2 þ ðR�DÞ2 ¼ R2
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and, taking D � R so that D2 is negligible

D ¼ L2

2R
:

Using equation (61) this becomes

D ¼ CsL
2f

52V
metres V in m s�1: ð62Þ

The time of flight is L=V and so the number of revolutions of
the ball during its flight is n ¼ Lf =V . Substitution of this
relation into equation (62) gives

D

L
¼ Cs

n

52
:

We have no direct measurement of Cs for footballs but experi-
ments with other spheres have given values in the range 1

4 to 1
depending on the nature of the surface. Taking Cs ¼ 1

2 we
obtain the approximate relation

D

L
¼ n

100
:

For example, a deviation of 1m over a length of 30m would
require the ball to undergo about 3 revolutions.

The ratio of f =V appearing in equation (62) is related to
the ratio of the rotational energy to the kinetic energy. This

Figure 10.11. Deviation, D, arising from the ball’s curved trajectory.
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ratio is

ER

EK

¼
1
2 I!

2

1
2mV2

and since I ¼ 2
3ma2

ER

EK

¼ 0:32

�
f

V

�2
V in m s�1:

For the example, a ball travelling at 30mph (13.4m s�1) with a
spin of 3 revolutions per second has a rotational energy of
1.6% of its kinetic energy.

4.6. Producing targeted flight with spin

In a normal kick the ball is kicked along a line through the
centre of the ball and this means that the ball is struck at a
right angle to its surface. If the flight of the ball is to be
bent, the angle of the kick to the surface must be turned
away from a right angle in order to apply a torque to the
ball and give it spin. A further requirement is that the ball
must be struck at the correct place on the surface, which is
no longer on the line through the centre of the ball in the
direction of the flight. Using the aerodynamics of the flight
and the mechanics of the kick we can determine the necessary
prescription. The calculation has five parts:

(i) The geometry of the flight.
(ii) Relating the spin and sideways velocity produced by the

kick.
(iii) Relating the forward velocity of the ball to the velocity of

the foot.
(iv) Application of the constraint that the ball moves with the

foot.
(v) Combining the above calculations to obtain the required

prescription.
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We shall look at these parts in turn. For simplicity we shall
take the angles involved to be small to avoid the introduction
of trigonometric functions. To avoid too much complication
we shall not include the change in the position of the foot
on the ball during the kick and will take the position of the
foot to be represented by its average position during the
contact.

(i) Geometry of the flight

To place a curved shot on target requires that it be kicked in
the correct direction with the required spin. The geometry of
the flight is shown in figure 10.12.

The ball leaves the foot at an angle � to the direction of
the target and the trajectory has an initial direction aimed at
a distance D from the target which is a distance L away.
Taking the angle � to be small, the required kick calls for a

Figure 10.12. Geometry of the curved flight.
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departure angle � ¼ D=L. Using equation (58) for the force on
the ball the equation of motion is

m
d2x

dt2
¼ � 1

2
Cs�A!aV:

Neglecting drag and using the approximation y ¼ Vt, we
obtain the equation for the ball’s trajectory

x ¼ 1

4
Cs

!a

V

L

‘
y

�
1� y

L

�
ð63Þ

where ‘ ¼ m=�A is the length over which the mass of air swept
by the cross-sectional area A is equal to the mass of the ball,
and !a=V is the ratio of the equatorial spin velocity to the
velocity of the ball.

The maximum deviation of the ball from the straight line
to the target occurs at y ¼ L=2 and is

� ¼ 1

16
Cs

!a

V

L2

‘
:

This equation gives the required spin, !, for a given deviation.
To produce this deviation the ball must be kicked towards a
point at a distance D from the target where D ¼ 4�, and the
required spin is

! ¼ 4VD‘

CsaL
2
: ð64Þ

The task of the kicker is now defined. To produce a deviation
D with a ball kicked with a velocity V the ball must be kicked
at the angle � ¼ D=L, and be given a spin ! in accordance with
equation (64).

The required angle, �, can be related to the spin by substi-
tuting D=L ¼ � in equation (64) to obtain

� ¼ 1

4
Cs

!a

V

L

‘
: ð65Þ
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(ii) The kick with spin

To produce the spin required for a curled flight it is necessary
to strike the ball ‘off-centre’ and at an angle as shown in figure
10.13.

