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Preface

The original Handbook of Evolutionary Computation (Bäck et al 1997) was
designed to fulfill the need for a broad-based reference book reflecting the
important role that evolutionary computation plays in a variety of disciplines—
ranging from the natural sciences and engineering to evolutionary biology and
computer sciences. The basic idea of evolutionary computation, which came
onto the scene in the 1950s, has been to make use of the powerful process of
natural evolution as a problem-solving paradigm, either by simulating it (‘by
hand’ or automatically) in a laboratory, or by simulating it on a computer. As
the history of evolutionary computation is the topic of one of the introductory
sections of the Handbook, we will not go into the details here but simply mention
that genetic algorithms, evolution strategies, and evolutionary programming are
the three independently developed mainstream representatives of evolutionary
computation techniques, and genetic programming and classifier systems are the
most prominent derivative methods.

In the 1960s, visionary researchers developed these mainstream methods of
evolutionary computation, namely J H Holland (1962) at Ann Arbor, Michigan,
H J Bremermann (1962) at Berkeley, California, and A S Fraser (1957) at
Canberra, Australia, for genetic algorithms, L J Fogel (1962) at San Diego,
California, for evolutionary programming, and I Rechenberg (1965) and H
P Schwefel (1965) at Berlin, Germany, for evolution strategies. The first
generation of books on the topic of evolutionary compuation, written by
several of the pioneers themselves, still gives an impressive demonstration of
the capabilities of evolutionary algorithms, especially if one takes account of
the limited hardware capacity available at that time (see Fogel et al (1966),
Rechenberg (1973), Holland (1975), and Schwefel (1977)).

Similar in some ways to other early efforts towards imitating nature’s
powerful problem-solving tools, such as artificial neural networks and fuzzy
systems, evolutionary algorithms also had to go through a long period of
ignorance and rejection before receiving recognition. The great success that
these methods have had, in extremely complex optimization problems from
various disciplines, has facilitated the undeniable breakthrough of evolutionary
computation as an accepted problem-solving methodology. This breakthrough
is reflected by an exponentially growing number of publications in the field,
and an increasing interest in corresponding conferences and journals. With
these activities, the field now has its own archivable high-quality publications in
which the actual research results are published. The publication of a considerable
amount of application-specific work is, however, widely scattered over different

xiii
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disciplines and their specific conferences and journals, thus reflecting the general
applicability and success of evolutionary computation methods.

The progress in the theory of evolutionary computation methods since
1990 impressively confirms the strengths of these algorithms as well as their
limitations. Research in this field has reached maturity, concerning theoretical
and application aspects, so it becomes important to provide a complete reference
for practitioners, theorists, and teachers in a variety of disciplines. The
original Handbook of Evolutionary Computation was designed to provide such
a reference work. It included complete, clear, and accessible information,
thoroughly describing state-of-the-art evolutionary computation research and
application in a comprehensive style.

These new volumes, based in the original Handbook, but updated, are
designed to provide the material in units suitable for coursework as well as
for individual researchers. The first volume, Evolutionary Computation 1:
Basic Algorithms and Operators, provides the basic information on evolutionary
algorithms. In addition to covering all paradigms of evolutionary computation in
detail and giving an overview of the rationale of evolutionary computation and
of its biological background, this volume also offers an in-depth presentation
of basic elements of evolutionary computation models according to the types
of representations used for typical problem classes (e.g. binary, real-valued,
permutations, finite-state machines, parse trees). Choosing this classification
based on representation, the search operators mutation and recombination
(and others) are straightforwardly grouped according to the semantics of the
data they manipulate. The second volume, Evolutionary Computation 2:
Advanced Algorithms and Operators, provides information on additional topics
of major importance for the design of an evolutionary algorithm, such as
the fitness evaluation, constraint-handling issues, and population structures
(including all aspects of the parallelization of evolutionary algorithms). This
volume also covers some advanced techniques (e.g. parameter control, meta-
evolutionary approaches, coevolutionary algorithms, etc) and discusses the
efficient implementation of evolutionary algorithms.

Organizational support provided by Institute of Physics Publishing makes it
possible to prepare this second version of the Handbook. In particular, we would
like to express our gratitude to our project editor, Robin Rees, who worked with
us on editorial and organizational issues.

Thomas Bäck, David B Fogel and Zbigniew Michalewicz
August 1999
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Glossary

Thomas Bäck and David B Fogel

Bold text within definitions indicates terms that are also listed elsewhere in this
glossary.

Adaptation: This denotes the general advantage in ecological or physiological
efficiency of an individual in contrast to other members of the population,
and it also denotes the process of attaining this state.

Adaptive behavior: The underlying mechanisms to allow living organisms,
and, potentially, robots, to adapt and survive in uncertain environments
(cf adaptation).

Adaptive surface: Possible biological trait combinations in a population of
individuals define points in a high-dimensional sequence space, where each
coordinate axis corresponds to one of these traits. An additional dimension
characterizes the fitness values for each possible trait combination, resulting
in a highly multimodal fitness landscape, the so-called adaptive surface or
adaptive topography.

Allele: An alternative form of a gene that occurs at a specified chromosomal
position (locus).

Artificial life: A terminology coined by C G Langton to denote the ‘. . . study
of simple computer generated hypothetical life forms, i.e. life-as-it-could-
be.’ Artificial life and evolutionary computation have a close relationship
because evolutionary algorithms are often used in artificial life research
to breed the survival strategies of individuals in a population of artificial
life forms.

Automatic programming: The task of finding a program which calculates a
certain input–output function. This task has to be performed in automatic
programming by another computer program (cf genetic programming).

Baldwin effect: Baldwin theorized that individual learning allows an organism
to exploit genetic variations that only partially determine a physiological
structure. Consequently, the ability to learn can guide evolutionary
processes by rewarding partial genetic successes. Over evolutionary
time, learning can guide evolution because individuals with useful genetic
variations are maintained by learning, such that useful genes are utilized
more widely in the subsequent generation. Over time, abilities that
previously required learning are replaced by genetically determinant

xxi
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systems. The guiding effect of learning on evolution is referred to as
the Baldwin effect. (See also Section 34.1.)

Behavior: The response of an organism to the present environmental stimulus.
The collection of behaviors of an organism defines the fitness of the
organism to its present environment.

Boltzmann selection: The Boltzmann selection method transfers the proba-
bilistic acceptance criterion of simulated annealing to evolutionary algo-
rithms. The method operates by creating an offspring individual from two
parents and accepting improvements (with respect to the parent’s fitness)
in any case and deteriorations according to an exponentially decreasing
function of an exogeneous ‘temperature’ parameter. (See also Chapter 26.)

Building block: Certain forms of recombination in evolutionary algorithms
attempt to bring together building blocks, shorter pieces of an overall
solution, in the hope that together these blocks will lead to increased
performance. (See also Section 26.3.)

Central dogma: The fact that, by means of translation and transcription
processes, the genetic information is passed from the genotype to the
phenotype (i.e. from DNA to RNA and to the proteins). The dogma
implies that behaviorally acquired characteristics of an individual are not
inherited to its offspring (cf Lamarckism).

Chromatids: The two identical parts of a duplicated chromosome.
Chromosome: Rod-shaped bodies in the nucleus of eukaryotic cells, which

contain the hereditary units or genes.
Classifier systems: Dynamic, rule-based systems capable of learning by

examples and induction. Classifier systems evolve a population of
production rules (in the so-called Michigan approach, where an individual
corresponds to a single rule) or a population of production rule bases
(in the so-called Pittsburgh approach, where an individual represents a
complete rule base) by means of an evolutionary algorithm. The rules
are often encoded by a ternary alphabet, which contains a ‘don’t care’
symbol facilitating a generalization capability of condition or action parts
of a rule, thus allowing for an inductive learning of concepts. In the
Michigan approach, the rule fitness (its strength) is incrementally updated
at each generation by the ‘bucket brigade’ credit assignment algorithm
based on the reward the system obtains from the environment, while in the
Pittsburgh approach the fitness of a complete rule base can be calculated
by testing the behavior of the individual within its environment.

Codon: A group of three nucleotide bases within the DNA that encodes a single
amino acid or start and stop information for the transcription process.

Coevolutionary system: In coevolutionary systems, different populations
interact with each other in a way such that the evaluation function of one
population may depend on the state of the evolution process in the other
population(s).
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Comma strategy: The notation (µ, λ) strategy describes a selection method
introduced in evolution strategies and indicates that a parent population
of µ individuals generates λ > µ offspring and the best out of these λ

offspring are deterministically selected as parents of the next generation.
(See also Section 25.4.)

Computational intelligence: The field of computational intelligence is
currently seen to include subsymbolic approaches to artificial intelligence,
such as neural networks, fuzzy systems, and evolutionary computation,
which are gleaned from the model of information processing in natural
systems. Following a commonly accepted characterization, a system is
computationally intelligent if it deals only with numerical data, does not use
knowledge in the classical expert system sense, and exhibits computational
adaptivity, fault tolerance, and speed and error rates approaching human
performance.

Convergence reliability: Informally, the convergence reliability of an
evolutionary algorithm means its capability to yield reasonably good
solutions in the case of highly multimodal topologies of the objective
function. Mathematically, this is closely related to the property of global
convergence with probability one, which states that, given infinite running
time, the algorithm finds a global optimum point with probability one.
From a theoretical point of view, this is an important property to justify
the feasibility of evolutionary algorithms as global optimization methods.

Convergence velocity: In the theory of evolutionary algorithms, the
convergence velocity is defined either as the expectation of the change
of the distance towards the optimum between two subsequent generations,
or as the expectation of the change of the objective function value between
two subsequent generations. Typically, the best individual of a population
is used to define the convergence velocity.

Crossover: A process of information exchange of genetic material that occurs
between adjacent chromatids during meiosis.

Cultural algorithm: Cultural algorithms are special variants of evolutionary
algorithms which support two models of inheritance, one at the
microevolutionary level in terms of traits, and the other at the
macroevolutionary level in terms of beliefs. The two models interact via
a communication channel that enables the behavior of individuals to alter
the belief structure and allows the belief structure to constrain the ways in
which individuals can behave. The belief structure represents ‘cultural’
knowledge about a certain problem and therefore helps in solving the
problem on the level of traits.

Cycle crossover: A crossover operator used in order-based genetic
algorithms to manipulate permutations in a permutation preserving way.
Cycle crossover performs recombination under the constraint that each
element must come from one parent or the other by transferring element



xxiv Glossary

cycles between the mates. The cycle crossover operator preserves absolute
positions of the elements of permutations. (See also Section 33.3.)

Darwinism: The theory of evolution, proposed by Darwin, that evolution
comes about through random variation (mutation) of heritable charac-
teristics, coupled with natural selection, which favors those species for
further survival and evolution that are best adapted to their environmental
conditions. (See also Chapter 4.)

Deception: Objective functions are called deceptive if the combination of good
building blocks by means of recombination leads to a reduction of fitness
rather than an increase.

Deficiency: A form of mutation that involves a terminal segment loss of
chromosome regions.

Defining length: The defining length of a schema is the maximum distance
between specified positions within the schema. The larger the defining
length of a schema, the higher becomes its disruption probability by
crossover.

Deletion: A form of mutation that involves an internal segment loss of a
chromosome region.

Deme: An independent subpopulation in the migration model of parallel
evolutionary algorithms.

Diffusion model: The diffusion model denotes a massively parallel
implementation of evolutionary algorithms, where each individual is
realized as a single process being connected to neighboring individuals,
such that a spatial individual structure is assumed. Recombination
and selection are restricted to the neighborhood of an individual, such
that information is locally preserved and spreads only slowly over the
population.

Diploid: In diploid organisms, each body cell carries two sets of chromosomes;
that is, each chromosome exists in two homologous forms, one of which
is phenotypically realized.

Discrete recombination: Discrete recombination works on two vectors of
object variables by performing an exchange of the corresponding object
variables with probability one half (other settings of the exchange
probability are in principle possible) (cf uniform crossover). (See also
Section 33.2.)

DNA: Deoxyribonucleic acid, a double-stranded macromolecule of helical
structure (comparable to a spiral staircase). Both single strands are linear,
unbranched nucleic acid molecules built up from alternating deoxyribose
(sugar) and phosphate molecules. Each deoxyribose part is coupled to
a nucleotide base, which is responsible for establishing the connection
to the other strand of the DNA. The four nucleotide bases adenine (A),
thymine (T), cytosine (C) and guanine (G) are the alphabet of the genetic
information. The sequences of these bases in the DNA molecule determines
the building plan of any organism.
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Duplication: A form of mutation that involves the doubling of a certain region
of a chromosome at the expense of a corresponding deficiency on the other
of two homologous chromosomes.

Elitism: Elitism is a feature of some evolutionary algorithms ensuring that the
maximum objective function value within a population can never reduce
from one generation to the next. This can be assured by simply copying
the best individual of a population to the next generation, if none of the
selected offspring constitutes an improvement of the best value.

Eukaryotic cell: A cell with a membrane-enclosed nucleus and organelles
found in animals, fungi, plants, and protists.

Evolutionary algorithm: See evolutionary computation.
Evolutionary computation: This encompasses methods of simulating evolu-

tion, most often on a computer. The field encompasses methods that com-
prise a population-based approach that relies on random variation and se-
lection. Instances of algorithms that rely on evolutionary principles are
called evolutionary algorithms. Certain historical subsets of evolutionary
algorithms include evolution strategies, evolutionary programming, and
genetic algorithms.

Evolutionary operation (EVOP): An industrial management technique pre-
sented by G E P Box in the late fifties, which provides a systematic way
to test alternative production processes that result from small modifications
of the standard parameter settings. From an abstract point of view, the
method resembles a (1 + λ) strategy with a typical setting of λ = 4 and
λ = 8 (the so-called 22 and 23 factorial design), and can be interpreted as
one of the earliest evolutionary algorithms.

Evolutionary programming: An evolutionary algorithm developed by
L J Fogel at San Diego, CA, in the 1960s and further refined by D B Fogel
and others in the 1990s. Evolutionary programming was originally
developed as a method to evolve finite-state machines for solving time
series prediction tasks and was later extended to parameter optimization
problems. Evolutionary programming typically relies on variation operators
that are tailored to the problem, and these often are based on a single parent;
however, the earliest versions of evolutionary programming considered the
possibility for recombining three or more finite-state machines. Selection
is a stochastic tournament selection that determines µ individuals to
survive out of the µ parents and the µ (or other number of) offspring
generated by mutation. Evolutionary programming also uses the self-
adaptation principle to evolve strategy parameters on-line during the
search (cf evolution strategy). (See also Chapter 10.)

Evolution strategy: An evolutionary algorithm developed by I Rechenberg
and H-P Schwefel at the Technical University of Berlin in the 1960s. The
evolution strategy typically employs real-valued parameters, though it has
also been used for discrete problems. Its basic features are the distinction
between a parent population (of size µ) and an offspring population (of
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size λ ≥ µ), the explicit emphasis on normally distributed mutations,
the utilization of different forms of recombination, and the incorporation
of the self-adaptation principle for strategy parameters; that is, those
parameters that determine the mutation probability density function are
evolved on-line, by the same principles which are used to evolve the object
variables. (See also Chapter 9.)

Exon: A region of codons within a gene that is expressed for the phenotype
of an organism.

Finite-state machine: A transducer that can be stimulated by a finite alphabet
of input symbols, responds in a finite alphabet of output symbols, and
possesses some finite number of different internal states. The behavior
of the finite-state machine is specified by the corresponding input–output
symbol pairs and next-state transitions for each input symbol, taken over
every state. In evolutionary programming, finite-state machines are
historically the first structures that were evolved to find optimal predictors
of the environmental behavior. (See also Chapter 18.)

Fitness: The propensity of an individual to survive and reproduce in a
particular environment. In evolutionary algorithms, the fitness value
of an individual is closely related (and sometimes identical) to the
objective function value of the solution represented by the individual,
but especially when using proportional selection a scaling function is
typically necessary to map objective function values to positive values
such that the best-performing individual receives maximum fitness.

Fuzzy system: Fuzzy systems try to model the the fact that real-world
circumstances are typically not precise but ‘fuzzy’. This is achieved by
generalizing the idea of a crisp membership function of sets by allowing
for an arbitrary degree of membership in the unit interval. A fuzzy set
is then described by such a generalized membership function. Based on
membership functions, linguistic variables are defined that capture real-
world concepts such as ‘low temperature’. Fuzzy rule-based systems then
allow for knowledge processing by means of fuzzification, fuzzy inference,
and defuzzification operators which often enable a more realistic modeling
of real-world situations than expert systems do.

Gamete: A haploid germ cell that fuses with another in fertilization to form
a zygote.

Gene: A unit of codons on the DNA that encodes the synthesis for a protein.
Generation gap: The generation gap characterizes the percentage of the

population to be replaced during each generation. The remainder of the
population is chosen (at random) to survive intact. The generation gap
allows for gradually shifting from the generation-based working scheme
towards the extreme of just generating one new individual per ‘generation’,
the so-called steady-state selection algorithm. (See also Chapter 28.)

Genetic algorithm: An evolutionary algorithm developed by J H Holland
and his students at Ann Arbor, MI, in the 1960s. Fundamentally equivalent
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procedures were also offered earlier by H J Bremermann at UC Berkeley
and A S Fraser at the University of Canberra, Australia in the 1960s and
1950s. Originally, the genetic algorithm or adaptive plan was designed
as a formal system for adaptation rather than an optimization system.
Its basic features are the strong emphasis on recombination (crossover),
use of a probabilistic selection operator (proportional selection), and the
interpretation of mutation as a background operator, playing a minor
role for the algorithm. While the original form of genetic algorithms
(the canonical genetic algorithm) represents solutions by binary strings,
a number of variants including real-coded genetic algorithms and order-
based genetic algorithms have also been developed to make the algorithm
applicable to other than binary search spaces. (See also Chapter 8.)

Genetic code: The translation process performed by the ribosomes essentially
maps triplets of nucleotide bases to single amino acids. This (redundant)
mapping between the 43 = 64 possible codons and the 20 amino acids is
the so-called genetic code.

Genetic drift: A random decrease or increase of biological trait frequencies
within the gene pool of a population.

Genetic programming: Derived from genetic algorithms, the genetic
programming paradigm characterizes a class of evolutionary algorithms
aiming at the automatic generation of computer programs. To achieve this,
each individual of a population represents a complete computer program in
a suitable programming language. Most commonly, symbolic expressions
representing parse trees in (a subset of) the LISP language are used to
represent these programs, but also other representations (including binary
representation) and other programming languages (including machine code)
are successfully employed. (See also Chapter 11.)

Genome: The total genetic information of an organism.
Genotype: The sum of inherited characters maintained within the entire

reproducing population. Often also the genetic constitution underlying a
single trait or set of traits.

Global optimization: Given a function f : M → R, the problem of
determining a point x∗ ∈ M such that f (x∗) is minimal (i.e. f (x∗) ≤
f (x) ∀x ∈ M) is called the global optimization problem.

Global recombination: In evolution strategies, recombination operators
are sometimes used which potentially might take all individuals of a
population into account for the creation of an offspring individual.
Such recombination operators are called global recombination (i.e. global
discrete recombination or global intermediate recombination).

Gradient method: Local optimization algorithms for continuous parameter
optimization problems that orient their choice of search directions according
to the first partial derivatives of the objective function (its gradient) are
called gradient strategies (cf hillclimbing strategy).
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Gray code: A binary code for integer values which ensures that adjacent
integers are encoded by binary strings with Hamming distance one.
Gray codes play an important role in the application of canonical genetic
algorithms to parameter optimization problems, because there are certain
situations in which the use of Gray codes may improve the performance of
an evolutionary algorithm.

Hamming distance: For two binary vectors, the Hamming distance is the
number of different positions.

Haploid: Haploid organisms carry one set of genetic information.
Heterozygous: Diploid organisms having different alleles for a given trait.
Hillclimbing strategy: Hillclimbing methods owe their name to the analogy

of their way of searching for a maximum with the intuitive way a sightless
climber might feel his way from a valley up to the peak of a mountain
by steadily moving upwards. These strategies follow a nondecreasing path
to an optimum by a sequence of neighborhood moves. In the case of
multimodal landscapes, hillclimbing locates the optimum closest to the
starting point of its search.

Homologues: Chromosomes of identical structure, but with possibly different
genetic information contents.