The force of the kick has a sideways component FsðtÞ
which gives the ball a velocity component uðtÞ in the direction
of Fs and, through the torque it applies, a spin !ðtÞ. The
equations for the transfer of linear and angular momentum
are

m
du

dt
¼ Fs

and

I
d!

dt
¼ aFs

where a is the radius of the ball and I is the moment of inertia
about a diameter which, for a hollow sphere, is 2

3ma2. These
equations combine to give

du

d!
¼ 2

3
a

Figure 10.13. Geometry of the kick.
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and so when the kick is completed the final values are related
by

u ¼ 2
3!a: ð66Þ

This sideways velocity deflects the ball’s direction away from
the direction through the centre of the ball. Taking the deflec-
tion angle, �, to be small so that tan� can be replaced by �, it
can now be written

� ¼ u

V
¼ 2

3

!a

V
: ð67Þ

(iii) Velocity of the ball

The ‘forward’ motion is dealt with by introducing the coeffi-
cient of restitution. Taking the angle between the direction
of the kick and the departure direction of the ball to be
small the departure velocity of the ball is

V ¼ ð1þ eÞvf ð68Þ
where vf is the velocity of the foot.

Equations (67) and (68) combine to give the deflection
angle for a given spin

� ¼ 2

3ð1þ eÞ
!a

vf
: ð69Þ

(iv) The required spin

In the previous section we calculated the angle � for the direc-
tion of the ball but did not determine the spin. This requires
one more piece of information which is provided by the
constraint that, during the kick, the foot and the surface of
the ball move together. From figure 10.14 we see that the
tangential component of the foot velocity is vf sin �, which
for small angles is vf�. The surface velocity of the ball is the
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sum of the ball’s sideways velocity and the surface rotation
velocity, that is uþ !a. Equating these velocities

uþ !a ¼ vf�:

This equation together with equation (66) gives both ! and u
in terms of the controlled variables vf and �

! ¼ 3

5

vf
a
� and u ¼ 2

5
vf�: ð70Þ

The angle � can now be determined using equations (69) and
(70) to obtain

� ¼ 2

5ð1þ eÞ �: ð71Þ

The dependence of � and � on � comes from equations (65),
(68), (70) and (71) which give

� ¼ 20ð1þ eÞ‘
3CsL

� ð72Þ

� ¼ 8‘

3CsL
�: ð73Þ

Figure 10.14. Showing the angle of the kick.
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(v) Complete prescription for kick

Figure 10.15 defines the problem. We want the direction of the
ball to be at an angle �, and we need to know the angle � of the
kick and the off-centre distance, d, of its placement. It is seen
that d ¼ 	a, and so the problem reduces to that of finding the
angles 	 and � which produce the angle � required for the ball
to end up on target.

From figure 10.16 it is seen that the angles are related by

	 ¼ �� �

and

� ¼ �� 	 ¼ �� �þ �:

Using equations (72) and (73) for � and � gives 	 and � in
terms of � and, recalling that � ¼ D=L and 	 ¼ d=a, we
obtain the final requirements on the placement and the angle
of the kick to give a displacement, D, of the flight over a
distance L

d

a
¼
�

8‘

3CsL
� 1

�
D

L

Figure 10.15. Introducing the angles � and 	.
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and

� ¼
�
1þ 4ð3þ 5eÞ‘

3CsL

�
D

L
:

Using the numerical values m ¼ 0:43 kg, � ¼ 1:2 kgm�3 and
A ¼ 0:039m gives ‘ ¼ 9:2m. As explained earlier we do not
have an accurate value for Cs but a reasonable estimate is
0.5. Substituting these values with e ¼ 0:5 we obtain

d

a
¼
�
49

L
� 1

�
D

L

and

� ¼
�
1þ 135

L

�
D

L
radians

¼ 57

�
1þ 135

L

�
D

L
degrees:

It is interesting that d can be of either sign although with the
value of Cs used it will almost always be positive. For a

Figure 10.16. The full geometry of the kick.
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25m kick with a displacement D of 1m the angle, �, of the
kick to the target line is 158.

The distance d is the required distance of the kick on the
ball from the target line. The distance from the line through
the ball in the direction of flight is greater. It is seen from
figure 10.16 that this is given by the angle �, the distance on
the surface being �a, and from equation (73)

�a ¼ 8a‘D

3CsL
2
:

With the numerical values used above and the ball radius
a ¼ 0:11m

�a ¼ 5:4
D

L2
metres

so that for a kick withL ¼ 25m andD ¼ 1m the distance from
the centre-line along the line of flight is about a centimetre.

5.1. Probability of scoring

If the ratio of the scoring rate of the stronger team to that of
the weaker team is R, the probability, p, that the next goal will
be scored by the stronger team is R=ðRþ 1Þ and the prob-
ability for the weaker team is 1� p ¼ 1=ðRþ 1Þ.