Homozygous: Diploid organisms having identical alleles for a given trait.
Hybrid method: Evolutionary algorithms are often combined with classical

optimization techniques such as gradient methods to facilitate an efficient
local search in the final stage of the evolutionary optimization. The
resulting combinations of algorithms are often summarized by the term
hybrid methods.

Implicit parallelism: The concept that each individual solution offers partial
information about sampling from other solutions that contain similar
subsections. Although it was once believed that maximizing implicit
parallelism would increase the efficiency of an evolutionary algorithm,
this notion has been proved false in several different mathematical
developments (See no-free-lunch theorem).

Individual: A single member of a population. In evolutionary algorithms,
an individual contains a chromosome or genome, that usually contains at
least a representation of a possible solution to the problem being tackled
(a single point in the search space). Other information such as certain
strategy parameters and the individual’s fitness value are usually also
stored in each individual.

Intelligence: The definition of the term intelligence for the purpose of clarifying
what the essential properties of artificial or computational intelligence
should be turns out to be rather complicated. Rather than taking the usual
anthropocentric view on this, we adopt a definition by D Fogel which
states that intelligence is the capability of a system to adapt its behavior to
meet its goals in a range of environments. This definition also implies that
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evolutionary algorithms provide one possible way to evolve intelligent
systems.

Interactive evolution: The interactive evolution approach involves the human
user of the evolutionary algorithm on-line into the variation–selection
loop. By means of this method, subjective judgment relying on human
intuition, esthetical values, or taste can be utilized for an evolutionary
algorithm if a fitness criterion can not be defined explicitly. Furthermore,
human problem knowledge can be utilized by interactive evolution to
support the search process by preventing unnecessary, obvious detours from
the global optimization goal. (See also Chapter 30.)

Intermediate recombination: Intermediate recombination performs an aver-
aging operation on the components of the two parent vectors. (See also
Section 33.2.)

Intron: A region of codons within a gene that do not bear genetic information
that is expressed for the phenotype of an organism.

Inversion: A form of mutation that changes a chromosome by rotating an
internal segment by 180◦ and refitting the segment into the chromosome.

Lamarckism: A theory of evolution which preceded Darwin’s. Lamarck
believed that acquired characteristics of an individual could be passed to its
offspring. Although Lamarckian inheritance does not take place in nature,
the idea has been usefully applied within some evolutionary algorithms.

Locus: A particular location on a chromosome.

Markov chain: A Markov process with a finite or countable finite number of
states.

Markov process: A stochastic process (a family of random variables) such
that the probability of the process being in a certain state at time k depends
on the state at time k− 1, not on any states the process has passed earlier.
Because the offspring population of an evolutionary algorithm typically
depends only on the actual population, Markov processes are an appropriate
mathematical tool for the analysis of evolutionary algorithms.

Meiosis: The process of cell division in diploid organisms through which germ
cells (gametes) are created.

Metaevolution: The problem of finding optimal settings of the exogeneous
parameters of an evolutionary algorithm can itself be interpreted as an
optimization problem. Consequently, the attempt has been made to use
an evolutionary algorithm on the higher level to evolve optimal strategy
parameter settings for evolutionary algorithms, thus hopefully finding a
best-performing parameter set that can be used for a variety of objective
functions. The corresponding technique is often called a metaevolutionary
algorithm. An alternative approach involves the self-adaptation of strategy
parameters by evolutionary learning.

Migration: The transfer of an individual from one subpopulation to another.
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Migration model: The migration model (often also referred to as the island
model) is one of the basic models of parallelism exploited by evolutionary
algorithm implementations. The population is no longer panmictic,
but distributed into several independent subpopulations (so-called demes),
which coexist (typically on different processors, with one subpopulation
per processor) and may mutually exchange information by interdeme
migration. Each of the subpopulations corresponds to a conventional
(i.e. sequential) evolutionary algorithm. Since selection takes place
only locally inside a population, every deme is able to concentrate on
different promising regions of the search space, such that the global
search capabilities of migration models often exceed those of panmictic
populations. The fundamental parameters introduced by the migration
principle are the exchange frequency of information, the number of
individuals to exchange, the selection strategy for the emigrants, and the
replacement strategy for the immigrants.

Monte Carlo algorithm: See uniform random search.
(µ, λ) strategy: See comma strategy.
(µ+ λ) strategy: See plus strategy.
Multiarmed bandit: Classical analysis of schema processing relied on an

analogy to sampling from a number of slot machines (one-armed bandits)
in order to minimize expected losses.

Multimembered evolution strategy: All variants of evolution strategies that
use a parent population size of µ > 1 and therefore facilitate the utilization
of recombination are summarized under the term multimembered evolution
strategy.

Multiobjective optimization: In multiobjective optimization, the simultaneous
optimization of several, possibly competing, objective functions is required.
The family of solutions to a multiobjective optimization problem is
composed of all those elements of the search space sharing the property that
the corresponding objective vectors cannot be all simultaneously improved.
These solutions are called Pareto optimal.

Multipoint crossover: A crossover operator which uses a predefined number
of uniformly distributed crossover points and exchanges alternating
segments between pairs of crossover points between the parent individuals
(cf one-point crossover).

Mutation: A change of the genetic material, either occurring in the germ path
or in the gametes (generative) or in body cells (somatic). Only generative
mutations affect the offspring. A typical classification of mutations
distinguishes gene mutations (a particular gene is changed), chromosome
mutations (the gene order is changed by translocation or inversion,
or the chromosome number is changed by deficiencies, deletions, or
duplications), and genome mutations (the number of chromosomes or
genomes is changed). In evolutionary algorithms, mutations are either
modeled on the phenotypic level (e.g. by using normally distributed
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variations with expectation zero for continuous traits) or on the genotypic
level (e.g. by using bit inversions with small probability as an equivalent
for nucleotide base changes). (See also Chapter 32.)

Mutation rate: The probability of the occurrence of a mutation during DNA
replication.

Natural selection: The result of competitive exclusion as organisms fill the
available finite resource space.

Neural network: Artificial neural networks try to implement the data
processing capabilities of brains on a computer. To achieve this (at least in
a very simplified form regarding the number of processing units and their
interconnectivity), simple units (corresponding to neurons) are arranged in
a number of layers and allowed to communicate via weighted connections
(corresponding to axons and dendrites). Working (at least principally) in
parallel, each unit of the network typically calculates a weighted sum of
its inputs, performs some internal mapping of the result, and eventually
propagates a nonzero value to its output connection. Though the artificial
models are strong simplifications of the natural model, impressive results
have been achieved in a variety of application fields.

Niche: Adaptation of a species occurs with respect to any major kind of
environment, the adaptive zone of this species. The set of possible
environments that permit survival of a species is called its (ecological)
niche.

Niching methods: In evolutionary algorithms, niching methods aim at the
formation and maintenance of stable subpopulations (niches) within a single
population. One typical way to achieve this proceeds by means of fitness
sharing techniques.

No-free-lunch theorem: This theorem proves that when applied across all
possible problems, all algorithms that do not resample points from the
search space perform exactly the same on average. This result implies that
it is necessary to tune the operators of an evolutionary algorithm to the
problem at hand in order to perform optimally, or even better than random
search. The no-free-lunch theorem has been extended to apply to certain
subsets of all possible problems. Related theorems have been developed
indicating that

Object variables: The parameters that are directly involved in the calculation
of the objective function value of an individual.

Off-line performance: A performance measure for genetic algorithms, giving
the average of the best fitness values found in a population over the course
of the search.

1/5 success rule: A theoretically derived rule for the deterministic adjustment
of the standard deviation of the mutation operator in a (1 + 1) evolution
strategy. The 1/5 success rule reflects the theoretical result that, in order to
maximize the convergence velocity, on average one out of five mutations
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should cause an improvement with respect to the objective function value.
(See also Chapter 9.)

One-point crossover: A crossover operator using exactly one crossover point
on the genome.

On-line performance: A performance measure giving the average fitness over
all tested search points over the course of the search.

Ontogenesis: The development of an organism from the fertilized zygote until
its death.

Order: The order of a schema is given by the number of specified positions
within the schema. The larger the order of a schema, the higher becomes
its probability of disruption by mutation.

Order-based problems: A class of optimization problems that can be
characterized by the search for an optimal permutation of specific items.
Representative examples of this class are the traveling salesman problem
or scheduling problems. In principle, any of the existing evolutionary
algorithms can be reformulated for order-based problems, but the first
permutation applications were handled by so-called order-based genetic
algorithms, which typically use mutation and recombination operators
that ensure that the result of the application of an operator to a permutation
is again a permutation.

Order crossover: A crossover operator used in order-based genetic
algorithms to manipulate permutations in a permutation preserving way.
The order crossover (OX) starts in a way similar to partially matched
crossover by picking two crossing sites uniformly at random along the
permutations and mapping each string to constituents of the matching
section of its mate. Then, however, order crossover uses a sliding motion
to fill the holes left by transferring the mapped positions. This way,
order crossover preserves the relative positions of elements within the
permutation. (See also Section 33.3.)

Order statistics: Given λ independent random variables with a common
probability density function, their arrangement in nondecreasing order
is called the order statistics of these random variables. The theory of
order statistics provides many useful results regarding the moments (and
other properties) of the members of the order statistics. In the theory
of evolutionary algorithms, the order statistics are widely utilized to
describe deterministic selection schemes such as the comma strategy and
tournament selection.

Panmictic population: A mixed population, in which any individual may
be mated with any other individual with a probability that depends only
on fitness. Most conventional evolutionary algorithms have panmictic
populations.

Parse tree: The syntactic structure of any program in computer programming
languages can be represented by a so-called parse tree, where the internal
nodes of the tree correspond to operators and leaves of the tree correspond
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to constants. Parse trees (or, equivalently, S-expressions) are the
fundamental data structure in genetic programming, where recombination
is usually implemented as a subtree exchange between two different parse
trees. (See also Chapter 19.)

Partially matched crossover: A crossover operator used to manipulate
permutations in a permutation preserving way. The partially matched
crossover (PMX) picks two crossing sites uniformly at random along the
permutations, thus defining a matching section used to effect a cross through
position-by-position exchange operations. (See also Section 33.3.)

Penalty function: For constraint optimization problems, the penalty function
method provides one possible way to try to achieve feasible solutions: the
unconstrained objective function is extended by a penalty function that
penalizes infeasible solutions and vanishes for feasible solutions. The
penalty function is also typically graded in the sense that the closer a
solution is to feasibility, the smaller is the value of the penalty term for
that solution. By means of this property, an evolutionary algorithm is
often able to approach the feasible region although initially all members of
the population might be infeasible.

Phenotype: The behavioral expression of the genotype in a specific
environment.

Phylogeny: The evolutionary relationships among any group of organisms.
Pleiotropy: The influence of a single gene on several phenotypic features of

an organism.
Plus strategy: The notation (µ + λ) strategy describes a selection method

introduced in evolution strategies and indicates that a parent population
of µ individuals generates λ ≥ µ offspring and all µ + λ individuals
compete directly, such that the µ best out of parents and offspring are
deterministically selected as parents of the next generation.

Polygeny: The combined influence of several genes on a single phenotypical
characteristic.

Population: A group of individuals that may interact with each other, for
example, by mating and offspring production. The typical population
sizes in evolutionary algorithms range from one (for (1 + 1) evolution
strategies) to several thousands (for genetic programming).

Prokaryotic cell: A cell lacking a membrane-enclosed nucleus and organelles.
Proportional selection: A selection mechanism that assigns selection

probabilities in proportion to the relative fitness of an individual. (See
also Chapter 23.)

Protein: A multiply folded biological macromolecule consisting of a long chain
of amino acids. The metabolic effects of proteins are basically caused by
their three-dimensional folded structure (the tertiary structure) as well as
their symmetrical structure components (secondary structure), which result
from the amino acid order in the chain (primary structure).
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Punctuated crossover: A crossover operator to explore the potential for self-
adaptation of the number of crossover points and their positions. To
achieve this, the vector of object variables is extended by a crossover
mask, where a one bit indicates the position of a crossover point in
the object variable part of the individual. The crossover mask itself is
subject to recombination and mutation to allow for a self-adaptation of the
crossover operator.

Rank-based selection: In rank-based selection methods, the selection
probability of an individual does not depend on its absolute fitness as in
case of proportional selection, but only on its relative fitness in comparison
with the other population members: its rank when all individuals are
ordered in increasing (or decreasing) order of fitness values. (See also
Chapter 25.)

Recombination: See crossover.

RNA: Ribonucleic acid. The transcription process in the cell nucleus
generates a copy of the nucleotide sequence on the coding strand of the
DNA. The resulting copy is an RNA molecule, a single-stranded molecule
which carries information by means of the necleotide bases adenine,
cytosine, guanine, and uracil (U) (replacing the thymine in the DNA).
The RNA molecule acts as a messenger that transfers information from the
cell nucleus to the ribosomes, where the protein synthesis takes place.

Scaling function: A scaling function is often used when applying proportional
selection, particularly when needing to treat individuals with non-positive
evaluations. Scaling functions typically employ a linear, logarithmic, or
exponential mapping. (See also Chapter 23.)

Schema: A schema describes a subset of all binary vectors of fixed length
that have similarities at certain positions. A schema is typically specified
by a vector over the alphabet {0, 1, #}, where the # denotes a ‘wildcard’
matching both zero and one.

Schema theorem: A theorem offered to describe the expected number of
instances of a schema that are represented in the next generation of an
evolutionary algorithm when proportional selection is used. Although
once considered to be a ‘fundamental’ theorem, mathematical results show
that the theorem does not hold in general when iterated over more than one
generation and that it may not hold when individual solutions have noisy
fitness evaluations. Furthermore, the theorem cannot be used to determine
which schemata should be recombined in future generations and has little
or no predictive power.

Segmented crossover: A crossover operator which works similarly to
multipoint crossover, except that the number of crossover points is not
fixed but may vary around an expectation value. This is achieved by a
segment switch rate that specifies the probability that a segment will end
at any point in the string.
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Selection: The operator of evolutionary algorithms, modeled after the
principle of natural selection, which is used to direct the search process
towards better regions of the search space by giving preference to
individuals of higher fitness for mating and reproduction. The most widely
used selection methods include the comma and plus strategies, ranking
selection, proportional selection, and tournament selection. (See also
Chapters 22–30.)

Self-adaptation: The principle of self-adaptation facilitates evolutionary
algorithms learning their own strategy parameters on-line during the
search, without any deterministic exogeneous control, by means of
evolutionary processes in the same way as the object variables are
modified. More precisely, the strategy parameters (such as mutation rates,
variances, or covariances of normally distributed variations) are part of
the individual and undergo mutation (recombination) and selection as the
object variables do. The biological analogy consists in the fact that some
portions of the DNA code for mutator genes or repair enzymes; that is,
some partial control over the DNA’s mutation rate is encoded in the DNA.

Sharing: Sharing (short for fitness sharing) is a niching method that derates the
fitnesses of population elements according to the number of individuals in
a niche, so that the population ends up distributed across multiple niches.

Simulated annealing: An optimization strategy gleaned from the model of
thermodynamic evolution, modeling an annealing process in order to reach
a state of minimal energy (where energy is the analogue of fitness in
evolutionary algorithms). The strategy works with one trial solution and
generates a new solution by means of a variation (or mutation) operator.
The new solution is always accepted if it represents a decrease of energy,
and it is also accepted with a certain parameter-controlled probability if
it represents an increase of energy. The control parameter (or strategy
parameter) is commonly called temperature and makes the thermodynamic
origin of the strategy obvious.

Speciation: The process whereby a new species comes about. The most
common cause of speciation is that of geographical isolation. If a
subpopulation of a single species is separated geographically from the
main population for a sufficiently long time, its genes will diverge (either
due to differences in selection pressures in different locations, or simply
due to genetic drift). Eventually, genetic differences will be so great
that members of the subpopulation must be considered as belonging to a
different (and new) species.

Species: A population of similarly constructed organisms, capable of
producing fertile offspring. Members of one species occupy the same
ecological niche.

Steady-state selection: A selection scheme which does not use a generation-
wise replacement of the population, but rather replaces one individual
per iteration of the main recombine–mutate–select loop of the algorithm.
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Usually, the worst population member is replaced by the result of
recombination and mutation, if the resulting individual represents a fitness
improvement compared to the worst population member. The mechanism
corresponds to a (µ+ 1) selection method in evolution strategies (cf plus
strategy).

Strategy parameter: The control parameters of an evolutionary algorithm
are often referred to as strategy parameters. The particular setting of
strategy parameters is often critical to gain good performance of an
evolutionary algorithm, and the usual technique of empirically searching for
an appropriate set of parameters is not generally satisfying. Alternatively,
some researchers try techniques of metaevolution to optimize the strategy
parameters, while in evolution strategies and evolutionary programming
the technique of self-adaptation is successfully used to evolve strategy
parameters in the same sense as object variables are evolved.

Takeover time: A characteristic value to measure the selective pressure of
selection methods utilized in evolutionary algorithms. It gives the
expected number of generations until, under repeated application of
selection as the only operator acting on a population, the population is
completely filled with copies of the initially best individual. The smaller
the takeover time of a selection mechanism, the higher is its emphasis on
reproduction of the best individual, i.e. its selective pressure.

Tournament selection: Tournament selection methods share the principle of
holding tournaments between a number of individuals and selecting the
best member of a tournament group for survival to the next generation.
The tournament members are typically chosen uniformly at random, and
the tournament sizes (number of individuals involved per tournament) are
typically small, ranging from two to ten individuals. The tournament
process is repeated µ times in order to select a population of µ members.
(See also Chapter 24.)

Transcription: The process of synthesis of a messenger RNA (mRNA)
reflecting the structure of a part of the DNA. The synthesis is performed
in the cell nucleus.

Translation: The process of synthesis of a protein as a sequence of amino
acids according to the information contained in the messenger RNA and
the genetic code between triplets of nucleotide bases and amino acids. The
synthesis is performed by the ribosomes under utilization of transfer RNA
molecules.

Two-membered evolution strategy: The two-membered or (1+ 1) evolution
strategy is an evolutionary algorithm working with just one ancestor
individual. A descendant is created by means of mutation, and selection
selects the better of ancestor and descendant to survive to the next
generation (cf plus strategy).

Uniform crossover: A crossover operator which was originally defined to
work on binary strings. The uniform crossover operator exchanges each
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bit with a certain probability between the two parent individuals. The
exchange probability typically has a value of one half, but other settings
are possible (cf discrete recombination). (See also Section 33.3.)

Uniform random search: A random search algorithm which samples the
search space by drawing points from a uniform distribution over the search
space. In contrast to evolutionary algorithms, uniform random search does
not update its sampling distribution according to the information gained
from past samples, i.e. it is not a Markov process.

Zygote: A fertilized egg that is always diploid.
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Introduction to evolutionary computation

David B Fogel

1.1 Introductory remarks

As a recognized field, evolutionary computation is quite young. The term
itself was invented as recently as 1991, and it represents an effort to bring
together researchers who have been following different approaches to simulating
various aspects of evolution. These techniques of genetic algorithms (Chapter 7),
evolution strategies (Chapter 8), and evolutionary programming (Chapter 9) have
one fundamental commonality: they each involve the reproduction, random
variation, competition, and selection of contending individuals in a population.
These form the essential essence of evolution, and once these four processes are
in place, whether in nature or in a computer, evolution is the inevitable outcome
(Atmar 1994). The impetus to simulate evolution on a computer comes from at
least four directions.

1.2 Optimization

Evolution is an optimization process (Mayr 1988, p 104). Darwin (1859, ch 6)
was struck with the ‘organs of extreme perfection’ that have been evolved, one
such example being the image-forming eye (Atmar 1976). Optimization does not
imply perfection, yet evolution can discover highly precise functional solutions
to particular problems posed by an organism’s environment, and even though
the mechanisms that are evolved are often overly elaborate from an engineering
perspective, function is the sole quality that is exposed to natural selection, and
functionality is what is optimized by iterative selection and mutation.

It is quite natural, therefore, to seek to describe evolution in terms of an
algorithm that can be used to solve difficult engineering optimization problems.
The classic techniques of gradient descent, deterministic hill climbing, and
purely random search (with no heredity) have been generally unsatisfactory when
applied to nonlinear optimization problems, especially those with stochastic,
temporal, or chaotic components. But these are the problems that nature has
seemingly solved so very well. Evolution provides inspiration for computing
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the solutions to problems that have previously appeared intractable. This was a
key foundation for the efforts in evolution strategies (Rechenberg 1965, 1994,
Schwefel 1965, 1995).