If one goal is scored in a match, the probability that it is
scored by the stronger team is p and by the weaker team is
1� p. If there are N goals in the match the probability that
they are all scored by the stronger team is pN . The probability
that the weaker team scores all the goals is ð1� pÞN .

The probability, P, that the stronger team scores n goals
out of N is

P ¼ N!

n!ðN � nÞ! p
nð1� pÞN�n

where N factorial is defined by

N! ¼ NðN � 1ÞðN � 2Þ � � � 1
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and similarly

n! ¼ nðn� 1Þðn� 2Þ � � � 1
and 0! ¼ 1.

6.1. Probability of scoring n goals in time t

For a team with a scoring rate of r goals per hour probability
of scoring n goals in time t, measured in hours, is

P ¼ ðrtÞn
n!

e�rt: ð74Þ

where

e ¼ 1

0!
þ 1

1!
þ 1

2!
þ 1

3!
þ � � � ¼ 2:718 � � �

and P has a maximum at t ¼ n=r given by

Pmax ¼
nn

n!
e�n:

6.2. Probability of the score (n, m)

If teams 1 and 2 have scoring rates of r1 and r2 the probability
that team 1 has scored n goals and team 2 has scoredm goals in
time t is, from equation (74),

Pn;m ¼ ðr1tÞnðr2tÞm
n!m!

e�ðr1þ r2Þt:

6.3. Probability of scoring first in time t

The probability that a team has not scored (n ¼ 0) in a time t
is given by equation (74). Noting that ðr1tÞ0 ¼ 1 and 0! ¼ 1
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we obtain

P0 ¼ e�rt:

If the scoring rates for teams 1 and 2 are r1 and r2 the prob-
ability that neither team has scored is

P00 ¼ e�ðr1þ r2Þt:

The probability that team 1 scores in dt is r1 dt and so the
probability that neither team has scored at time t and team
1 scores in dt is

dP1 ¼ e�ðr1þ r2Þtr1 dt

and integrating from t ¼ 0 gives the probability that, in a time
t, team 1 has scored first

P1 ¼
r1

r1 þ r2
ð1� e�ðr1þ r2ÞtÞ:

It is seen that P1 rises from 0 at t ¼ 0 to a limit of r1=ðr1 þ r2Þ.

6.4. Random motion

Random motion can be treated theoretically by taking
averages over time. The movement of the ball around the
pitch does not allow a thorough theoretical description but a
rough model is perhaps of interest.

It is quite usual on television to be given the percentage of
the time which the ball has spent in parts of the pitch. For
example, the length of the pitch is often divided into three
parts and the percentage given for each part. For a theoretical
model the pitch can be divided into many more parts and in
the limit to an infinite number of parts. Choosing a sufficiently
long time to obtain a satisfactory average we can then draw a
graph of the distribution of the ball over the length, x, along
the pitch. Such a graph is illustrated in figure 10.17 for a
pitch of length 100m. f is called the distribution function
which can be measured in seconds per metre. The behaviour
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of f for random motion can be described by the differential
equation

@f

@t
¼ @

@x

�
DðxÞ @f

@x

�

where D, the diffusion coefficient, depends on x. The steady
solution of this equation ð@f =@t ¼ 0Þ would be f ¼ constant.
The fact that f is not a constant arises from the strength and
deployment over the pitch of the teams’ resources. It is difficult
to measure this precisely but it can be represented in the
equation by a term CðxÞ @f =@x to give

@f

@t
¼ CðxÞ @f

@x
þ @

@x

�
DðxÞ @f

@x

�
:

This equation is called the Fokker–Planck equation. The
steady state is now described by

CðxÞ @f
@x

þ @

@x

�
DðxÞ @f

@x

�
¼ 0:

In practice we expect the ‘steady’ solution to evolve during the
match principally due to change in CðxÞ.

6.5. Intercepting a pass

We calculate here the criteria for the interception of a pass
made along the ground, directly toward the receiving player.

Figure 10.17. An example of the distribution, f , of the ball’s time averaged

position along the pitch.
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The geometry is shown in figure 10.18. It is clearly a necessary
condition for interception that the intercepting player must be
able to reach some point on the ball’s path before the ball
reaches that point. We therefore need to calculate the time,
tb, for the ball to reach any point X, a distance ‘ along the
ball’s path, and the time, tp, for an intercepting player to
reach the same point. A successful interception requires that
tp � tb for some position of X, that is for some distance ‘.