1.3 Robust adaptation

The real world is never static, and the problems of temporal optimization are
some of the most challenging. They require changing behavioral strategies
in light of the most recent feedback concerning the success or failure of the
current strategy. Holland (1975), under the framework of genetic algorithms
(formerly called reproductive plans), described a procedure that can evolve
strategies, either in the form of coded strings or as explicit behavioral rule bases
called classifier systems (Chapter 12), by exploiting the potential to recombine
successful pieces of competing strategies, bootstrapping the knowledge gained
by independent individuals. The result is a robust procedure that has the potential
to adjust performance based on feedback from the environment.

1.4 Machine intelligence

Intelligence may be defined as the capability of a system to adapt its behavior to
meet desired goals in a range of environments (Fogel 1995, p xiii). Intelligent
behavior then requires prediction, for adaptation to future circumstances requires
predicting those circumstances and taking appropriate action. Evolution has
created creatures of increasing intelligence over time. Rather than seek to
generate machine intelligence by replicating humans, either in the rules they
may follow or in their neural connections, an alternative approach to generating
machine intelligence is to simulate evolution on a class of predictive algorithms.
This was the foundation for the evolutionary programming research of Fogel
(1962, Fogel et al 1966).

1.5 Biology

Rather than attempt to use evolution as a tool to solve a particular engineering
problem, there is a desire to capture the essence of evolution in a computer
simulation and use the simulation to gain new insight into the physics of natural
evolutionary processes (Ray 1991) (see also Chapter 4). Success raises the
possibility of studying alternative biological systems that are merely plausible
images of what life might be like in some way. It also raises the question of what
properties such imagined systems might have in common with life as evolved on
Earth (Langton 1987). Although every model is incomplete, and assessing what
life might be like in other instantiations lies in the realm of pure speculation,
computer simulations under the rubric of artificial life have generated some
patterns that appear to correspond with naturally occurring phenomena.
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1.6 Discussion

The ultimate answer to the question ‘why simulate evolution?’ lies in the lack
of good alternatives. We cannot easily germinate another planet, wait several
millions of years, and assess how life might develop elsewhere. We cannot
easily use classic optimization methods to find global minima in functions when
they are surrounded by local minima. We find that expert systems and other
attempts to mimic human intelligence are often brittle: they are not robust to
changes in the domain of application and are incapable of correctly predicting
future circumstances so as to take appropriate action. In contrast, by successfully
exploiting the use of randomness, or in other words the useful use of uncertainty ,
‘all possible pathways are open’ for evolutionary computation (Hofstadter 1995,
p 115). Our challenge is, at least in some important respects, to not allow our
own biases to constrain the potential for evolutionary computation to discover
new solutions to new problems in fascinating and unpredictable ways. However,
as always, the ultimate advancement of the field will come from the careful
abstraction and interpretation of the natural processes that inspire it.
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2
Possible applications of evolutionary
computation

David Beasley

2.1 Introduction

Applications of evolutionary computation (EC) fall into a wide continuum of
areas. For convenience, in this chapter they have been split into five broad
categories:

• planning
• design
• simulation and identification
• control
• classification.

These categories are by no means meant to be absolute or definitive. They
all overlap to some extent, and many applications could rightly appear in more
than one of the categories.

A number of bibliographies where more extensive information on EC
applications can be found are listed after the references at the end of this chapter.

2.2 Applications in planning

2.2.1 Routing

Perhaps one of the best known combinatorial optimization problems is the
traveling salesman problem or TSP (Goldberg and Lingle 1985, Grefenstette
1987, Fogel 1988, Oliver et al 1987, Mühlenbein 1989, Whitley et al 1989,
Fogel 1993a, Homaifar et al 1993). A salesman must visit a number of cities,
and then return home. In which order should the cities be visited to minimize
the distance traveled? Optimizing the tradeoff between speed and accuracy of
solution has been one aim (Verhoeven et al 1992).

A generalization of the TSP occurs when there is more than one salesman
(Fogel 1990). The vehicle routing problem is similar. There is a fleet of vehicles,

4
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all based at the same depot. A set of customers must each receive one delivery.
Which route should each vehicle take for minimum cost? There are constraints,
for example, on vehicle capacity and delivery times (Blanton and Wainwright
1993, Thangia et al 1993).

Closely related to this is the transportation problem, in which a single
commodity must be distributed to a number of customers from a number of
depots. Each customer may receive deliveries from one or more depots. What
is the minimum-cost solution? (Michalewicz 1992, 1993).

Planning the path which a robot should take is another route planning
problem. The path must be feasible and safe (i.e. it must be achievable within the
operational constraints of the robot) and there must be no collisions. Examples
include determining the joint motions required to move the gripper of a robot
arm between locations (Parker et al 1989, Davidor 1991, McDonnell et al 1992),
and autonomous vehicle routing (Jakob et al 1992, Page et al 1992). In unknown
areas or nonstatic environments, on-line planning/navigating is required, in
which the robot revises its plans as it travels.

2.2.2 Scheduling

Scheduling involves devising a plan to carry out a number of activities over a
period of time, where the activities require resources which are limited, there
are various constraints and there are one or more objectives to be optimized.

Job shop scheduling is a widely studied NP-complete problem (Davis 1985,
Biegel and Davern 1990, Syswerda 1991, Yamada and Nakano 1992). The
scenario is a manufacturing plant, with machines of different types. There are
a number of jobs to be completed, each comprising a set of tasks. Each task
requires a particular type of machine for a particular length of time, and the tasks
for each job must be completed in a given order. What schedule allows all tasks
to be completed with minimum cost? Husbands (1993) has used the additional
biological metaphor of an ecosystem. His method optimizes the sequence of
tasks in each job at the same time as it builds the schedule. In real job shops
the requirements may change while the jobs are being carried out, requiring that
the schedule be replanned (Fang et al 1993). In the limit, the manufacturing
process runs continuously, so all scheduling must be carried out on-line, as in
a chemical flowshop (Cartwright and Tuson 1994).

Another scheduling problem is to devise a timetable for a set of examinations
(Corne et al 1994), university lectures (Ling 1992), a staff rota (Easton and
Mansour 1993) or suchlike.

In computing, scheduling problems include efficiently allocating tasks to
processors in a multiprocessor system (Van Driessche and Piessens 1992,
Kidwell 1993, Fogel and Fogel 1996), and devising memory cache replacement
policies (Altman et al 1993).
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2.2.3 Packing

Evolutionary algorithms (EAs) have been applied to many packing problems, the
simplest of which is the one-dimensional zero–one knapsack problem. Given a
knapsack of a certain capacity, and a set of items, each with a particular size and
value, find the set of items with maximum value which can be accommodated
in the knapsack. Various real-world problems are of this type: for example, the
allocation of communication channels to customers who are charged at different
rates.

There are various examples of two-dimensional packing problems. When
manufacturing items are cut from sheet materials (e.g. metal or cloth), it is
desirable to find the most compact arrangement of pieces, so as to minimize
the amount of scrap (Smith 1985, Fujita et al 1993). A similar problem arises
in the design of layouts for integrated circuits—how should the subcircuits be
arranged to minimize the total chip area required (Fourman 1985, Cohoon and
Paris 1987, Chan et al 1991)?

In three dimensions, there are obvious applications in which the best way of
packing objects into a restricted space is required. Juliff (1993) has considered
the problem of packing goods into a truck for delivery.

2.3 Applications in design

The design of filters has received considerable attention. EAs have been used
to design electronic or digital systems which implement a desired frequency
response. Both finite impulse response (FIR) and infinite impulse response
(IIR) filter structures have been employed (Etter et al 1982, Suckley 1991, Fogel
1991, Fonseca et al 1993, Ifeachor and Harris 1993, Namibar and Mars 1993,
Roberts and Wade 1993, Schaffer and Eshelman 1993, White and Flockton 1993,
Wicks and Lawson 1993, Wilson and Macleod 1993). EAs have also been used
to optimize the design of signal processing systems (San Martin and Knight
1993) and in integrated circuit design (Louis and Rawlins 1991, Rahmani and
Ono 1993). The unequal-area facility layout problem (Smith and Tate 1993)
is similar to integrated circuit design. It involves finding a two-dimensional
arrangement of ‘departments’ such that the distance which information has to
travel between departments is minimized.

EC techniques have been widely applied to artificial neural networks, both in
the design of network topologies and in the search for optimum sets of weights
(Miller et al 1989, Fogel et al 1990, Harp and Samad 1991, Baba 1992, Hancock
1992, Feldman 1993, Gruau 1993, Polani and Uthmann 1993, Romaniuk 1993,
Spittle and Horrocks 1993, Zhang and Mühlenbein 1993, Porto et al 1995). They
have also been applied to Kohonen feature map design (Polani and Uthmann
1992). Other types of network design problems have also been approached, for
example, in telecommunications (Cox et al 1991, Davis and Cox 1993).
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There have been many engineering applications of EC: structure design,
both two-dimensional, such as a plane truss (Lohmann 1992, Watabe and Okino
1993), and three-dimensional, such as aircraft design (Bramlette and Bouchard
1991), actuator placement on space structures (Furuya and Haftka 1993), linear
accelerator design, gearbox design, and chemical reactor design (Powell and
Skolnick 1993). In relation to high-energy physics, the design of Monte Carlo
generators has been tackled.

In order to perform parallel computations requiring global coordination,
EC has been used to design cellular automata with appropriate communication
mechanisms.

There have also been applications in testing and fault diagnosis. For
example, an EA can be used to search for challenging fault scenarios for an
autonomous vehicle controller.

2.4 Applications in simulation and identification

Simulation involves taking a design or model for a system, and determining how
the system will behave. In some cases this is done because we are unsure about
the behavior (e.g. when designing a new aircraft). In other cases, the behavior
is known, but we wish to test the accuracy of the model.

EC has been applied to difficult problems in chemistry and biology. Roosen
and Meyer (1992) used an evolution strategy to determine the equilibrium of
chemically reactive systems, by determining the minimum free enthalpy of the
compounds involved. The determination of the three-dimensional structure of
a protein, given its amino acid sequence, has been tackled (Lucasius et al
1991). Lucasius and Kateman (1992) approached this as a sequenced subset
selection problem, using two-dimensional nuclear magnetic resonance spectrum
data as a starting point. Others have searched for energetically favorable protein
conformations (Schulze-Kremer 1992, Unger and Moult 1993), and used EC to
assist with drug design (Gehlhaar et al 1995). EC has been used to simulate
how the nervous system learns in order to test an existing theory. Similarly, EC
has been used in order to help develop models of biological evolution.

In the field of economics, EC has been used to model economic interaction
of competing firms in a market.

Identification is the inverse of simulation. It involves determining the design
of a system given its behavior.

Many systems can be represented by a model which produces a single-valued
output in response to one or more input signals. Given a number of observations
of input and output values, system identification is the task of deducing the
details of the model. Flockton and White (1993) concern themselves with
determining the poles and zeros of the system.

One reason for wanting to identify systems is so that we can predict the
output in response to a given set of inputs. EC may also employed to fit
equations to noisy, chaotic medical data, in order to predict future values.
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Janikow and Cai (1992) similarly used EC to estimate statistical functions for
survival analysis in clinical trials. In a similar area, Manela et al (1993) used
EC to fit spline functions to noisy pharmaceutical fermentation process data.

EC may also be used to identify the sources of airborne pollution, given data
from a number of monitoring points in an urban area—the source apportionment
problem. In electromagnetics, Tanaka et al (1993) have applied EC to
determining the two-dimensional current distribution in a conductor, given its
external magnetic field. Away from conventional system identification, an EC
approach has been used to help with identifying criminal suspects. This system
helps witnesses to create a likeness of the suspect, without the need to give an
explicit description.

2.5 Applications in control

There are two distinct approaches to the use of EC in control: off-line and
on-line. The off-line approach uses an EA to design a controller, which is then
used to control the system. The on-line approach uses an EA as an active
part of the control process. Therefore, with the off-line approach there is
nothing evolutionary about the control process itself, only about the design
of the controller.

Some researchers (Fogel et al 1966, DeJong 1980) have sought to use the
adaptive qualities of EAs in order to build on-line controllers for dynamic
systems. The advantage of an evolutionary controller is that it can adapt to
cope with systems whose characteristics change over time, whether the change is
gradual or sudden. Most researchers, however, have taken the off-line approach
to the control of relatively unchanging systems.

Fonseca and Fleming (1993) used an EA to design a controller for a gas
turbine engine, to optimize its step response, and a control system has been
used to optimize combustion in multiple-burner furnaces and boiler plants.
EC has also been applied to the control of guidance and navigation systems
(Krishnakumar and Goldberg 1990, 1992).

Hunt (1992b) has tackled the problem of synthesizing LQG (linear–
quadratic–Gaussian) and H∞ (H-infinity) optimal controllers. He has also
considered the frequency domain optimization of controllers with fixed structures
(Hunt 1992a).

Two control problems which have been well studied are balancing a pole
on a movable cart (Fogel 1995), and backing up a trailer truck to a loading
bay from an arbitrary starting point (Abu Zitar and Hassoun 1993). In robotics,
EAs have been developed which can evolve control systems for visually guided
behaviors. They can also learn how to control mobile robots (Kim and Shim
1995), for example, controlling the legs of a six-legged ‘insect’ to make it crawl
or walk (Spencer 1993). Almássy and Verschure (1992) modeled the interaction
between natural selection and the adaptation of individuals during their lifetimes
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to develop an agent with a distributed adaptive control framework which learns
to avoid obstacles and locate food sources.

2.6 Applications in classification

As described in Chapter 12, a significant amount of EC research has concerned
the theory and practice of classifier systems (CFS) (Booker 1985, Holland
1985, 1987, Holland et al 1987, Robertson 1987, Wilson 1987, Fogarty 1994).
Classifier systems are at the heart of many other types of system. For example,
many control systems rely on being able to classify the characteristics of their
environment before an appropriate control decision can be made. This is true
in many robotics applications of EC, for example, learning to control robot arm
motion (Patel and Dorigo 1994) and learning to solve mazes (Pipe and Carse
1994).

An important aspect of a classifier system, especially in a control application,
is how the state space is partitioned. Many applications take for granted
a particular partitioning of the state space, while in others, the appropriate
partitioning of the state space is itself part of the problem (Melhuish and Fogarty
1994).

Game playing is another application for which classification plays a key
role. Although EC is often applied to rather simple games (e.g. the prisoner’s
dilemma (Axelrod 1987, Fogel 1993b)), this is sometimes motivated by more
serious applications, such as military ones (e.g. the two-tanks game (Fairley and
Yates 1994) and air combat maneuvering.

EC has been hybridized with feature partitioning and applied to a range of
tasks (Güvenir and Şirin 1993), including classification of iris flowers, prediction
of survival for heart attack victims from echocardiogram data, diagnosis of heart
disease, and classification of glass samples. In linguistics, EC has been applied
to the classification of Swedish words.

In economics, Oliver (1993) has found rules to reflect the way in which
consumers choose one brand rather than another, when there are multiple criteria
on which to judge a product. A fuzzy hybrid system has been used for financial
decision making, with applications to credit evaluation, risk assessment, and
insurance underwriting.

In biology, EC has been applied to the difficult task of protein secondary-
structure determination, for example, classifying the locations of particular
protein segments (Handley 1993). It has also been applied to the classification
of soil samples (Punch et al 1993).

In image processing, there have been further military applications,
classifying features in images as targets (Bala and Wechsler 1993, Tackett 1993),
and also non-military applications, such as optical character recognition.

Of increasing importance is the efficient storage and retrieval of information,
including the generation of equifrequency distributions of material, to improve
that efficiency. EC has also been employed to assist with the representation and
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storage of chemical structures, and the retrieval from databases of molecules
containing certain substructures (Jones et al 1993). The retrieval of documents
which match certain characteristics is becoming increasingly important as more
and more information is held on-line. Tools to retrieve documents which contain
specified words have been available for many years, but they have the limitation
that constructing an appropriate search query can be difficult. Researchers are
now using EAs to help with query construction (Yang and Korfhage 1993).

2.7 Summary

EC has been applied in a vast number of application areas. In some cases it has
advantages over existing computerized techniques. More interestingly, perhaps,
it is being applied to an increasing number of areas in which computers have
not been used before. We can expect to see the number of applications grow
considerably in the future. Comprehensive bibliographies in many different
application areas are listed after the References.
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3

Advantages (and disadvantages) of
evolutionary computation over other
approaches

Hans-Paul Schwefel

3.1 No-free-lunch theorem

Since, according to the no-free-lunch (NFL) theorem (Wolpert and
Macready 1996), there cannot exist any algorithm for solving all (e.g. opti-
mization) problems that is generally (on average) superior to any competitor,
the question of whether evolutionary algorithms (EAs) are inferior/superior to
any alternative approach is senseless. What could be claimed solely is that
EAs behave better than other methods with respect to solving a specific class
of problems—with the consequence that they behave worse for other problem
classes.

The NFL theorem can be corroborated in the case of EAs versus many
classical optimization methods insofar as the latter are more efficient in solving
linear, quadratic, strongly convex, unimodal, separable, and many other special
problems. On the other hand, EAs do not give up so early when discontinuous,
nondifferentiable, multimodal, noisy, and otherwise unconventional response
surfaces are involved. Their effectiveness (or robustness) thus extends to a
broader field of applications, of course with a corresponding loss in efficiency
when applied to the classes of simple problems classical procedures have been
specifically devised for.

Looking into the historical record of procedures devised to solve optimization
problems, especially around the 1960s (see the book by Schwefel (1995)), when
a couple of direct optimum-seeking algorithms were published, for example, in
the Computer Journal, a certain pattern of development emerges. Author A
publishes a procedure and demonstrates its suitability by means of tests using
some test functions. Next, author B comes along with a counterexample showing
weak performance of A’s algorithm in the case of a certain test problem. Of
course, he also presents a new or modified technique that outperforms the older
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one(s) with respect to the additional test problem. This game could in principle
be played ad infinitum.

A better means of clarifying the scene ought to result from theory. This
should clearly define the domain of applicability of each algorithm by presenting
convergence proofs and efficiency results. Unfortunately, however, it is possible
to prove abilities of algorithms only by simplifying them as well as the situations
to which they are confronted. The huge remainder of questions must be
answered by means of (always limited) test series, and even that cannot tell
much about an actual real-world problem-solving situation with yet unanalyzed
features, that is, the normal case in applications.

Again unfortunately, there does not exist an agreed-upon test problem
catalogue to evaluate old as well as new algorithms in a concise way. It is
doubtful whether such a test bed will ever be agreed upon, but efforts in that
direction would be worthwhile.

3.2 Conclusions

Finally, what are the truths and consequences? First, there will always remain a
dichotomy between efficiency and general applicability, between reliability and
effort of problem-solving, especially optimum-seeking, algorithms. Any specific
knowledge about the situation at hand may be used to specify an adequate
specific solution algorithm, the optimal situation being that one knows the
solution in advance. On the other hand, there cannot exist one method that solves
all problems effectively as well as efficiently. These goals are contradictory.

If there is already a traditional method that solves a given problem, EAs
should not be used. They cannot do it better or with less computational effort.
In particular, they do not offer an escape from the curse of dimensionality—the
often quadratic, cubic, or otherwise polynomial increase in instructions used as
the number of decision variables is increased, arising, for example, from matrix
manipulation.

To develop a new solution method suitable for a problem at hand may be
a nice challenge to a theoretician, who will afterwards get some merit for his
effort, but from the application point of view the time for developing the new
technique has to be added to the computer time invested. In that respect, a
nonspecialized, robust procedure (and EAs belong to this class) may be, and
often proves to be, worthwhile.

A warning should be given about a common practice—the linearization or
other decomplexification of the situation in order to make a traditional method
applicable. Even a guaranteed globally optimal solution for the simplified task
may be a long way off and thus greatly inferior to an approximate solution to
the real problem.

The best one can say about EAs, therefore, is that they present a
methodological framework that is easy to understand and handle, and is either
usable as a black-box method or open to the incorporation of new or old
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recipes for further sophistication, specialization or hybridization. They are
applicable even in dynamic situations where the goal or constraints are moving
over time or changing, either exogenously or self-induced, where parameter
adjustments and fitness measurements are disturbed, and where the landscape is
rough, discontinuous, multimodal, even fractal or cannot otherwise be handled
by traditional methods, especially those that need global prediction from local
surface analysis.

There exist EA versions for multiple criterion decision making (MCDM)
and many different parallel computing architectures. Almost forgotten today is
their applicability in experimental (non-computing) situations.

Sometimes striking is the fact that even obviously wrong parameter settings
do not prevent fairly good results: this certainly can be described as robustness.
Not yet well understood, but nevertheless very successful are those EAs which
self-adapt some of their internal parameters, a feature that can be described as
collective learning of the environmental conditions. Nevertheless, even self-
adaptation does not circumvent the NFL theorem.

In this sense, and only in this sense, EAs always present an intermediate
compromise; the enthusiasm of their inventors is not yet taken into account
here, nor the insights available from the analysis of the algorithms for natural
evolutionary processes which they try to mimic.
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4
Principles of evolutionary processes

David B Fogel

4.1 Overview

The most widely accepted collection of evolutionary theories is the neo-
Darwinian paradigm. These arguments assert that the vast majority of the
history of life can be fully accounted for by physical processes operating on
and within populations and species (Hoffman 1989, p 39). These processes
are reproduction, mutation, competition, and selection. Reproduction is an
obvious property of extant species. Further, species have such great reproductive
potential that their population size would increase at an exponential rate if
all individuals of the species were to reproduce successfully (Malthus 1826,
Mayr 1982, p 479). Reproduction is accomplished through the transfer of an
individual’s genetic program (either asexually or sexually) to progeny. Mutation,
in a positively entropic system, is guaranteed, in that replication errors during
information transfer will necessarily occur. Competition is a consequence of
expanding populations in a finite resource space. Selection is the inevitable
result of competitive replication as species fill the available space. Evolution
becomes the inescapable result of interacting basic physical statistical processes
(Huxley 1963, Wooldridge 1968, Atmar 1979).

Individuals and species can be viewed as a duality of their genetic program,
the genotype (Section 5.2), and their expressed behavioral traits, the phenotype.
The genotype provides a mechanism for the storage of experiential evidence,
of historically acquired information. Unfortunately, the results of genetic
variations are generally unpredictable due to the universal effects of pleiotropy
and polygeny (figure 4.1) (Mayr 1959, 1963, 1982, 1988, Wright 1931, 1960,
Simpson 1949, p 224, Dobzhansky 1970, Stanley 1975, Dawkins 1986).
Pleiotropy is the effect that a single gene may simultaneously affect several
phenotypic traits. Polygeny is the effect that a single phenotypic characteristic
may be determined by the simultaneous interaction of many genes. There are no
one-gene, one-trait relationships in naturally evolved systems. The phenotype
varies as a complex, nonlinear function of the interaction between underlying
genetic structures and current environmental conditions. Very different genetic
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Figure 4.1. Pleiotropy is the effect that a single gene may simultaneously affect several
phenotypic traits. Polygeny is the effect that a single phenotypic characteristic may
be determined by the simultaneous interaction of many genes. These one-to-many and
many-to-one mappings are pervasive in natural systems. As a result, even small changes
to a single gene may induce a raft of behavioral changes in the individual (after Mayr
1963).

structures may code for equivalent behaviors, just as diverse computer programs
can generate similar functions.

Selection directly acts only on the expressed behaviors of individuals and
species (Mayr 1988, pp 477–8). Wright (1932) offered the concept of adaptive
topography to describe the fitness of individuals and species (minimally, isolated
reproductive populations termed demes). A population of genotypes maps to
respective phenotypes (sensu Lewontin 1974), which are in turn mapped onto
the adaptive topography (figure 4.2). Each peak corresponds to an optimized
collection of phenotypes, and thus to one of more sets of optimized genotypes.
Evolution probabilistically proceeds up the slopes of the topography toward
peaks as selection culls inappropriate phenotypic variants.

Others (Atmar 1979, Raven and Johnson 1986, pp 400–1) have suggested
that it is more appropriate to view the adaptive landscape from an inverted
position. The peaks become troughs, ‘minimized prediction error entropy wells’
(Atmar 1979). Searching for peaks depicts evolution as a slowly advancing,
tedious, uncertain process. Moreover, there appears to be a certain fragility to
an evolving phyletic line; an optimized population might be expected to quickly
fall of the peak under slight perturbations. The inverted topography leaves an
altogether different impression. Populations advance rapidly down the walls of
the error troughs until their cohesive set of interrelated behaviors is optimized,
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Figure 4.2. Wright’s adaptive topography, inverted. An adaptive topography, or adaptive
landscape, is defined to represent the fitness of all possible phenotypes (generated by the
interaction between the genotypes and the environment). Wright (1932) proposed that as
selection culls the last appropriate existing behaviors relative to others in the population,
the population advances to areas of higher fitness on the landscape. Atmar (1979) and
others have suggested viewing the topography from an inverted perspective. Populations
advance to areas of lower behavioral error.

at which point stagnation occurs. If the topography is generally static, rapid
descents will be followed by long periods of stasis. If, however, the topography
is in continual flux, stagnation may never set in.

Viewed in this manner, evolution is an obvious optimizing problem-
solving process (not to be confused with a process that leads to perfection).
Selection drives phenotypes as close to the optimum as possible, given initial
conditions and environment constraints. However the environment is continually
changing. Species lag behind, constantly evolving toward a new optimum. No
organism should be viewed as being perfectly adapted to its environment. The
suboptimality of behavior is to be expected in any dynamic environment that
mandates tradeoffs between behavioral requirements. However selection never
ceases to operate, regardless of the population’s position on the topography.

Mayr (1988, p 532) has summarized some of the more salient characteristics
of the neo-Darwinian paradigm. These include:

(i) The individual is the primary target of selection.
(ii) Genetic variation is largely a chance phenomenon. Stochastic processes

play a significant role in evolution.
(iii) Genotypic variation is largely a product of recombination and ‘only

ultimately of mutation’.
(iv) ‘Gradual’ evolution may incorporate phenotypic discontinuities.
(v) Not all phenotypic changes are necessarily consequences of ad hoc natural

selection.
(vi) Evolution is a change in adaptation and diversity, not merely a change in

gene frequencies.
(vii) Selection is probabilistic, not deterministic.

These characteristics form a framework for evolutionary computation.
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5
Principles of genetics

Raymond C Paton

5.1 Introduction

The material covers a number of key areas which are necessary to understanding
the nature of the evolutionary process. We begin by looking at some basic ideas
of heredity and how variation occurs in interbreeding populations. From here
we look at the gene in more detail and then consider how it can undergo change.
The next section looks at aspects of population thinking needed to appreciate
selection. This is crucial to an appreciation of Darwinian mechanisms of
evolution. The chapter concludes with selected references to further information.
In order to keep this contribution within its size limits, the material is primarily
about the biology of higher plants and animals.

5.2 Some fundamental concepts in genetics

Many plants and animals are produced through sexual means by which the
nucleus of a male sperm cell fuses with a female egg cell (ovum). Sperm and
ovum nuclei each contain a single complement of nuclear material arranged as
ribbon-like structures called chromosomes. When a sperm fuses with an egg
the resulting cell, called a zygote, has a double complement of chromosomes
together with the cytoplasm of the ovum. We say that a single complement
of chromosomes constitutes a haploid set (abbreviated as n) and a double
complement is called the diploid set (2n). Gametes (sex cells) are haploid
whereas most other cells are diploid. The formation of gametes (gametogenesis)
requires the number of chromosomes in the gamete-forming cells to be halved
(see figure 5.1).

Gametogenesis is achieved through a special type of cell division called
meiosis (also called reduction division). The intricate mechanics of meiosis
ensures that gametes contain only one copy of each chromosome.

A genotype is the genetic constitution that an organism inherits from its
parents. In a diploid organism, half the genotype is inherited from one parent and
half from the other. Diploid cells contain two copies of each chromosome. This
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Figure 5.1. A common life cycle model.

rule is not universally true when it comes to the distribution of sex chromosomes.
Human diploid cells contain 46 chromosomes of which there are 22 pairs and
an additional two sex chromosomes. Sex is determined by one pair (called
the sex chromosomes); female is X and male is Y. A female human has the
sex chromosome genotype of XX and a male is XY. The inheritance of sex is
summarized in figure 5.2. The members of a pair of nonsex chromosomes are
said to be homologous (this is also true for XX genotypes whereas XY are not
homologous).

Figure 5.2. Inheritance of sex chromosomes.

Although humans have been selectively breeding domestic animals and
plants for a long time, the modern study of genetics began in the mid-19th
century with the work of Gregor Mendel. Mendel investigated the inheritance
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of particular traits in peas. For example, he took plants that had wrinkled
seeds and plants that had round seeds and bred them with plants of the same
phenotype (i.e. observable appearance), so wrinkled were bred with wrinkled and
round were bred with round. He continued this over a number of generations
until round always produced round offspring and wrinkled, wrinkled. These
are called pure breeding plants. He then cross-fertilized the plants by breeding
rounds with wrinkles. The subsequent generation (called the F1 hybrids) was
all round. Then Mendel crossed the F1 hybrids with each other and found that
the next generation, the F2 hybrids, had round and wrinkled plants in the ratio
of 3 (round) : 1 (wrinkled).

Mendel did this kind of experiment with a number of pea characteristics
such as:

color of cotyledons yellow or green
color of flowers red or white
color of seeds gray/brown or white
length of stem tall or dwarf.

In each case he found that the the F1 hybrids were always of one form and
the two forms reappeared in the F2. Mendel called the form which appeared in
the F1 generation dominant and the form which reappeared in the F2 recessive
(for the full text of Mendel’s experiments see an older genetics book, such as
that by Sinnott et al (1958)).

A modern interpretation of inheritance depends upon a proper understanding
of the nature of a gene and how the gene is expressed in the phenotype. The
nature of a gene is quite complex as we shall see later (see also Alberts et al
1989, Lewin 1990, Futuyma 1986). For now we shall take it to be the functional
unit of inheritance. An allele (allelomorph) is one of several forms of a gene
occupying a given locus (location) on a chromosome. Originally related to pairs
of contrasting characteristics (see examples above), the idea of observable unit
characters was introduced to genetics around the turn of this century by such
workers as Bateson, de Vries, and Correns (see Darden 1991). The concept of
a gene has tended to replace allele in general usage although the two terms are
not the same.

How can the results of Mendel’s experiments be interpreted? We know
that each parent plant provides half the chromosome complement found in its
offspring and that chromosomes in the diploid cells are in pairs of homologues.
In the pea experiments pure breeding parents had homologous chromosomes
which were identical for a particular gene; we say they are homozygous for
a particular gene. The pure breeding plants were produced through self-
fertilization and by selecting those offspring of the desired phenotype. As round
was dominant to wrinkled we say that the round form of the gene is R (‘big
r’) and the wrinkled r (‘little r’). Figure 5.3 summarizes the cross of a pure
breeding round (RR) with a pure breeding wrinkled (rr).
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Figure 5.3. A simple Mendelian experiment.

We see the appearance of the heterozygote (in this case Rr) in the F1
generation. This is phenotypically the same as the dominant phenotype but
genotypically contains both a dominant and a recessive form of the particular
gene under study. Thus when the heterozygotes are randomly crossed with
each other the phenotype ratio is three dominant : one recessive. This is called
the monohybrid ratio (i.e. for one allele). We see in Mendel’s experiments
the independent segregation of alleles during breeding and their subsequent
independent assortment in offspring.

In the case of two genes we find more phenotypes and genotypes appearing.
Consider what happens when pure breeding homozygotes for round yellow seeds
(RRYY) are bred with pure breeding homozygotes for wrinkled green seeds
(rryy). On being crossed we end up with heterozygotes with a genotype of
RrYy and phenotype of round yellow seeds. We have seen that the genes
segregate independently during meiosis so we have the combinations shown in
figure 5.4.

Figure 5.4. Genes segregating independently.

Thus the gametes of the heterozygote can be of four kinds though we assume
that each form can occur with equal frequency. We may examine the possible
combinations of gametes for the next generation by producing a contingency
table for possible gamete combinations. These are shown in figure 5.5.
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Figure 5.5. Genotype and phenotype patterns in F2.

We summarize this set of genotype combinations in the phenotype table
(figure 5.5(b)). The resulting ratio of phenotypes is called the dihybrid ratio
(9:3:3:1). We shall consider one final example in this very brief summary.
When pure breeding red-flowered snapdragons were crossed with pure breeding
white-flowered plants the F1 plants were all pink. When these were selfed the
population of offspring was in the ratio of one red : two pink : one white. This
is a case of incomplete dominance in the heterozygote.

It has been found that the Mendelian ratios do not always apply in breeding
experiments. In some cases this is because certain genes interact with each
other. Epistasis occurs when the expression of one gene masks the phenotypic
effects of another. For example, certain genotypes (cyanogenics) of clover can
resist grazing because they produce low doses of cyanide which makes them
unpalatable. Two genes are involved in cyanide production, one which produces
an enzyme which converts a precursor molecule into a glycoside and another
gene which produces an enzyme which converts the glycoside into hydrogen
cyanide (figure 5.6(a)). If two pure breeding acyanogenic strains are crossed
the heterozygote is cyanogenic (figure 5.6(b)).

Figure 5.6. Cyanogenic clover: cyanide production and cyanogenic hybrid.
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Figure 5.7. Epistasis in clover: genotype and phenotype patterns.

Figure 5.8. Pairing of homologous chromosomes.

Figure 5.9. Crossing over in a tetrad.

When the cyanogenic strain is selfed the genotypes are as summarized
in figure 5.7(a). There are only two phenotypes produced, cyanogenic and
acyanogenic, as summarized in figure 5.7(b).

So far we have followed Mendel’s laws regarding the independent
segregation of genes. This independent segregation does not occur when genes
are located on the same chromosome. During meiosis homologous chromosomes
(i.e. matched pairs one from each parental gamete) move together and are seen
to be joined at the centromere (the clear oval region in figure 5.8).

In this simplified diagram we show a set of genes (rectangles) in which those
on the top are of the opposite form to those on the bottom. As the chromosomes
are juxtaposed they each are doubled up so that four strands (usually called
chromatids) are aligned. The close proximity of the inner two chromatids and
the presence of enzymes in the cellular environment can result in breakages and
recombinations of these strands as summarized in figure 5.9.

The result is that of the four juxtaposed strands two are the same as
the parental chromosomes and two, called the recombinants, are different.
This crossover process mixes up the genes with respect to original parental
chromosomes. The chromosomes which make up a haploid gamete will be
a random mixture of parental and recombinant forms. This increases the
variability between parents and offspring and reduces the chance of harmful
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recessives becoming homozygous.

5.3 The gene in more detail

Genes are located on chromosomes. Chromosomes segregate independently
during meiosis whereas genes can be linked on the same chromosome. The
conceptual reasons why there has been confusion are the differences in
understanding about gene and chromosome such as which is the unit of heredity
(see Darden 1991). The discovery of the physicochemical nature of hereditary
material culminated in the Watson–Crick model in 1953 (see figure 5.10). The
coding parts of the deoxyribonucleic acid (DNA) are called bases; there are
four types (adenine, thymine, cytosine, and guanine). They are strung along
a sugar-and-phosphate string, which is arranged as a helix. Two intertwined
strings then form the double helix. The functional unit of this code is a triplet
of bases which can code for a single amino acid. The genes are located along
the DNA strand.

Figure 5.10. Idealization of the organization of chromosomes in a eukaryotic cell. (A
eukaryotic cell has an organized nucleus and cytoplasmic organelles.)

Transcription is the synthesis of ribonucleic acid (RNA) using the DNA
template. It is a preliminary step in the ultimate synthesis of protein. A gene
can be transcribed through the action of enzymes and a chain of transcript is
formed as a polymer called messenger RNA (mRNA). This mRNA can then be
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translated into protein. The translation process converts the mRNA code into a
protein sequence via another form of RNA called transfer RNA (tRNA). In this
way, genes are transcribed so that mRNA may be produced, from which protein
molecules (typically the ‘workhorses’ and structural molecules of a cell) can be
formed. This flow of information is generally unidirectional. (For more details
on this topic the reader should consult a molecular biology text and look at the
central dogma of molecular biology, see e.g. Lewin 1990, Alberts et al 1989.)

Figure 5.11 provides a simplified view of the anatomy of a structural gene,
that is, one which codes for a protein or RNA.

Figure 5.11. A simplified diagram of a structural gene.

That part of the gene which ultimately codes for protein or RNA is preceded
upstream by three stretches of code. The enhancer facilitates the operation of
the promoter region, which is where RNA polymerase is bound to the gene in
order to initiate transcription. The operator is the site where transcription can
be halted by the presence of a repressor protein. Exons are expressed in the
final gene product (e.g. the protein molecule) whereas introns are transcribed
but are removed from the transcript leaving the fragments of exon material to
be spliced. One stretch of DNA may consist of several overlapping genes. For
example, the introns in one gene may be the exons in another (Lewin 1990).
The terminator is the postexon region of the gene which causes transcription
to be terminated. Thus a biological gene contains not only code to be read
but also coded instructions on how it should be read and what should be read.
Genes are highly organized. An operon system is located on one chromosome
and consists of a regulator gene and a number of contiguous structural genes
which share the same promoter and terminator and code for enzymes which
are involved in specific metabolic pathways (the classical example is the Lac
operon, see figure 5.12).

Operons can be grouped together into higher-order (hierarchical) regulatory
genetic systems (Neidhart et al 1990). For example, a number of operons
from different chromosomes may be regulated by a single gene known as a
regulon. These higher-order systems provide a great challenge for change in a
genome. Modification of the higher-order gene can have profound effects on
the expression of structural genes that are under its influence.
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Figure 5.12. A visualization of an operon.

5.4 Options for change

We have already seen how sexual reproduction can mix up the genes which
are incorporated in a gamete through the random reassortment of paternal
and maternal chromosomes and through crossing over and recombination.
Effectively though, the gamete acquires a subset of the same genes as the
diploid gamete-producing cells; they are just mixed up. Clearly, any zygote that
is produced will have a mixture of genes and (possibly) some chromosomes
which have both paternal and maternal genes.

There are other mechanisms of change which alter the genes themselves
or change the number of genes present in a genome. We shall describe a
mutation as any change in the sequence of genomic DNA. Gene mutations
are of two types: point mutation, in which a single base is changed, and
frameshift mutation, in which one or more bases (but not a multiple of three)
are inserted or deleted. This changes the frame in which triplets are transcribed
into RNA and ultimately translated into protein. In addition some genes are
able to become transposed elsewhere in a genome. They ‘jump’ about and
are called transposons. Chromosome changes can be caused by deletion (loss
of a section), duplication (the section is repeated), inversion (the section is in
the reverse order), and translocation (the section has been relocated elsewhere).
There are also changes at the genome level. Ploidy is the term used to describe
multiples of a chromosome complement such as haploid (n), diploid (2n), and
tetraploid (4n). A good example of the influence of ploidy on evolution is among
such crops as wheat and cotton. Somy describes changes to the frequency of
particular chromosomes: for example, trisomy is three copies of a chromosome.

5.5 Population thinking

So far we have focused on how genes are inherited and how they or their
combinations can change. In order to understand evolutionary processes
(Chapter 4) we must shift our attention to looking at populations (we shall not
emphasize too much whether of genes, chromosomes, genomes, or organisms).
Population thinking is central to our understanding of models of evolution.

The Hardy–Weinberg theorem applies to frequencies of genes and genotypes
in a population of individuals, and states that the relative frequency of each gene
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remains in equilibrium from one generation to the next. For a single allele, if
the frequency of one form is p then that of the other (say q) is 1−p. The three
genotypes that exist with this allele have the population proportions of

p2 + 2pq + q2 = 1.

This equation does not apply when a mixture of four factors changes the relative
frequencies of genes in a population: mutation, selection, gene flow, and random
genetic drift (drift). Drift can be described as the effect of the sampling of a
population on its parents. Each generation can be thought of as a sample of its
parents’ population. In that the current population is a sample of its parents,
we acknowledge that a statistical sampling error should be associated with gene
frequencies. The effect will be small in large populations because the relative
proportion of random changes will be a very small component of the large
numbers. However, drift in a small population will have a marked effect.

One factor which can counteract the effect of drift is differential migration
of individuals between populations which leads to gene flow. Several models of
gene flow exist. For example, migration which occurs at random among a group
of small populations is called the island model whereas in the stepping stone
model each population receives migrants only from neighboring populations.
Mutation, selection, and gene flow are deterministic factors so that if fitness,
mutation rate, and rate of gene flow are the same for a number of populations
that begin with same gene frequencies, they will attain the same equilibrium
composition. Drift is a stochastic process because the sampling effect on the
parent population is random.