If the speed of the ball is sb the time to reach X is

tb ¼
‘

sb
: ð75Þ

Taking the speed of the player to be sp, he can reach X in a time

tp ¼
‘p
sp

: ð76Þ

From the geometry ‘p is related to the separation, d, of the two
players and the angle � by

‘2p ¼ d2 þ ‘2 � 2d‘ cos �: ð77Þ
For interception tp � tb and the limits of interception are
therefore at tp ¼ tb, so that from equations (75), (76) and (77)

s2p‘
2 ¼ s2bðd2 þ ‘2 � 2d‘ cos �Þ:

Figure 10.18. Geometry of the interception calculation.

182 The science of soccer



This is a quadratic equation for the limiting ‘, and interception
is possible for any ‘ between the two solutions

‘ ¼ d

1� ðsp=sbÞ2
�
cos � �

��
sp

sb

�2
� sin2 �

�1=2�
: ð78Þ

There is no real solution when the quantity under the square
root becomes negative and a necessary condition for intercep-
tion is therefore

sp

sb
> sin �:

This condition is necessary but not sufficient because there are
two situations where the receiving player can intervene. Figure
10.19 illustrates the possibilities.

In the first case the receiving player is between the passer
and the earliest point of interception. If ‘r is the distance
between the passer and the receiver, the condition for the
receiver to intervene is

‘r < ‘min

where ‘min is the smallest interception length given by equation
(78)

‘min ¼
d

1� ðsp=sbÞ2
�
cos ��

��
sp

sb

�2
� sin2 �

�1=2�
:

In the second case the receiving player must be able to run to a
position ‘ � ‘min in the time taken for the opponent to reach
‘min. From equations (76) and (77) this time is

tpm ¼ ðd2 þ ‘2min � 2d‘min cos �Þ1=2
sp

: ð79Þ

If the receiving player starts at a distance L from the passer
and runs at a speed sr, his time to reach ‘min is

trm ¼ ðL� ‘minÞ
sr

: ð80Þ
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Using the equations (79) and (80), the condition for successful
interception by the receiving player, trm < tpm, becomes

ðL� ‘minÞ <
sr
sp
ðd2 þ ‘2min � 2d‘min cos �Þ1=2:

7.1. Spread in league points

The spread of points in a final league table has two contribu-
tions. The first arises from the random effects in each team’s
performances and the second is due to the spread of abilities
among the league’s teams.

Figure 10.19. (i) Receiving player takes a short pass which the opponent cannot

intercept. (ii) Receiving player runs to prevent interception.

184 The science of soccer



In statistical theory the spread is measured by the so-
called standard deviation. If a quantity x has a set of N
values labelled xn and the average value is �xxn, the standard
deviation, 
, is defined as the square root of the mean of the
squares of xn � �xxn, that is


 ¼
�

1

N

X
n

ðxn � �xxnÞ2
�1=2

:

We can use a simple model to estimate the spread in teams’
points totals arising from the random variations of each
team’s results. The spread due to teams’ differing abilities
can be eliminated by taking all the teams to be equal. We
then take reasonable probabilities for match results, 3

8 each
for a win and a defeat and 1

4 for a draw. If each team plays
N matches there will, on average, be 3

8N wins, 3
8N defeats

and 1
4N draws. If there are 3 points for a win, 1 for a draw

and 0 for a defeat the average number of points per game
will be

�PP ¼ 3
8 3þ 1

4 1þ 3
8 0 ¼ 11

8 points

and the expected standard deviation over N games is then


 ¼ ð38Nð3� 11
8 Þ2 þ 3

8Nð118 Þ2 þ 1
4Nð1� 11

8 Þ2Þ1=2

¼ 1:32N1=2 points

For N ¼ 38, as in the Premiership, the standard deviation
would be 8.1 points.

We can now examine the actual standard deviation of
points obtained by teams in the Premiership using the final
league tables. Averaging over five years this turns out to be

 ¼ 13:6 points. The extra spread in points over the basic
value 8.1 can be attributed to the spread in abilities of the
Premiership teams. Figure 10.20 gives a graph comparing
the spread in points due to randomness alone with that
actually obtained in the Premiership.
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It is clear that the random element plays a large part in
determining a team’s final points total and can therefore
influence which team becomes champion. The discussion
about the ‘best team’ in chapter 7 is an attempt to quantify
this.

Figure 10.20. Graph of the distribution of points about the mean for random-

ness alone and for the Premiership.
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Chapter images

1. Selected frames from high speed (4500 frames/sec) photo-
graphy of a bounce (D. Goodall ). The ball moves from
left to right and the bounce is seen to make the ball
rotate.