Sewall Wright introduced the idea of an adaptive landscape to explain how
a population’s allele frequencies might evolve over time. The peaks on the
landscape represent genetic compositions of a population for which the mean
fitness is high and troughs are possible compositions where the mean fitness
is low. As gene frequencies change and mean fitness increases the population
moves uphill. Indeed, selection will operate to increase mean fitness so, on
a multipeaked landscape, selection may operate to move populations to local
maxima. On a fixed landscape drift and selection can act together so that
populations may move uphill (through selection) or downhill (through drift).
This means that the global maximum for the landscape could be reached. These
ideas are formally encapsulated in Wright’s (1968–1978) shifting balance theory
of evolution. Further information on the relation of population genetics to
evolutionary theory can be studied further in the books by Wright (1968–1978),
Crow and Kimura (1970) and Maynard Smith (1989).

The change of gene frequencies coupled with changes in the genes
themselves can lead to the emergence of new species although the process
is far from simple and not fully understood (Futuyma, 1986, Maynard Smith
1993). The nature of the species concept or (for some) concepts which is
central to Darwinism is complicated and will not be discussed here (see e.g.
Futuyma 1986). Several mechanisms apply to promote speciation (Maynard



Population thinking 37

Smith 1993): geographical or spatial isolation, barriers preventing formation of
hybrids, nonviable hybrids, hybrid infertility, and hybrid breakdown—in which
post-F1 generations are weak or infertile.

Selectionist theories emphasize invariant properties of the system: the system
is an internal generator of variations (Changeux and Dehaene 1989) and diversity
among units of the population exists prior to any testing (Manderick 1994). We
have seen how section operates to optimize fitness. Darden and Cain (1987)
summarize a number of common elements in selectionist theories as follows:

• a set of a given entity type (i.e. the units of the population)

• a particular property (P ) according to which members of this set vary

• an environment in which the entity type is found

• a factor in the environment to which members react differentially due to
their possession or nonpossession of the property (P )

• differential benefits (both shorter and longer term) according to the
possession or nonpossession of the property (P ).

This scheme summarizes the selectionist approach. In addition, Maynard
Smith (1989) discusses a number of selection systems (particular relevant
to animals) including sexual, habitat, family, kin, group, and synergistic
(cooperation). A very helpful overview of this area of ecology, behavior,
and evolution is that by Sigmund (1993). Three selectionist systems in the
biosciences are the neo-Darwinian theory of evolution in a population, clonal
selection theory applied to the immune system, and the theory of neuronal
group selection (for an excellent summary with plenty of references see that by
Manderick (1994)).

There are many important aspects of evolutionary biology which have
had to be omitted because of lack of space. The relevance of neutral
molecular evolution theory (Kimura 1983) and nonselectionist approaches (see
e.g. Goodwin and Saunders 1989, Lima de Faria 1988, Kauffman 1993) has not
been discussed. In addition some important ideas have not been considered, such
as evolutionary game theory (Maynard Smith 1989, Sigmund 1993), the role of
sex (see e.g. Hamilton et al 1990), the evolution of cooperation (Axelrod 1984),
the red queen (Van Valen 1973, Maynard Smith 1989), structured genomes, for
example, incorporation of regulatory hierarchies (Kauffman 1993, Beaumont
1993, Clarke et al 1993), experiments with endosymbiotic systems (Margulis
and Foster 1991, Hilario and Gogarten 1993), coevolving parasite populations
(see e.g. Collins 1994; for a biological critique and further applications see
Sumida and Hamilton 1994), inheritance of acquired characteristics (Landman
1991), and genomic imprinting and other epigenetic inheritance systems (for a
review see Paton 1994). There are also considerable philosophical issues which
must be addressed in this area which impinge on how biological sources are
applied to evolutionary computing (see Sober 1984). Not least among these is
the nature of adaptation.
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6
A history of evolutionary computation

Kenneth De Jong, David B Fogel and Hans-Paul
Schwefel

6.1 Introduction

No one will ever produce a completely accurate account of a set of past events
since, as someone once pointed out, writing history is as difficult as forecasting.
Thus we dare to begin our historical summary of evolutionary computation
rather arbitrarily at a stage as recent as the mid-1950s.

At that time there was already evidence of the use of digital computer
models to better understand the natural process of evolution. One of the first
descriptions of the use of an evolutionary process for computer problem solving
appeared in the articles by Friedberg (1958) and Friedberg et al (1959). This
represented some of the early work in machine learning and described the use
of an evolutionary algorithm for automatic programming, i.e. the task of finding
a program that calculates a given input–output function. Other founders in the
field remember a paper of Fraser (1957) that influenced their early work, and
there may be many more such forerunners depending on whom one asks.

In the same time frame Bremermann presented some of the first attempts
to apply simulated evolution to numerical optimization problems involving both
linear and convex optimization as well as the solution of nonlinear simultaneous
equations (Bremermann 1962). Bremermann also developed some of the
early evolutionary algorithm (EA) theory, showing that the optimal mutation
probability for linearly separable problems should have the value of 1/� in the
case of � bits encoding an individual (Bremermann et al 1965).

Also during this period Box developed his evolutionary operation (EVOP)
ideas which involved an evolutionary technique for the design and analysis of
(industrial) experiments (Box 1957, Box and Draper 1969). Box’s ideas were
never realized as a computer algorithm, although Spendley et al (1962) used
them as the basis for their so-called simplex design method. It is interesting to
note that the REVOP proposal (Satterthwaite 1959a, b) introducing randomness
into the EVOP operations was rejected at that time.

40
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As is the case with many ground-breaking efforts, these early studies were
met with considerable skepticism. However, by the mid-1960s the bases for
what we today identify as the three main forms of EA were clearly established.
The roots of evolutionary programming (EP) (Chapter 10) were laid by Lawrence
Fogel in San Diego, California (Fogel et al 1966) and those of genetic algorithms
(GAs) (Chapter 8) were developed at the University of Michigan in Ann Arbor
by Holland (1967). On the other side of the Atlantic Ocean, evolution strategies
(ESs) (Chapter 9) were a joint development of a group of three students, Bienert,
Rechenberg, and Schwefel, in Berlin (Rechenberg 1965).

Over the next 25 years each of these branches developed quite independently
of each other, resulting in unique parallel histories which are described in more
detail in the following sections. However, in 1990 there was an organized effort
to provide a forum for interaction among the various EA research communities.
This took the form of an international workshop entitled Parallel Problem
Solving from Nature at Dortmund (Schwefel and Männer 1991).

Since that event the interaction and cooperation among EA researchers from
around the world has continued to grow. In the subsequent years special efforts
were made by the organizers of ICGA’91 (Belew and Booker 1991), EP’92
(Fogel and Atmar 1992), and PPSN’92 (Männer and Manderick 1992) to provide
additional opportunities for interaction.

This increased interaction led to a consensus for the name of this new field,
evolutionary computation (EC), and the establishment in 1993 of a journal by the
same name published by MIT Press. The increasing interest in EC was further
indicated by the IEEE World Congress on Computational Intelligence (WCCI)
at Orlando, Florida, in June 1994 (Michalewicz et al 1994), in which one of the
three simultaneous conferences was dedicated to EC along with conferences on
neural networks and fuzzy systems.

That brings us to the present in which the continued growth of the field is
reflected by the many EC events and related activities each year, and its growing
maturity reflected by the increasing number of books and articles about EC.

In order to keep this overview brief, we have deliberately suppressed many
of the details of the historical developments within each of the three main EC
streams. For the interested reader these details are presented in the following
sections.

6.2 Evolutionary programming

Evolutionary programming (EP) was devised by Lawrence J Fogel in 1960
while serving at the National Science Foundation (NSF). Fogel was on leave
from Convair, tasked as special assistant to the associate director (research),
Dr Richard Bolt, to study and write a report on investing in basic research.
Artificial intelligence at the time was mainly concentrated around heuristics
and the simulation of primitive neural networks. It was clear to Fogel that
both these approaches were limited because they model humans rather than
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the essential process that produces creatures of increasing intellect: evolution.
Fogel considered intelligence to be based on adapting behavior to meet goals
in a range of environments. In turn, prediction was viewed as the key
ingredient to intelligent behavior and this suggested a series of experiments on
the use of simulated evolution of finite-state machines (Chapter 18) to forecast
nonstationary time series with respect to arbitrary criteria. These and other
experiments were documented in a series of publications (Fogel 1962, 1964,
Fogel et al 1965, 1966, and many others).

Intelligent behavior was viewed as requiring the composite ability to (i)
predict one’s environment, coupled with (ii) a translation of the predictions
into a suitable response in light of the given goal. For the sake of generality,
the environment was described as a sequence of symbols taken from a finite
alphabet. The evolutionary problem was defined as evolving an algorithm
(essentially a program) that would operate on the sequence of symbols thus far
observed in such a manner so as to produce an output symbol that is likely to
maximize the algorithm’s performance in light of both the next symbol to appear
in the environment and a well-defined payoff function. Finite-state machines
provided a useful representation for the required behavior.

The proposal was as follows. A population of finite-state machines is
exposed to the environment, that is, the sequence of symbols that have been
observed up to the current time. For each parent machine, as each input symbol
is offered to the machine, each output symbol is compared with the next input
symbol. The worth of this prediction is then measured with respect to the payoff
function (e.g. all–none, absolute error, squared error, or any other expression of
the meaning of the symbols). After the last prediction is made, a function of the
payoff for each symbol (e.g. average payoff per symbol) indicates the fitness of
the machine.

Offspring machines are created by randomly mutating each parent machine.
Each parent produces offspring (this was originally implemented as only a single
offspring simply for convenience). There are five possible modes of random
mutation that naturally result from the description of the machine: change an
output symbol, change a state transition, add a state, delete a state, or change
the initial state. The deletion of a state and change of the initial state are
only allowed when the parent machine has more than one state. Mutations are
chosen with respect to a probability distribution, which is typically uniform. The
number of mutations per offspring is also chosen with respect to a probability
distribution or may be fixed a priori. These offspring are then evaluated over the
existing environment in the same manner as their parents. Other mutations, such
as majority logic mating operating on three or more machines, were proposed
by Fogel et al (1966) but not implemented.

The machines that provide the greatest payoff are retained to become parents
of the next generation. (Typically, half the total machines were saved so that the
parent population remained at a constant size.) This process is iterated until an
actual prediction of the next symbol (as yet unexperienced) in the environment
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is required. The best machine generates this prediction, the new symbol is added
to the experienced environment, and the process is repeated. Fogel (1964) (and
Fogel et al (1966)) used ‘nonregressive’ evolution. To be retained, a machine
had to rank in the best half of the population. Saving lesser-adapted machines
was discussed as a possibility (Fogel et al 1966, p 21) but not incorporated.

This general procedure was successfully applied to problems in prediction,
identification, and automatic control (Fogel et al 1964, 1966, Fogel 1968) and
was extended to simulate coevolving populations by Fogel and Burgin (1969).
Additional experiments evolving finite-state machines for sequence prediction,
pattern recognition, and gaming can be found in the work of Lutter and
Huntsinger (1969), Burgin (1969), Atmar (1976), Dearholt (1976), and
Takeuchi (1980).

In the mid-1980s the general EP procedure was extended to alternative
representations including ordered lists for the traveling salesman problem (Fogel
and Fogel 1986), and real-valued vectors for continuous function optimization
(Fogel and Fogel 1986). This led to other applications in route planning
(Fogel 1988, Fogel and Fogel 1988), optimal subset selection (Fogel 1989),
and training neural networks (Fogel et al 1990), as well as comparisons to other
methods of simulated evolution (Fogel and Atmar 1990). Methods for extending
evolutionary search to a two-step process including evolution of the mutation
variance were offered by Fogel et al (1991, 1992). Just as the proper choice of
step sizes is a crucial part of every numerical process, including optimization, the
internal adaptation of the mutation variance(s) is of utmost importance for the
algorithm’s efficiency. This process is called self-adaptation or autoadaptation
in the case of no explicit control mechanism, e.g. if the variances are part of
the individuals’ characteristics and underlie probabilistic variation in a similar
way as do the ordinary decision variables.

In the early 1990s efforts were made to organize annual conferences on EP,
these leading to the first conference in 1992 (Fogel and Atmar 1992). This
conference offered a variety of optimization applications of EP in robotics
(McDonnell et al 1992, Andersen et al 1992), path planning (Larsen and
Herman 1992, Page et al 1992), neural network design and training (Sebald
and Fogel 1992, Porto 1992, McDonnell 1992), automatic control (Sebald et al
1992), and other fields.

First contacts were made between the EP and ES communities just
before this conference, and the similar but independent paths that these two
approaches had taken to simulating the process of evolution were clearly
apparent. Members of the ES community have participated in all successive
EP conferences (Bäck et al 1993, Sprave 1994, Bäck and Schütz 1995, Fogel et
al 1996). There is less similarity between EP and GAs, as the latter emphasize
simulating specific mechanisms that apply to natural genetic systems whereas
EP emphasizes the behavioral, rather than genetic, relationships between parents
and their offspring. Members of the GA and GP communities have, however,
also been invited to participate in the annual conferences, making for truly
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interdisciplinary interaction (see e.g. Altenberg 1994, Land and Belew 1995,
Koza and Andre 1996).

Since the early 1990s, efforts in EP have diversified in many directions.
Applications in training neural networks have received considerable attention
(see e.g. English 1994, Angeline et al 1994, McDonnell and Waagen 1994,
Porto et al 1995), while relatively less attention has been devoted to evolving
fuzzy systems (Haffner and Sebald 1993, Kim and Jeon 1996). Image processing
applications can be found in the articles by Bhattacharjya and Roysam (1994),
Brotherton et al (1994), Rizki et al (1995), and others. Recent efforts to use
EP in medicine have been offered by Fogel et al (1995) and Gehlhaar et al
(1995). Efforts studying and comparing methods of self-adaptation can be
found in the articles by Saravanan et al (1995), Angeline et al (1996), and
others. Mathematical analyses of EP have been summarized by Fogel (1995).

To offer a summary, the initial efforts of L J Fogel indicate some of the
early attempts to (i) use simulated evolution to perform prediction, (ii) include
variable-length encodings, (iii) use representations that take the form of a
sequence of instructions, (iv) incorporate a population of candidate solutions, and
(v) coevolve evolutionary programs. Moreover, Fogel (1963, 1964) and Fogel
et al (1966) offered the early recognition that natural evolution and the human
endeavor of the scientific method are essentially similar processes, a notion
recently echoed by Gell-Mann (1994). The initial prescriptions for operating
on finite-state machines have been extended to arbitrary representations,
mutation operators, and selection methods, and techniques for self-adapting the
evolutionary search have been proposed and implemented. The population size
need not be kept constant and there can be a variable number of offspring
per parent, much like the (µ + λ) methods (Section 25.4) offered in ESs. In
contrast to these methods, selection is often made probabilistic in EP, giving
lesser-scoring solutions some probability of surviving as parents into the next
generation. In contrast to GAs, no effort is made in EP to support (some say
maximize) schema processing, nor is the use of random variation constrained
to emphasize specific mechanisms of genetic transfer, perhaps providing greater
versatility to tackle specific problem domains that are unsuitable for genetic
operators such as crossover.

6.3 Genetic algorithms

The first glimpses of the ideas underlying genetic algorithms (GAs) are found in
Holland’s papers in the early 1960s (see e.g. Holland 1962). In them Holland set
out a broad and ambitious agenda for understanding the underlying principles
of adaptive systems—systems that are capable of self-modification in response
to their interactions with the environments in which they must function. Such a
theory of adaptive systems should facilitate both the understanding of complex
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forms of adaptation as they appear in natural systems and our ability to design
robust adaptive artifacts.

In Holland’s view the key feature of robust natural adaptive systems
was the successful use of competition and innovation to provide the ability
to dynamically respond to unanticipated events and changing environments.
Simple models of biological evolution were seen to capture these ideas nicely via
notions of survival of the fittest and the continuous production of new offspring.

This theme of using evolutionary models both to understand natural adaptive
systems and to design robust adaptive artifacts gave Holland’s work a somewhat
different focus than those of other contemporary groups that were exploring the
use of evolutionary models in the design of efficient experimental optimization
techniques (Rechenberg 1965) or for the evolution of intelligent agents (Fogel
et al 1966), as reported in the previous section.

By the mid-1960s Holland’s ideas began to take on various computational
forms as reflected by the PhD students working with Holland. From the outset
these systems had a distinct ‘genetic’ flavor to them in the sense that the
objects to be evolved over time were represented internally as ‘genomes’ and the
mechanisms of reproduction and inheritance were simple abstractions of familiar
population genetics operators such as mutation, crossover, and inversion.

Bagley’s thesis (Bagley 1967) involved tuning sets of weights used in the
evaluation functions of game-playing programs, and represents some of the
earliest experimental work in the use of diploid representations, the role of
inversion, and selection mechanisms. By contrast Rosenberg’s thesis (Rosenberg
1967) has a very distinct flavor of simulating the evolution of a simple
biochemical system in which single-celled organisms capable of producing
enzymes were represented in diploid fashion and were evolved over time to
produce appropriate chemical concentrations. Of interest here is some of the
earliest experimentation with adaptive crossover operators.

Cavicchio’s thesis (Cavicchio 1970) focused on viewing these ideas as a form
of adaptive search, and tested them experimentally on difficult search problems
involving subroutine selection and pattern recognition. In his work we see
some of the early studies on elitist (section 28.4) forms of selection and ideas
for adapting the rates of crossover and mutation. Hollstien’s thesis (Hollstien
1971) took the first detailed look at alternate selection and mating schemes.
Using a test suite of two-dimensional fitness landscapes, he experimented with
a variety of breeding strategies drawn from techniques used by animal breeders.
Also of interest here is Hollstien’s use of binary string encodings of the genome
and early observations about the virtues of Gray codings.

In parallel with these experimental studies, Holland continued to work on
a general theory of adaptive systems (Holland 1967). During this period he
developed his now famous schema analysis of adaptive systems, relating it to
the optimal allocation of trials using k-armed bandit models (Holland 1969).
He used these ideas to develop a more theoretical analysis of his reproductive
plans (simple GAs) (Holland 1971, 1973). Holland then pulled all of these
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ideas together in his pivotal book Adaptation in Natural and Artificial Systems
(Holland 1975).

Of interest was the fact that many of the desirable properties of these
algorithms being identified by Holland theoretically were frequently not
observed experimentally. It was not difficult to identify the reasons for this.
Hampered by a lack of computational resources and analysis tools, most of
the early experimental studies involved a relatively small number of runs using
small population sizes (generally less than 20). It became increasingly clear
that many of the observed deviations from expected behavior could be traced
to the well-known phenomenon in population genetics of genetic drift, the loss
of genetic diversity due to the stochastic aspects of selection, reproduction, and
the like in small populations.

By the early 1970s there was considerable interest in understanding better
the behavior of implementable GAs. In particular, it was clear that choices
of population size, representation issues, the choice of operators and operator
rates all had significant effects of the observed behavior of GAs. Frantz’s thesis
(Frantz 1972) reflected this new focus by studying in detail the roles of crossover
and inversion in populations of size 100. Of interest here is some of the earliest
experimental work on multipoint crossover operators.

De Jong’s thesis (De Jong 1975) broaded this line of study by analyzing
both theoretically and experimentally the interacting effects of population size,
crossover, and mutation on the behavior of a family of GAs being used to
optimize a fixed test suite of functions. Out of this study came a strong sense that
even these simple GAs had significant potential for solving difficult optimization
problems.

The mid-1970s also represented a branching out of the family tree of GAs
as other universities and research laboratories established research activities in
this area. This happened slowly at first since initial attempts to spread the word
about the progress being made in GAs were met with fairly negative perceptions
from the artificial intelligence (AI) community as a result of early overhyped
work in areas such as self-organizing systems and perceptrons.

Undaunted, groups from several universities including the University of
Michigan, the University of Pittsburgh, and the University of Alberta organized
an Adaptive Systems Workshop in the summer of 1976 in Ann Arbor, Michigan.
About 20 people attended and agreed to meet again the following summer. This
pattern repeated itself for several years, but by 1979 the organizers felt the
need to broaden the scope and make things a little more formal. Holland, De
Jong, and Sampson obtained NSF funding for An Interdisciplinary Workshop in
Adaptive Systems, which was held at the University of Michigan in the summer
of 1981 (Sampson 1981).

By this time there were several established research groups working on GAs.
At the University of Michigan, Bethke, Goldberg, and Booker were continuing
to develop GAs and explore Holland’s classifier systems (Chapter 12) as part
of their PhD research (Bethke 1981, Booker 1982, Goldberg 1983). At the
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University of Pittsburgh, Smith and Wetzel were working with De Jong on
various GA enhancements including the Pitt approach to rule learning (Smith
1980, Wetzel 1983). At the University of Alberta, Brindle continued to look
at optimization applications of GAs under the direction of Sampson (Brindle
1981).

The continued growth of interest in GAs led to a series of discussions and
plans to hold the first International Conference on Genetic Algorithms (ICGA) in
Pittsburgh, Pennsylvania, in 1985. There were about 75 participants presenting
and discussing a wide range of new developments in both the theory and
application of GAs (Grefenstette 1985). The overwhelming success of this
meeting resulted in agreement to continue ICGA as a biannual conference. Also
agreed upon at ICGA’85 was the initiation of a moderated electronic discussion
group called GA List .

The field continued to grow and mature as reflected by the ICGA conference
activities (Grefenstette 1987, Schaffer 1989) and the appearance of several books
on the subject (Davis 1987, Goldberg 1989). Goldberg’s book, in particular,
served as a significant catalyst by presenting current GA theory and applications
in a clear and precise form easily understood by a broad audience of scientists
and engineers.

By 1989 the ICGA conference and other GA-related activities had grown
to a point that some more formal mechanisms were needed. The result was
the formation of the International Society for Genetic Algorithms (ISGA), an
incorporated body whose purpose is to serve as a vehicle for conference funding
and to help coordinate and facilitate GA-related activities. One of its first acts of
business was to support a proposal to hold a theory workshop on the Foundations
of Genetic Algorithms (FOGA) in Bloomington, Indiana (Rawlins 1991).

By this time nonstandard GAs were being developed to evolve complex,
nonlinear variable-length structures such as rule sets, LISP code, and neural
networks. One of the motivations for FOGA was the sense that the growth of
GA-based applications had driven the field well beyond the capacity of existing
theory to provide effective analyses and predictions.

Also in 1990, Schwefel hosted the first PPSN conference in Dortmund,
which resulted in the first organized interaction between the ES and GA
communities. This led to additional interaction at ICGA’91 in San Diego which
resulted in an informal agreement to hold ICGA and PPSN in alternating years,
and a commitment to jointly initiate a journal for the field.

It was felt that in order for the journal to be successful, it must have broad
scope and include other species of EA. Efforts were made to include the EP
community as well (which began to organize its own conferences in 1992), and
the new journal Evolutionary Computation was born with the inaugural issue in
the spring of 1993.

The period from 1990 to the present has been characterized by tremendous
growth and diversity of the GA community as reflected by the many conference
activities (e.g. ICGA and FOGA), the emergence of new books on GAs,
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and a growing list of journal papers. New paradigms such as messy GAs
(Goldberg et al 1991) and genetic programming (Chapter 11) (Koza 1992)
were being developed. The interactions with other EC communities resulted
in considerable crossbreeding of ideas and many new hybrid EAs. New GA
applications continue to be developed, spanning a wide range of problem areas
from engineering design problems to operations research problems to automatic
programming.

6.4 Evolution strategies

In 1964, three students of the Technical University of Berlin, Bienert,
Rechenberg, and Schwefel, did not at all aim at devising a new kind of
optimization procedure. During their studies of aerotechnology and space
technology they met at an Institute of Fluid Mechanics and wanted to construct
a kind of research robot that should perform series of experiments on a flexible
slender three-dimensional body in a wind tunnel so as to minimize its drag. The
method of minimization was planned to be either a one variable at a time or
a discrete gradient technique, gleaned from classical numerics. Both strategies,
performed manually, failed, however. They became stuck prematurely when
used for a two-dimensional demonstration facility, a joint plate—its optimal
shape being a flat plate—with which the students tried to demonstrate that it
was possible to find the optimum automatically.

Only then did Rechenberg (1965) hit upon the idea to use dice for random
decisions. This was the breakthrough—on 12 June 1964. The first version
of an evolutionary strategy (ES), later called the (1 + 1) ES, was born, with
discrete, binomially distributed mutations centered at the ancestor’s position,
and just one parent and one descendant per generation. This ES was first tested
on a mechanical calculating machine by Schwefel before it was used for the
experimentum crucis , the joint plate. Even then, it took a while to overcome
a merely locally optimal S shape and to converge towards the expected global
optimum, the flat plate. Bienert (1967), the third of the three students, later
actually constructed a kind of robot that could perform the actions and decisions
automatically.

Using this simple two-membered ES, another student, Lichtfuß (1965),
optimized the shape of a bent pipe, also experimentally. The result was rather
unexpected, but nevertheless obviously better than all shapes proposed so far.

First computer experiments, on a Zuse Z23, as well as analytical
investigations using binomially distributed integer mutations, had already been
performed by Schwefel (1965). The main result was that such a strategy can
become stuck prematurely, i.e. at ‘solutions’ that are not even locally optimal.
Based on this experience the use of normally instead of binomially distributed
mutations became standard in most of the later computer experiments with real-
valued variables and in theoretical investigations into the method’s efficiency,
but not however in experimental optimization using ESs. In 1966 the little ES
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community was destroyed by dismissal from the Institute of Fluid Mechanics
(‘Cybernetics as such is no longer pursued at the institute!’). Not before 1970
was it found together again at the Institute of Measurement and Control of the
Technical University of Berlin, sponsored by grants from the German Research
Foundation (DFG). Due to the circumstances, the group missed publishing its
ideas and results properly, especially in English.

In the meantime the often-cited two-phase nozzle optimization was
performed at the Institute of Nuclear Technology of the Technical University
of Berlin, then in an industrial surrounding, the AEG research laboratory
(Schwefel 1968, Klockgether and Schwefel 1970), also at Berlin. For a hot-
water flashing flow the shape of a three-dimensional convergent–divergent (thus
supersonic) nozzle with maximum energy efficiency was sought. Though in this
experimental optimization an exogenously controlled binomial-like distribution
was used again, it was the first time that gene duplication and deletion were
incorporated into an EA, especially in a (1+ 1) ES, because the optimal length
of the nozzle was not known in advance. As in case of the bent pipe this
experimental strategy led to highly unexpected results, not easy to understand
even afterwards, but definitely much better than available before.

First Rechenberg and later Schwefel analyzed and improved their ES. For the
(1+1) ES, Rechenberg, in his Dr.-Ing. thesis of 1971, developed, on the basis of
two convex n-dimensional model functions, a convergence rate theory for n 
 1
variables. Based on these results he formulated a 1

5 success rule for adapting
the standard deviation of mutation (Rechenberg 1973). The hope of arriving at
an even better strategy by imitating organic evolution more closely led to the
incorporation of the population principle and the introduction of recombination,
which of course could not be embedded in the (1+1) ES. A first multimembered
ES, the (µ+ 1) ES—the notation was introduced later by Schwefel—was also
designed by Rechenberg in his seminal work of 1973. Because of its inability
to self-adapt the mutation step sizes (more accurately, standard deviations of the
mutations), this strategy was never widely used.

Much more widespread became the (µ + λ) ES and (µ, λ) ES, both
formulated by Schwefel in his Dr.-Ing. thesis of 1974–1975. It contains
theoretical results such as a convergence rate theory for the (1 + λ) ES and
the (1, λ) ES (λ > 1), analogous to the theory introduced by Rechenberg
for the (1 + 1) ES (Schwefel 1977). The multimembered (µ > 1) ESs arose
from the otherwise ineffective incorporation of mutatable mutation parameters
(variances and covariances of the Gaussian distributions used). Self-adaptation
was achieved with the (µ, λ) ES first, not only with respect to the step sizes,
but also with respect to correlation coefficients. The enhanced ES version with
correlated mutations, described already in an internal report (Schwefel 1974),
was published much later (Schwefel 1981) due to the fact that the author left
Berlin in 1976. A more detailed empirical analysis of the on-line self-adaptation
of the internal or strategy parameters was first published by Schwefel in 1987
(the tests themselves were secretly performed on one of the first small instruction
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multiple data (SIMD) parallel machines (CRAY1) at the Nuclear Research
Centre (KFA) Jülich during the early 1980s with a first parallel version of
the multimembered ES with correlated mutations). It was in this work that the
notion of self-adaptation by collective learning first came up. The importance of
recombination (for object as well as strategy parameters) and soft selection (or
µ > 1) was clearly demonstrated. Only recently has Beyer (1995a, b) delivered
the theoretical background to that particularly important issue.

It may be worth mentioning that in the beginning there were strong objections
against increasing λ as well as µ beyond one. The argument against λ > 1
was that the exploitation of the current knowledge was unnecessarily delayed,
and the argument against µ > 1 was that the survival of inferior members of
the population would unnecessarily slow down the evolutionary progress. The
hint that λ successors could be evaluated in parallel did not convince anybody
since parallel computers were neither available nor expected in the near future.
The two-membered ES and the very similar creeping random search method of
Rastrigin (1965) were investigated thoroughly with respect to their convergence
and convergence rates also by Matyas (1965) in Czechoslovakia, Born (1978)
on the Eastern side of the Berlin wall (!), and Rappl (1984) in Munich.

Since this early work many new results have been produced by the ES
community consisting of the group at Berlin (Rechenberg, since 1972) and that
at Dortmund (Schwefel, since 1985). In particular, strategy variants concerning
other than only real-valued parameter optimization, i.e. real-world problems,
were invented. The first use of an ES for binary optimization using multicellular
individuals was presented by Schwefel (1975). The idea of using several
subpopulations and niching mechanisms for global optimization was propagated
by Schwefel in 1977; due to a lack of computing resources, however, it could
not be tested thoroughly at that time. Rechenberg (1978) invented a notational
scheme for such nested ESs.

Beside these nonstandard approaches there now exists a wide range of
other ESs, e.g. several parallel concepts (Hoffmeister and Schwefel 1990,
Lohmann 1991, Rudolph 1991, 1992, Sprave 1994, Rudolph and Sprave 1995),
ESs for multicriterion problems (Kursawe 1991, 1992), for mixed-integer tasks
(Lohmann 1992, Rudolph 1994, Bäck and Schütz 1995), and even for problems
with a variable-dimensional parameter space (Schütz and Sprave 1996), and
variants concerning nonstandard step size and direction adaptation schemes (see
e.g. Matyas 1967, Stewart et al 1967, Fürst et al 1968, Heydt 1970, Rappl 1984,
Ostermeier et al 1994). Comparisons between ESs, GAs, and EP may be found
in the articles by Bäck et al (1991, 1993). It was Bäck (1996) who introduced
a common algorithmic scheme for all brands of current EAs.

Omitting all these other useful nonstandard ESs—a commented collection of
literature concerning ES applications was made at the University of Dortmund
(Bäck et al 1992)—the history of ESs is closed with a mention of three recent
books by Rechenberg (1994), Schwefel (1995), and Bäck (1996) as well as
three recent contributions that may be seen as written tutorials (Schwefel and
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Rudolph 1995, Bäck and Schwefel 1995, Schwefel and Bäck 1995), which on
the one hand define the actual standard ES algorithms and on the other hand
present some recent theoretical results.
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P J Angeline and T Bäck (Cambridge, MA: MIT Press)

Angeline P J, Saunders G M and Pollack J B 1994 An evolutionary algorithm that
constructs recurrent neural networks IEEE Trans. Neural Networks NN-5 54–65

Atmar J W 1976 Speculation of the Evolution of Intelligence and Its Possible Realization
in Machine Form ScD Thesis, New Mexico State University
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Bäck T and Schwefel H-P 1995 Evolution strategies I: variants and their computational
implementation Genetic Algorithms in Engineering and Computer Science, Proc. 1st
Short Course EUROGEN-95 ed G Winter, J Périaux, M Galán and P Cuesta (New
York: Wiley) pp 111–26

Bagley J D 1967 The Behavior of Adaptive Systems which Employ Genetic and
Correlation Algorithms PhD Thesis, University of Michigan

Belew R K and Booker L B (eds) 1991 Proc. 4th Int. Conf. on Genetic Algorithms (San
Diego, CA, 1991) (San Mateo, CA: Morgan Kaufmann)

Bethke A D 1981 Genetic Algorithms as Function Optimizers PhD Thesis, University of
Michigan



52 A history of evolutionary computation

Beyer H-G 1995a How GAs do Not Work—Understanding GAs Without Schemata and
Building Blocks Technical Report of the University of Dortmund Department of
Computer Science Systems Analysis Research Group SYS-2/95

——1995b Toward a theory of evolution strategies: on the benefit of sex—the (µ/µ, λ)-
theory Evolutionary Comput. 3 81–111

Bhattacharjya A K and Roysam B 1994 Joint solution of low-, intermediate- and high-
level vision tasks by evolutionary optimization: application to computer vision at
low SNR IEEE Trans. Neural Networks NN-5 83–95

Bienert P 1967 Aufbau einer Optimierungsautomatik für drei Parameter Dipl.-Ing. Thesis,
Technical University of Berlin, Institute of Measurement and Control Technology

Booker L 1982 Intelligent Behavior as an Adaptation to the Task Environment PhD
Thesis, University of Michigan

Born J 1978 Evolutionsstrategien zur numerischen Lösung von Adaptationsaufgaben PhD
Thesis, Humboldt University at Berlin

Box G E P 1957 Evolutionary operation: a method for increasing industrial productivity
Appl. Stat. 6 81–101

Box G E P and Draper N P 1969 Evolutionary Operation. A Method for Increasing
Industrial Productivity (New York: Wiley)

Bremermann H J 1962 Optimization through evolution and recombination Self-
Organizing Systems ed M C Yovits et al (Washington, DC: Spartan)

Bremermann H J, Rogson M and Salaff S 1965 Search by evolution Biophysics
and Cybernetic Systems—Proc. 2nd Cybernetic Sciences Symp. ed M Maxfield,
A Callahan and L J Fogel (Washington, DC: Spartan) pp 157–67

Brindle A 1981 Genetic Algorithms for Function Optimization PhD Thesis, University
of Alberta

Brotherton T W, Simpson P K, Fogel D B and Pollard T 1994 Classifier design using
evolutionary programming Proc. 3rd Ann. Conf. on Evolutionary Programming (San
Diego, CA, 1994) ed A V Sebald and L J Fogel (Singapore: World Scientific)
pp 68–75

Burgin G H 1969 On playing two-person zero-sum games against nonminimax players
IEEE Trans. Syst. Sci. Cybernet. SSC-5 369–70

Cavicchio D J 1970 Adaptive Search Using Simulated Evolution PhD Thesis, University
of Michigan

Davis L 1987 Genetic Algorithms and Simulated Annealing (London: Pitman)
Dearholt D W 1976 Some experiments on generalization using evolving automata Proc.

9th Int. Conf. on System Sciences (Honolulu, HI) pp 131–3
De Jong K A 1975 Analysis of Behavior of a Class of Genetic Adaptive Systems PhD

Thesis, University of Michigan
English T M 1994 Generalization in populations of recurrent neural networks Proc. 3rd

Ann. Conf. on Evolutionary Programming (San Diego, CA, 1994) ed A V Sebald
and L J Fogel (Singapore: World Scientific) pp 26–33

Fogel D B 1988 An evolutionary approach to the traveling salesman problem Biol.
Cybernet. 60 139–44

——1989 Evolutionary programming for voice feature analysis Proc. 23rd Asilomar
Conf. on Signals, Systems and Computers (Pacific Grove, CA) pp 381–3

——1995 Evolutionary Computation: Toward a New Philosophy of Machine Intelligence
(New York: IEEE)



References 53

Fogel D B and Atmar J W 1990 Comparing genetic operators with Gaussian mutations
in simulated evolutionary processing using linear systems Biol. Cybernet. 63 111–4

——(eds) 1992 Proc. 1st Ann. Conf. on Evolutionary Programming (La Jolla, CA, 1992)
(La Jolla, CA: Evolutionary Programming Society)

Fogel D B and Fogel L J 1988 Route optimization through evolutionary programming
Proc. 22nd Asilomar Conf. on Signals, Systems and Computers (Pacific Grove, CA)
pp 679–80

Fogel D B, Fogel L J and Atmar J W 1991 Meta-evolutionary programming Proc. 25th
Asilomar Conf. on Signals, Systems and Computers (Pacific Grove, CA) ed R R Chen
pp 540–5

Fogel D B, Fogel L J, Atmar J W and Fogel G B 1992 Hierarchic methods of evolutionary
programming Proc. 1st Ann. Conf. on Evolutionary Programming (La Jolla, CA,
1992) ed D B Fogel and W Atmar (La Jolla, CA: Evolutionary Programming
Society) pp 175–82

Fogel D B, Fogel L J and Porto V W 1990 Evolving neural networks Biol. Cybernet. 63
487–93

Fogel D B, Wasson E C and Boughton E M 1995 Evolving neural networks for detecting
breast cancer Cancer Lett. 96 49–53

Fogel L J 1962 Autonomous automata Industrial Res. 4 14–9
——1963 Biotechnology: Concepts and Applications (Englewood Cliffs, NJ: Prentice-

Hall)
——1964 On the Organization of Intellect PhD Thesis, University of California at Los

Angeles
——1968 Extending communication and control through simulated evolution

Bioengineering—an Engineering View Proc. Symp. on Engineering Significance of
the Biological Sciences ed G Bugliarello (San Francisco, CA: San Francisco Press)
pp 286–304

Fogel L J, Angeline P J and Bäck T (eds) 1996 Evolutionary Programming V—Proc. 5th
Ann. Conf. on Evolutionary Programming (1996) (Cambridge, MA: MIT Press)

Fogel L J and Burgin G H 1969 Competitive Goal-seeking through Evolutionary
Programming Air Force Cambridge Research Laboratories Final Report Contract
AF 19(628)-5927

Fogel L J and Fogel D B 1986 Artificial Intelligence through Evolutionary Programming
US Army Research Institute Final Report Contract PO-9-X56-1102C-1

Fogel L J, Owens A J and Walsh M J 1964 On the evolution of artificial intelligence
Proc. 5th Natl Symp. on Human Factors in Electronics (San Diego, CA: IEEE)

——1965 Artificial intelligence through a simulation of evolution Biophysics and
Cybernetic Systems ed A Callahan, M Maxfield and L J Fogel (Washington, DC:
Spartan) pp 131–56

——1966 Artificial Intelligence through Simulated Evolution (New York: Wiley)
Frantz D R 1972 Non-linearities in Genetic Adaptive Search PhD Thesis, University of

Michigan
Fraser A S 1957 Simulation of genetic systems by automatic digital computers Aust. J.

Biol. Sci. 10 484–99
Friedberg R M 1958 A learning machine: part I IBM J. 2 2–13
Friedberg R M, Dunham B and North J H 1959 A learning machine: part II IBM J. 3

282–7



54 A history of evolutionary computation

Fürst H, Müller P H and Nollau V 1968 Eine stochastische Methode zur Ermittlung
der Maximalstelle einer Funktion von mehreren Veränderlichen mit experimentell
ermittelbaren Funktionswerten und ihre Anwendung bei chemischen Prozessen
Chem.–Tech. 20 400–5

Gehlhaar et al 1995Gehlhaar D K et al 1995 Molecular recognition of the inhibitor
AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary
programming Chem. Biol. 2 317–24

Gell-Mann M 1994 The Quark and the Jaguar (New York: Freeman)
Goldberg D E 1983 Computer-Aided Gas Pipeline Operation using Genetic Algorithms

and Rule Learning PhD Thesis, University of Michigan
——1989 Genetic Algorithms in Search, Optimization and Machine Learning (Reading,

MA: Addison-Wesley)
Goldberg D E, Deb K and Korb B 1991 Don’t worry, be messy Proc. 4th Int. Conf. on

Genetic Algorithms (San Diego, CA, 1991) ed R K Belew and L B Booker (San
Mateo, CA: Morgan Kaufmann) pp 24–30

Grefenstette J J (ed) 1985 Proc. 1st Int. Conf. on Genetic Algorithms and Their
Applications (Pittsburgh, PA, 1985) (Hillsdale, NJ: Erlbaum)

——1987 Proc. 2nd Int. Conf. on Genetic Algorithms and Their Applications (Cambridge,
MA, 1987) (Hillsdale, NJ: Erlbaum)

Haffner S B and Sebald A V 1993 Computer-aided design of fuzzy HVAC
controllers using evolutionary programming Proc. 2nd Ann. Conf. on Evolutionary
Programming (San Diego, CA, 1993) ed D B Fogel and W Atmar (La Jolla, CA:
Evolutionary Programming Society) pp 98–107

Heydt G T 1970 Directed Random Search PhD Thesis, Purdue University
Hoffmeister F and Schwefel H-P 1990 A taxonomy of parallel evolutionary algorithms

Parcella ’90, Proc. 5th Int. Workshop on Parallel Processing by Cellular Automata
and Arrays vol 2, ed G Wolf, T Legendi and U Schendel (Berlin: Academic)
pp 97–107

Holland J H 1962 Outline for a logical theory of adaptive systems J. ACM 9 297–314
——1967 Nonlinear environments permitting efficient adaptation Computer and

Information Sciences II (New York: Academic)
——1969 Adaptive plans optimal for payoff-only environments Proc. 2nd Hawaii Int.