2. Powerful kick by Ruud van Nistelrooy of Holland.
(Photograph by Matthew Impey, # Colorsport.)

3. Oliver Khan of Bayern Munich jumps to catch the ball.
(Photograph by Andrew Cowie, # Colorsport.)

4. Boundary layer separation in the wake of a circular
cylinder.

5. Referee Mike Pike showing firmness. (Photograph by
Matthew Impey, # Colorsport.)

6. ‘The Thinker’ byAuguste Rodin. (#Photick/Superstock.)

7. The first League table. Preston were undefeated in this
season and also won the F.A. Cup.

8. England’s World Cup winning team, 1966. Captain
Bobby Moore holds aloft the Jules Rimet Trophy.
(# Popperfoto/PPP.)

9. Professional football’s cash flows.
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10. Newton’s Laws of Motion, from the Principia

Law I. Every body perseveres in its state of rest, or
uniform motion in a straight line, except in so far as it is
compelled to change that state by forces impressed on it.

Law II. Change of motion is proportional to the motive
force impressed, and takes place along the straight line in
which that force acts.

Law III. Any action is always opposed by an equal
reaction, the mutual actions of two bodies are always
equal and act in opposite directions.
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Bibliography

Although ball games have probably been played for thousands
of years the basic scientific ideas which underlie the behaviour
of balls only arose in the seventeenth century. Galileo was the
first to discover the rules governing the flight of projectiles and
calculated their parabolic trajectory.

The greatest step was made by Isaac Newton with his
Mathematical Principles of Natural Philosophy (London,
1687) – usually called The Principia. In this magnificent book
he proclaimed the basic laws of mechanics – the famous three
Laws of Motion and the Law of Gravity. The Principia is
available in a recent translation by I. B. Cohen and Anne
Whitman (University of California Press, 1999).

It is a sign of Newton’s versatility that in this book he also
addresses the problem of the drag on a sphere moving through
amedium. Although his model was not valid, it enabled him to
discover the scaling of the drag force. He found the force to
vary as �AV2 as is now used in the equation F ¼ 1

2CD�AV
2

(given in Chapter 10, section 4.2).
When we come to the Magnus effect, it is remarkable that

the first recorded observation of the effect is due to Newton.
He had noticed that the flight of a tennis ball is affected by
spin. In the Philosophical Transactions of the Royal Society
of London (1672) he recalls that he ‘had often seen a Tennis
ball, struck with an oblique Racket, describe such a curve
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line’ and offers the explanation. ‘For a circular as well as a
progressive motion being communicated by that stroak, its
parts on that side where the motions conspire, must press
and beat the contiguous Air more violently than on the
other, and there exert a reluctance and reaction of the Air
proportionally greater.’ In 1742 Benjamin Robins published
his treatise New Principles of Gunnery and reported his obser-
vations of the transverse curvature of the trajectory of musket
balls. He stated that its ‘Cause is doubtless a whirling Motion
acquired by the Bullet about its Axis’ through uneven rubbing
against the barrel (pages 91–93). A later edition gives details of
his experiments. Subsequently Gustav Magnus observed the
effect on a rotating cylinder mounted in an air flow in an inves-
tigation of the deflection of spinning shells. His paper ‘On the
deviation of projectiles, and on a remarkable phenomenon of
rotating bodies’ was published in the Memoirs of the Berlin
Academy in 1852 and in an English translation in 1853.

The real understanding of drag and the Magnus–Robins
effect awaited the discovery by Ludwig Prandtl of the ‘bound-
ary layer’. He described the concept in the Proceedings of the
3rd International Mathematical Congress, Heidelberg (1904).
The classic text on boundary layers is Boundary Layer Theory
by Hermann Schlichting, first published in German in 1951
and then in English by McGraw-Hill. There are many books
on fluid mechanics: a clear modern text is Fundamentals of
Fluid Mechanics by Munson, Young and Okiishi (Wiley).

For those wishing to study the derivation of the prob-
ability formulas an account is given in the excellent book
Probability Theory and its Applications by Feller (Wiley).

Turning to books more directly relevant to the Science of
Football, first mention must go to The Physics of Ball Games
by C. B. Daish (Hodder and Stoughton) which, unfortunately,
is now out of print. This book concentrates somewhat on golf,
and only briefly deals with football. However, it is a good
introduction to the underlying physics. A book which would
appear from its title to be more closely related to the present
one is Science and Soccer (Spon), edited by Thomas Reilly.
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However, the content of this book is quite different and more
practical, dealing with subjects such as physiology, medicine
and coaching.
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