Conf. on System Sciences pp 917–20
——1971 Processing and processors for schemata Associative information processing ed

E L Jacks (New York: Elsevier) pp 127–46
——1973 Genetic algorithms and the optimal allocation of trials SIAM J. Comput. 2

88–105
——1975 Adaptation in Natural and Artificial Systems (Ann Arbor, MI: University of

Michigan Press)
Hollstien R B 1971 Artificial Genetic Adaptation in Computer Control Systems PhD

Thesis, University of Michigan
Kim J-H and Jeon J-Y 1996 Evolutionary programming-based high-precision controller

design Evolutionary Programming V—Proc. 5th Ann. Conf. on Evolutionary
Programming (1996) ed L J Fogel, P J Angeline and T Bäck (Cambridge, MA:
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7
Introduction to evolutionary algorithms

Thomas Bäck

7.1 General outline of evolutionary algorithms

Since they are gleaned from the model of organic evolution, all basic instances
of evolutionary algorithms share a number of common properties, which are
mentioned here to characterize the prototype of a general evolutionary algorithm:

(i) Evolutionary algorithms utilize the collective learning process of a
population of individuals. Usually, each individual represents (or encodes)
a search point in the space of potential solutions to a given problem.
Additionally, individuals may also incorporate further information; for
example, strategy parameters (Sections 16.2 and 32.2) of the evolutionary
algorithm.

(ii) Descendants of individuals are generated by randomized processes intended
to model mutation (Chapter 32) and recombination (Chapter 33) . Mutation
corresponds to an erroneous self-replication of individuals (typically,
small modifications are more likely than large ones), while recombination
exchanges information between two or more existing individuals.

(iii) By means of evaluating individuals in their environment, a measure of
quality or fitness value can be assigned to individuals. As a minimum
requirement, a comparison of individual fitness is possible, yielding a binary
decision (better or worse). According to the fitness measure, the selection
process favors better individuals to reproduce more often than those that
are relatively worse.

These are just the most general properties of evolutionary algorithms, and
the instances of evolutionary algorithms as described in the following chapters
use the components in various different ways and combinations. Some basic
differences in the utilization of these principles characterize the mainstream
instances of evolutionary algorithms; that is, genetic algorithms (Chapter 8),
evolution strategies (Chapter 9) , and evolutionary programming (Chapter 10) .
See D B Fogel (1995) and Bäck (1996) for a detailed overview of similarities
and differences of these instances and Bäck and Schwefel (1993) for a brief
comparison.
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• Genetic algorithms (originally described by Holland (1962, 1975) at Ann
Arbor, Michigan, as so-called adaptive or reproductive plans) emphasize
recombination (crossover) (Chapter 33) as the most important search
operator and apply mutation (Chapter 32) with very small probability
solely as a ‘background operator.’ They also use a probabilistic selection
operator (proportional selection) (Chapter 23) and often rely on a binary
representation (Chapter 15) of individuals.

• Evolution strategies (developed by Rechenberg (1965, 1973) and Schwefel
(1965, 1977) at the Technical University of Berlin) use normally distributed
mutations to modify real-valued vectors (Chapter 16) and emphasize
mutation (Section 32.2) and recombination (Section 33.2) as essential
operators for searching in the search space and in the strategy parameter
space at the same time. The selection operator (Chapter 25) is deterministic,
and parent and offspring population sizes usually differ from each other.

• Evolutionary programming (originally developed by Lawrence J Fogel
(1962) at the University of California in San Diego, as described in
Fogel et al (1966) and refined by David B Fogel (1992) and others)
emphasizes mutation and does not incorporate the recombination of
individuals. Similarly to evolution strategies, when approaching real-
valued optimization problems, evolutionary programming also works with
normally distributed mutations and extends the evolutionary process to the
strategy parameters. The selection operator (Section 27.1) is probabilistic,
and presently most applications are reported for search spaces involving
real-valued vectors, but the algorithm was originally developed to evolve
finite-state machines (Chapter 18) .

In addition to these three mainstream methods, which are described in
detail in the next three chapters, genetic programming, classifier systems, and
hybridizations of evolutionary algorithms with other techniques are considered
in chapters 11–13, respectively. As an introductory remark, we only
mention that genetic programming applies the evolutionary search principle to
automatically develop computer programs in suitable languages (Chapter 10)
(often LISP, but others are possible as well), while classifier systems search
the space of production rules (or sets of rules) of the form ‘IF <condition>
THEN <action>’.

A variety of different representations of individuals and corresponding
operators are presently known in evolutionary algorithm research, and it is the
aim of Chapters 14–34 to present all these in detail. Here, we will use these
chapters as a construction kit to assemble the basic instances of evolutionary
algorithms.

As a general framework for these basic instances, we define I to denote an
arbitrary space of individuals a ∈ I , and F : I → R to denote a real-valued
fitness function of individuals. Using µ and λ to denote parent and offspring
population sizes, P(t) = (a1(t), . . . ,aµ(t)) ∈ Iµ characterizes a population at
generation t . Selection, mutation, and recombination are described as operators
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s : I λ → Iµ, m : I κ → I λ, and r : Iµ → I κ that transform complete
populations. By describing all operators on the population level (though this
is counterintuitive for mutation), a high-level perspective is adopted, which is
sufficently general to cover different instances of evolutionary algorithms. For
mutation, the operator can of course be reduced to the level of single individuals
by defining m through a multiple application of a suitable operator m′ : I → I

on individuals.
These operators typically depend on additional sets of parameters �s , �m,

and �r which are characteristic for the operator and the representation of
individuals. Additionally, an initialization procedure generates a population of
individuals (typically at random, but an initialization with known starting points
should of course also be possible), an evaluation routine determines the fitness
values of the individuals of a population, and a termination criterion is applied
to determine whether or not the algorithm should stop.

Putting all this together, a basic evolutionary algorithm reduces to the simple
recombination–mutation–selection loop as outlined below:

Input: µ, λ, �ι, �r, �m, �s

Output: a∗, the best individual found during the run, or
P ∗, the best population found during the run.

1 t ← 0;
2 P(t) ← initialize(µ);
3 F (t) ← evaluate(P(t), µ);
4 while (ι(P (t), �ι) = true) do
5 P ′(t) ← recombine(P(t), �r );
6 P ′′(t) ← mutate(P ′(t), �m);
7 F (t) ← evaluate(P ′′(t), λ);
8 P(t + 1) ← select(P ′′(t), F (t), µ, �s);
9 t ← t + 1;

od

After initialization of t (line 1) and the population P(t) of size µ (line 2) as
well as its fitness evaluation (line 3), the while-loop is entered. The termination
criterion ι might depend on a variety of parameters, which are summarized
here by the argument �ι. Similarly, recombination (line 5), mutation (line
6), and selection (line 8) depend on a number of algorithm-specific additional
parameters. While P(t) consists of µ individuals, P ′(t) and P ′′(t) are assumed
to be of size κ and λ, respectively. Of course, λ = κ = µ is allowed and
is the default case in genetic algorithms. The setting κ = µ is also often
used in evolutionary programming (without recombination), but it depends on
the application and the situation is quickly changing. Either recombination
or mutation might be absent from the main loop, such that κ = µ (absence
of recombination) or κ = λ (absence of mutation) is required in these cases.
The selection operator selects µ individuals from P ′′(t) according to the fitness
values F (t), t is incremented (line 9), and the body of the main loop is repeated.
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The input parameters of this general evolutionary algorithm include the
population sizes µ and λ as well as the parameter sets �ι, �r , �m, and �s

of the basic operators. Notice that we allow recombination to equal the identity
mapping; that is, P ′′(t) = P ′(t) is possible.

The following sections of this chapter present the common evolutionary
algorithms as particular instances of the general scheme.
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Further reading

The introductory section to evolutionary algorithms certainly provides the right
place to mention the most important books on evolutionary computation and its
subdisciplines. The following list is not intended to be complete, but only to
guide the reader to the literature.

1. Bäck T 1996 Evolutionary Algorithms in Theory and Practice (New York: Oxford
University Press)

A presentation and comparison of evolution strategies, evolutionary programming,
and genetic algorithms with respect to their behavior as parameter optimization
methods. Furthermore, the role of mutation and selection in genetic algorithms is
discussed in detail, arguing that mutation is much more useful than usually claimed
in connection with genetic algorithms.
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Learning (Reading, MA: Addison-Wesley)

An overview of genetic algorithms and classifier systems, discussing all important
techniques and operators used in these subfields of evolutionary computation.
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A description of evolution strategies in the form used by Rechenberg’s group in
Berlin, including a reprint of (Rechenberg 1973).
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The most recent book on evolution strategies, covering the (µ, λ)-strategy and
all aspects of self-adaptation of strategy parameters as well as a comparison of
evolution strategies with classical optimization methods.

5. Fogel D B 1995 Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence (Piscataway, NJ: IEEE)

The book covers all three main areas of evolutionary computation (i.e. genetic
algorithms, evolution strategies, and evolutionary programming) and discusses the
potential for using simulated evolution to achieve machine intelligence.

6. Michalewicz Z 1994 Genetic Algorithms + Data Structures = Evolution Programs
(Berlin: Springer)

Michalewicz also takes a more general view at evolutionary computation, thinking
of evolutionary heuristics as a principal method for search and optimization, which
can be applied to any kind of data structure.

7. Kinnear K E 1994 Advances in Genetic Programming (Cambridge, MA: MIT Press)

This collection of articles summarizes the state of the art in genetic programming,
emphasizing other than LISP-based approaches to genetic programming.

8. Koza J R 1992 Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Cambridge, MA: MIT Press)

9. Koza J R 1994 Genetic Programming II (Cambridge, MA: MIT Press)

The basic books for genetic programming using LISP programs, demonstrating
the feasibility of the method by presenting a variety of application examples from
diverse fields.
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Genetic algorithms

Larry J Eshelman

8.1 Introduction

Genetic algorithms (GAs) are a class of evolutionary algorithms first proposed
and analyzed by John Holland (1975). There are three features which distinguish
GAs, as first proposed by Holland, from other evolutionary algorithms: (i)
the representation used—bitstrings (Chapter 15); (ii) the method of selection—
proportional selection (Chapter 23) ; and (iii) the primary method of producing
variations—crossover (Chapter 33). Of these three features, however, it
is the emphasis placed on crossover which makes GAs distinctive. Many
subsequent GA implementations have adopted alternative methods of selection,
and many have abandoned bitstring representations for other representations
more amenable to the problems being tackled. Although many alternative
methods of crossover have been proposed, in almost every case these variants
are inspired by the spirit which underlies Holland’s original analysis of GA
behavior in terms of the processing of schemata or building blocks. It should be
pointed out, however, that the evolution strategy paradigm (Chapter 9) has added
crossover to its repertoire, so that the distinction between classes of evolutionary
algorithms has become blurred (Bäck et al 1991).

We shall begin by outlining what might be called the canonical GA, similar
to that described and analyzed by Holland (1975) and Goldberg (1987). We
shall introduce a framework for describing GAs which is richer than needed
but which is convenient for describing some variations with regard to the
method of selection. First we shall introduce some terminology. The individual
structures are often referred to as chromosomes. They are the genotypes that
are manipulated by the GA. The evaluation routine decodes these structures
into some phenotypical structure and assigns a fitness value. Typically, but not
necessarily, the chromosomes are bitstrings. The value at each locus on the
bitstring is referred to as an allele. Sometimes the individuals loci are also
called genes. At other times genes are combinations of alleles that have some
phenotypical meaning, such as parameters.
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8.2 Genetic algorithm basics and some variations

An initial population of individual structures P(0) is generated (usually ran-
domly) and each individual is evaluated for fitness. Then some of these individ-
uals are selected for mating and copied (select repro) to the mating buffer C(t).
In Holland’s original GA, individuals are chosen for mating probabilistically,
assigning each individual a probability proportional to its observed performance.
Thus, better individuals are given more opportunities to produce offspring (re-
production with emphasis). Next the genetic operators (usually mutation and
crossover) are applied to the individuals in the mating buffer, producing off-
spring C ′(t). The rates at which mutation and crossover are applied are an
implementation decision. If the rates are low enough, it is likely that some of
the offspring produced will be identical to their parents. Other implementation
details are how many offspring are produced by crossover (one or two), and
how many individuals are selected and paired in the mating buffer. In Hol-
land’s original description, only one pair is selected for mating per cycle. The
pseudocode for the genetic algorithm is as follows:

begin
t = 0;
initialize P(t);
evaluate structures in P(t);
while termination condition not satisfied do
begin

t = t + 1;
select_repro C(t) from P(t-1);
recombine and mutate structures in C(t)
forming C’(t);
evaluate structures in C’(t);
select_replace P(t) from C’(t) and P(t-1);

end
end

After the new offspring have been created via the genetic operators the two
populations of parents and children must be merged to create a new population.
Since most GAs maintain a fixed-sized population M , this means that a total
of M individuals need to be selected from the parent and child populations to
create a new population. One possibility is to use all the children generated
(assuming that the number is not greater than M) and randomly select (without
any bias) individuals from the old population to bring the new population up
to size M . If only one or two new offspring are produced, this in effect means
randomly replacing one or two individuals in the old population with the new
offspring. (This is what Holland’s original proposal did.) On the other hand, if
the number of offspring created is equal to M , then the old parent population is
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completely replaced by the new population.
There are several opportunities for biasing selection: selection for

reproduction (or mating) and selection from the parent and child populations
to produce the new population. The GAs most closely associated with Holland
do all their biasing at the reproduction selection stage. Even among these
GAs, however, there are a number of variations. If reproduction with emphasis
is used, then the probability of an individual being chosen is a function of
its observed fitness. A straightforward way of doing this would be to total
the fitness values assigned to all the individuals in the parent population and
calculate the probability of any individual being selected by dividing its fitness
by the total fitness. One of the properties of this way of assigning probabilities is
that the GA will behave differently on functions that seem to be equivalent from
an optimization point of view such as y = ax2 and y = ax2+ b. If the b value
is large in comparison to the differences in the value produced by the ax2 term,
then the differences in the probabilities for selecting the various individuals in
the population will be small, and selection pressure will be very weak. This often
happens as the population converges upon a narrow range of values. One way
of avoiding this behavior is to scale the fitness function, typically to the worst
individual in the population (De Jong 1975). Hence the measure of fitness used
in calculating the probability for selecting an individual is not the individual’s
absolute fitness, but its fitness relative to the worst individual in the population.

Although scaling can eliminate the problem of not enough selection
pressure, often GAs using fitness proportional selection suffer from the opposite
problem—too much selection pressure. If an individual is found which is much
better than any other, the probability of selecting this individual may become
quite high (especially if scaling to the worst is used). There is the danger
that many copies of this individual will be placed in the mating buffer, and
this individual (and its similar offspring) will rapidly take over the population
(premature convergence). One way around this is to replace fitness proportional
selection with ranked selection (Whitley 1989). The individuals in the parent
population are ranked, and the probability of selection is a linear function of
rank rather than fitness, where the ‘steepness’ of this function is an adjustable
parameter.

Another popular method of performing selection is tournament selection
(Goldberg and Deb 1991). A small subset of individuals is chosen at random,
and then the best individual (or two) in this set is (are) selected for the mating
buffer. Tournament selection, like rank selection, is less subject to rapid takeover
by good individuals, and the selection pressure can be adjusted by controlling
the size of the subset used.

Another common variation of those GAs that rely upon reproduction
selection for their main source of selection bias is to maintain one copy of
the best individual found so far (De Jong 1975). This is referred to as the
elitist strategy (Section 28.4). It is actually a method of biased parent selection,
where the best member of the parent population is chosen and all but one
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of the M members of the child population are chosen. Depending upon the
implementation, the selection of the child to be replaced by the best individual
from the parent population may or may not be biased.

A number of GA variations make use of biased replacement selection.
Whitley’s GENITOR, for example, creates one child each cycle, selecting the
parents using ranked selection, and then replacing the worst member of the
population with the new child (Whitley 1989). Syswerda’s steady-state GA
creates two children each cycle, selecting parents using ranked selection, and
then stochastically choosing two individuals to be replaced, with a bias towards
the worst individuals in the parent population (Syswerda 1989). Eshelman’s
CHC uses unbiased reproductive selection by randomly pairing all the members
of the parent population, and then replacing the worst individuals of the parent
population with the better individuals of the child population. (In effect, the
offspring and parent populations are merged and the best M (population size)
individuals are chosen.) Since the new offspring are only chosen by CHC if
they are better than the members of the parent population, the selection of both
the offspring and parent populations is biased (Eshelman 1991).

These methods of replacement selection, and especially that of CHC,
resemble the (µ+λ) ES method of selection (Section 25.4) sometimes originally
used by evolution strategies (ESs) (Bäck et al 1991). From µ parents λ

offspring are produced; the µ parents and λ offspring are merged; and the
best µ individuals are chosen to form the new parent population. The other
ES selection method, (µ, λ) ES (Section 25.4), places all the bias in the child
selection stage. In this case, µ parents produce λ offspring (λ > µ), and the best
µ offspring are chosen to replace the parent population. Mühlenbein’s breeder
GA also uses this selection mechanism (Mühlenbein and Schlierkamp-Voosen
1993).

Often a distinction is made between generational and steady-state GAs
(Section 28.3). Unfortunately, this distinction tends to merge two properties that
are quite independent: whether the replacement strategy of the GA is biased
or not and whether the GA produces one (or two) versus many (usually M)
offspring each cycle. Syswerda’s steady-state GA, like Whitley’s GENITOR,
allows only one mating per cycle and uses a biased replacement selection,
but there are also GAs that combine multiple matings per cycle with biased
replacement selection (CHC) as well as a whole class of ESs ((µ + λ) ES).
Furthermore, the GA described by Holland (1975) combined a single mating per
cycle and unbiased replacement selection. Of these two features, it would seem
that the most significant is the replacement strategy. De Jong and Sarma (1993)
found that the main difference between GAs allowing many matings versus few
matings per cycle is that the latter have a higher variance in performance.

The choice between a biased and an unbiased replacement strategy, on the
other hand, is a major determinant of GA behavior. First, if biased replacement
is used in combination with biased reproduction, then the problem of premature
convergence is likely to be compounded. (Of course this will depend upon
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other factors, such as the size of the population, whether ranked selection is
used, and, if so, the setting of the selection bias parameter.) Second, the obvious
shortcoming of unbiased replacement selection can turn out to be a strength. On
the negative side, replacing the parents by the children, with no mechanism for
keeping those parents that are better than any of the children, risks losing,
perhaps forever, very good individuals. On the other hand, replacing the
parents by the children can allow the algorithm to wander, and it may be
able to wander out of a local minimum that would trap a GA relying upon
biased replacement selection. Which is the better strategy cannot be answered
except in the context of the other mechanisms of the algorithm (as well as the
nature of the problem being solved). Both Syswerda’s steady-state GA and
Whitley’s GENITOR combine a biased replacement strategy with a mechanism
for eliminating children which are duplicates of any member in the parent
population. CHC uses unbiased reproductive selection, relying solely upon
biased replacement selection as its only source of selection pressure, and uses
several mechanisms for maintaining diversity (not mating similar individuals and
seeded restarts), which allow it to take advantage of the preserving properties
of a deterministic replacement strategy without suffering too severely from its
shortcomings.

8.3 Mutation and crossover

All evolutionary algorithms work by combining selection with a mechanism for
producing variations. The best known mechanism for producing variations is
mutation, where one allele of a gene is randomly replaced by another. In other
words, new trial solutions are created by making small, random changes in the
representation of prior trial solutions. If a binary representation is used, then
mutation is achieved by ‘flipping’ bits at random. A commonly used rate of
mutation is one over the string length. For example, if the chromosome is one
hundred bits long, then the mutation rate is set so that each bit has a probability
of 0.01 of being flipped.

Although most GAs use mutation along with crossover, mutation is
sometimes treated as if it were a background operator for assuring that the
population will consist of a diverse pool of alleles that can be exploited by
crossover. For many optimization problems, however, an evolutionary algorithm
using mutation without crossover can be very effective (Mathias and Whitley
1994). This is not to suggest that crossover never provides an added benefit,
but only that one should not disparage mutation.

The intuitive idea behind crossover is easy to state: given two individuals
who are highly fit, but for different reasons, ideally what we would like to
do is create a new individual that combines the best features from each. Of
course, since we presumably do not know which features account for the good
performance (if we did we would not need a search algorithm), the best we can
do is to recombine features at random. This is how crossover operates. It treats
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these features as building blocks scattered throughout the population and tries to
recombine them into better individuals via crossover. Sometimes crossover will
combine the worst features from the two parents, in which case these children
will not survive for long. But sometimes it will recombine the best features from
two good individuals, creating even better individuals, provided these features
are compatible.

Suppose that the representation is the classical bitstring representation:
individual solutions in our population are represented by binary strings of zeros
and ones of length L. A GA creates new individuals via crossover by choosing
two strings from the parent population, lining them up, and then creating two
new individuals by swapping the bits at random between the strings. (In some
GAs only one individual is created and evaluated, but the procedure is essentially
the same.) Holland originally proposed that the swapping be done in segments,
not bit by bit. In particular, he proposed that a single locus be chosen at random
and all bits after that point be swapped. This is known as one-point crossover.
Another common form of crossover is two-point crossover which involves
choosing two points at random and swapping the corresponding segments from
the two parents defined by the two points. There are of course many possible
variants. The best known alternative to one- and two-point crossover is uniform
crossover. Uniform crossover randomly swaps individual bits between the two
parents (i.e. exchanges between the parents the values at loci chosen at random).

Following Holland, GA behavior is typically analyzed in terms of schemata.
Given a space of structures represented by bitstrings of length L, schemata
represent partitions of the search space. If the bitstrings of length L are
interpreted as vectors in a L-dimensional hypercube, then schemata are
hyperplanes of the space. A schema can be represented by a string of L symbols
from the set 0, 1, # where # is a ‘wildcard’ matching either 0 or 1. Each string
of length L may be considered a sample from the partition defined by a schema
if it matches the schema at each of the defined positions (i.e. the non-# loci).
For example, the string 011001 instantiates the schema 01##0#. Each string, in
fact, instantiates 2L schemata.

Two important schema properties are order and defining length. The order of
a schema is the number of defined loci (i.e. the number of non-# symbols). For
example the schema #01##1### is an order 3 schema. The defining length is
the distance between the loci of the first and last defined positions. The defining
length of the above schema is four since the loci of the first and last defined
positions are 2 and 6.

From the hyperplane analysis point of view, a GA can be interpreted as
focusing its search via crossover upon those hyperplane partition elements that
have on average produced the best-performing individuals. Over time the search
becomes more and more focused as the population converges since the degree of
variation used to produce new offspring is constrained by the remaining variation
in the population. This is because crossover has the property that Radcliffe refers
to as respect—if two parents are instances of the same schema, the child will
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also be an instance (Radcliffe 1991). If a particular schema conveys high fitness
values to its instances, then the population is likely to converge on the defining
bits of this schema. Once it so converges, all offspring will be instances of this
schema. This means that as the population converges, the search becomes more
and more focused on smaller and smaller partitions of the search space.

It is useful to contrast crossover with mutation in this regard. Whereas
mutation creates variations by flipping bits randomly, crossover is restricted to
producing variations at those loci on which the population has not yet converged.
Thus crossover, and especially bitwise versions of crossover, can be viewed as
a form of adaptive mutation, or convergence-controlled variation (CCV).

The standard explanation of how GAs operate is often referred to as the
building block hypothesis. According to this hypothesis, GAs operate by
combining small building blocks into larger building blocks. The intuitive idea
behind recombination is that by combining features (or building blocks) from
two good parents crossover will often produce even better children; for example,
a mother with genes for sharp teeth and a father with genes for sharp claws will
have the potential of producing some children who have both features. More
formally, the building blocks are the schemata discussed above.

Loosely interpreted, the building block hypothesis is another way of asserting
that GAs operate through a process of CCV. The building block hypothesis,
however, is often given a stronger interpretation. In particular, crossover is
seen as having the added value of being able to recombine middle-level building
blocks that themselves cannot be built from lower-level building blocks (where
level refers to either the defining length or order, depending on the crossover
operator). We shall refer to this explanation as to how GAs work as the strict
building block hypothesis (SBBH), and contrast it with the weaker convergence-
controlled variation hypothesis (CCVH).

To differentiate these explanations, it is useful to compare crossover with
an alternative mechanism for achieving CCV. Instead of pairing individuals
and swapping segments or bits, a more direct method of generating CCVs is
to use the distribution of the allele values in the population to generate new
offspring. This is what Syswerda’s bitwise simulated crossover (BSC) algorithm
does (Syswerda 1993). In effect, the distribution of allele values is used to
generate a vector of allele probabilities, which in turn is used to generate a
string of ones and zeros. Baluja’s PBIL goes one step further and eliminates
the population, and simply keeps a probability vector of allele values, using an
update rule to modify it based on the fitness of the samples generated (Baluja
1995).

The question is, if one wants to take advantage of CCV with its ability to
adapt, why use crossover, understood as involving pairwise mating, rather than
one of these poolwise schemes? One possible answer is that the advantage is
only one of implementation. The pairwise implementation does not require any
centralized bookkeeping mechanism. In other words, crossover (using pairwise
mating) is simply nature’s way of implementing a decentralized version of CCV.
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A more theoretically satisfying answer is that pairwise mating is better able
to preserve essential linkages among the alleles. One manifestation of this is
that there is no obvious way to implement a segment-based version of poolwise
mating, but this point also applies if we compare poolwise mating with only
crossover operators that operate at the bit level, such as uniform crossover. If
two allele values are associated in some individual, the probability of these
values being associated in the children is much higher for pairwise mating than
poolwise. To see this consider an example. Suppose the population size is
100, and that an individual of average fitness has some unique combination of
allele values, say all ones in the first three positions. This individual will have
a 0.01 probability (one out of 100) of being selected for mating, assuming it is
of average fitness. If uniform crossover is being used, with a 0.5 probability
of swapping the values at each locus, and one offspring is being produced per
mating, then the probability of the three allele values being propagated without
disruption has a lower bound of 0.125 (0.53). This is assuming the worst-case
scenario that every other member in the population has all zeros in the first
three positions (and ignoring the possibility of mating this individual with a
copy of itself). Thus, the probability of propagating this schema is 0.00125
(0.01 ∗ 0.125). On the other hand, if BSC is being used, then the probability
of propagating this schema is much lower. Since there is only one instance of
this individual in the population, there is only one chance in 100 of propagating
each allele and only 0.000 001 (0.013) of propagating all three.

Ultimately, one is faced with a tradeoff: the enhanced capability of pairwise
mating to propagate difficult-to-find schemata is purchased at the risk of
increased hitchhiking; that is, the population may prematurely converge on bits
that do not convey additional fitness but happen to be present in the individuals
that are instances of good schemata. According to both the CCVH and the
SBBH, crossover must not simply preserve and propagate good schemata, but
must also recombine them with other good schemata. Recombination, however,
requires that these good schemata be tried in the context of other schemata.
In order to determine which schemata are the ones contributing to fitness, we
must test them in many different contexts, and this involves prying apart the
defining positions that contribute to fitness from those that are spurious, but the
price for this reduced hitchhiking is higher disruption (the breaking up of the
good schemata). This price will be too high if the algorithm cannot propagate
critical, highly valued, building blocks or, worse yet, destroys them in the next
crossover cycle.

This tradeoff applies not only to the choice between poolwise and pairwise
methods of producing variation, but also to the choice between various methods
of crossover. Uniform crossover, for example, is less prone to hitchhiking than
two-point crossover, but is also more disruptive, and poolwise mating schemes
are even more disruptive than uniform crossover. In Holland’s original analysis
this tradeoff between preserving the good schemata while performing vigorous
recombination is downplayed by using a segment-based crossover operator such
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as one- or two-point crossover and assuming that the important building blocks
are of short defining length. Unfortunately, for the types of problem to which
GAs are supposedly ideally suited—those that are highly complex with no
tractable analytical solution—there is no a priori reason to assume that the
problem will, or even can, be represented so that important building blocks will
be those with short defining length. To handle this problem Holland proposed an
inversion operator that could reorder the loci on the string, and thus be capable
of finding a representation that had building blocks with short defining lengths.
The inversion operator, however, has not proven sufficiently effective in practice
at recoding strings on the fly. To overcome this linkage problem, Goldberg has
proposed what he calls messy GAs, but, before discussing messy GAs, it will
be helpful to describe a class of problems that illustrate these linkage issues:
deceptive problems.

Deception is a notion introduced by Goldberg (1987). Consider two
incompatible schemata, A and B. A problem is deceptive if the average fitness of
A is greater than B even though B includes a string that has a greater fitness than
any member of A. In practice this means that the lower-order building blocks
lead the GA away from the global optimum. For example, consider a problem
consisting of five-bit segments for which the fitness of each is determined as
follows (Liepins and Vose 1991). For each one the segment receives a point,
and thus five points for all ones , but for all zeros it receives a value greater
than five. For problems where the value of the optimum is between five and
eight the problem is fully deceptive (i.e. all relevant lower-order hyperplanes
lead toward the deceptive attractor). The total fitness is the sum of the fitness
of the segments.

It should be noted that it is probably a mistake to place too much emphasis on
the formal definition of deception (Grefenstette 1993). What is really important
is the concept of being misled by the lower-order building blocks. Whereas
the formal definition of deception stresses the average fitness of the hyperplanes
taken over the entire search space, selection only takes into account the observed
average fitness of hyperplanes (those in the actual population). The interesting
set of problems is those that are misleading in that manipulation of the lower-
order building blocks is likely to lead the search away from the middle-level
building blocks that constitute the optimum solution, whether these middle-level
building blocks are deceptive in the formal sense or not. In the above class of
functions, even when the value of the optimum is greater than eight (and so
not fully deceptive), but still not very large, e.g. ten, the problem is solvable
by a GA using segment-based crossover, very difficult for a GA using bitwise
uniform crossover, and all but impossible for a poolwise-based algorithm like
BSC.

As long as the deceptive problem is represented so that the loci of the
positions defining the building blocks are close together on the string, it meets
Holland’s original assumption that the important building blocks are of short
defining length. The GA will be able to exploit this information using one- or
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two-point crossover—the building blocks will have a low probability of being
disrupted, but will be vigorously recombined with other building blocks along
the string. If, on the other hand, the bits constituting the deceptive building
blocks are maximally spread out on the chromosome, then a crossover operator
such as one- or two-point crossover will tend to break up the good building
blocks. Of course, maximally spreading the deceptive bits along the string is
the extreme case, but bunching them together is the opposite extreme.

Since one is not likely to know enough about the problem to be able
to guarantee that the building blocks are of short defining length, segmented
crossover loses its advantage over bitwise crossover. It is true that bitwise
crossover operators are more disruptive, but there are several solutions to
this problem. First, there are bitwise crossover operators that are much less
disruptive than the standard uniform crossover operator (Spears and De Jong
1991, Eshelman and Schaffer 1995). Second, the problem of preservation can
often be ameliorated by using some form of replacement selection so that good
individuals survive until they are replaced by better individuals (Eshelman and
Schaffer 1995). Thus a disruptive form of crossover such as uniform crossover
can be used and good schemata can still be preserved. Uniform crossover will
still make it difficult to propagate these high-order, good schemata once they
are found, but, provided the individuals representing these schemata are not
replaced by better individuals that represent incompatible schemata, they will
be preserved and may eventually be able to propagate their schemata on to
their offspring. Unfortunately, this proviso is not likely to be met by any but
low-order deceptive problems. Even for deceptive problems of order five, the
difficulty of propagating optimal schemata is such that the suboptimal schemata
tend to crowd out the optimum ones.

Perhaps the ultimate GA for tackling deceptive problems is Goldberg’s
messy GA (mGA) (Goldberg et al 1991). Whereas in more traditional GAs
the manipulation of building blocks is implicit, mGAs explicitly manipulate
the building blocks. This is accomplished by using variable-length strings that
may be underspecified or overspecified; that is, some bit positions may not be
defined, and some positions may have conflicting specifications. This is what
makes mGAs messy.

These strings constitute the building blocks. They consist of a set of
position–value pairs. Overspecified strings are evaluated by a simple conflict
resolution strategy such as first-come-first-served rules. Thus, ((1 0) (2 1) (1 1)
(3 0)) would be interpreted as 010, ignoring the third pair, since the first position
has already been defined. Underspecified strings are interpreted by filling in the
missing values using a competitive template, a locally optimal structure. For
example, if the locally optimal structure, found by testing one bit at a time, is
111, then the string ((1 0) (3 0)) would be interpreted by filling in the value
for the (missing) second position with the value of the second position in the
template. The resulting 010 string would then be evaluated.

mGAs have an outer and an inner loop. The inner loop consists of
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three phases: the initialization, primordial, and juxtaposition phases. In the
initialization phase all substrings of length k are created and evaluated, i.e. all
combinations of strings with k defining positions (where k is an estimate of the
highest order of deception in the problem). As was explained above the missing
values are filled in using the competitive template. (As will be explained below,
the template for the k level of the outer loop is the solution found at the k − 1
level.)

In the primordial phase, selection is applied to the population of individuals
produced during the initialization phase without any operators. Thus the
substrings that have poor evaluations are eliminated and those with good
evaluations have multiple copies in the resulting population.

In the juxtapositional phase selection in conjunction with cut and splice
operators is used to evolve improved variations. Again, the competitive template
is used for filling in missing values, and the first-come-first-served rule is used
for handling overspecified strings created by the splice operator. The cut and
splice operators act much like one-point crossover in a traditional GA, keeping
in mind that the strings are of variable length and may be underspecified or
overspecified.

The outer loop is over levels. It starts at the level of k = 1, and continues
through each level until it reaches a user-specified stopping criterion. At each
level, the solution found at the previous level is used as the competitive template.

One of the limitations of mGAs as originally conceived is that the
initialization phase becomes extremely expensive as the mGA progresses up
the levels. A new variant of the mGA speeds up the process by eliminating the
need to process all the variants in the initialization stage (Goldberg et al 1993).
The initialization and primordial phases of the original mGA are replaced by a
‘probabilistically complete initialization’ procedure. This procedure is divided
into several steps. During the first step strings of nearly length L are evaluated
(using the template to fill in the missing values). Then selection is applied to
these strings without any operators (much as was done in the primordial phase
of the original mGA, but for only a few generations). Then the algorithm enters
a filtering step where some of the genes in the strings are deleted, and the
shortened strings are evaluated using the competitive template. Then selection
is applied again. This process is repeated until the resulting strings are of
length k. Then the mGA goes into the juxtaposition stage like the original
mGA. By replacing the original initialization and primordial stages with stepwise
filtering and selection, the number of evaluations required is drastically reduced
for problems of significant size. (Goldberg et al (1993) provide analytical
methods for determining the population and filtering reduction constants.) This
new version of the mGA is very effective at solving loosely linked deceptive
problems, i.e. those problems where the defining positions of the deceptive
segments are spread out along the bitstring.

mGAs were designed to operate according to the SBBH, and deceptive
problems illustrate that there are problems where being able to manipulate
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building blocks can provide an added value over CCV. It still is an open
question, however, as to how representative deceptive problems are of the types
of real-world problem that GAs might encounter. No doubt, many difficult
real-world problems have deceptive or misleading elements in them. If they did
not, they could be easily solved by local search methods. However it does not
necessarily follow that such problems can be solved by a GA that is good at
solving deceptive problems. The SBBH assumes that the misleading building
blocks will exist in the initial population, that they can be identified early in the
search before they are lost, and that the problem can be solved incrementally
by combining these building blocks, but perhaps the building blocks that have
misleading alternatives have little meaning until late in the search and so cannot
be expected to survive in the population.

Even if the SBBH turns out not to be as useful an hypothesis as originally
supposed, the increased propagation capabilities of pairwise mating may give a
GA (using pairwise mating) an advantage over a poolwise CCV algorithm. To
see why this is the case it is useful to define the prototypical individual for a
given population: for each locus we assign a one or a zero depending upon which
value is most frequent in the population (randomly assigning a value if they are
equally frequent). Suppose the population contains some maverick individual
that is quite far from the prototypical individual although it is near the optimum
(as measured by Hamming distance) but is of only average fitness. Since an
algorithm using a poolwise method of producing offspring will tend to produce
individuals that are near the prototypical individual, such an algorithm is unlikely
to explore the region around the maverick individual. On the other hand, a GA
using pairwise mating is more likely to explore the region around the maverick
individual, and so more likely to discover the optimum. Ironically, pairwise
mating is, in this respect, more mutation-like than poolwise mating. While
pairwise mating retains the benefits of CCV, it less subject to the majoritarian
tendencies of poolwise mating.

8.4 Representation

Although GAs typically use a bitstring representation, GAs are not restricted
to bitstrings. A number of early proponents of GAs developed GAs that use
other representations, such as real-valued parameters (Davis 1991, Janikow
and Michalewicz 1991, Wright 1991; see Chapter 16), permutations (Davis
1985, Goldberg and Lingle 1985, Grefenstette et al 1985; see Chapter 17), and
treelike hierarchies (Antonisse and Keller 1987; see Chapter 19). Koza’s genetic
programming (GP) paradigm (Koza 1992; see Chapter 11) is a GA-based method
for evolving programs, where the data structures are LISP S-expressions, and
crossover creates new LISP S-expressions (offspring) by exchanging subtrees
from the two parents.
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In the case of combinatorial problems such as the traveling salesman problem
(TSP), a number of order-based or sequencing crossover operators have been
proposed. The choice of operator will depend upon one’s goal. If the goal is to
solve a TSP, then preserving adjacency information will be the priority, which
suggests a crossover operator that operates on common edges (links between
cities shared by the two parents) (Whitley et al 1989). On the other hand,
if the goal is to solve a scheduling problem, then preserving relative order is
likely to be the priority, which suggests an order preserving crossover operator.
Syswerda’s order crossover operator (Syswerda 1991), for example, chooses
several positions at random in the first parent, and then produces a child so that
the relative order of the chosen elements in the first parent is imposed upon the
second parent.

Even if binary strings are used, there is still a choice to be made as to
which binary coding scheme to use for numerical parameters. Empirical studies
have usually found that Gray code is superior to the standard power-of-two
binary coding (Caruana and Schaffer 1988), at least for the commonly used
test problems. One reason is that the latter introduces Hamming cliffs—two
numerically adjacent values may have bit representations that are many bits apart
(up to L−1). This will be a problem if there is some degree of gradualness in the
function, i.e. small changes in the variables usually correspond to small changes
in the function. This is often the case for functions with numeric parameters.

As an example, consider a five-bit parameter, with a range from 0 to 31. If
it is encoded using the standard binary coding, then 15 is encoded as 01111,
whereas 16 is encoded as 10000. In order to move from 15 to 16, all five
bits need to be changed. On the other hand, using Gray coding, 15 would be
represented as 01000 and 16 as 11000, differing only by 1 bit.

When choosing an alternative representation, it is critical that a crossover
operator be chosen that is appropriate for the representation. For example, if
real-valued parameters are used, then a possible crossover operator is one that
for each parameter uses the parameter values of the two parents to define an
interval from which a new parameter is chosen (Eshelman and Schaffer 1993).
As the GA makes progress it will narrow the range over which it searches for
new parameter values.

If, for the chosen representation and crossover operator, the building blocks
are unlikely to be instantiated independently of each other in the population,
then a GA may not be appropriate. This problem has plagued finding crossover
operators that are good for solving TSPs. The natural building blocks, it would
seem, are subtours. However, what counts as a good subtour will almost
always depend upon what the other subtours are. In other words, two good,
but suboptimal solutions to a TSP may not have many subtours (other than
very short ones) that are compatible with each other so that they can be spliced
together to form a better solution. This hurdle is not unique to combinatorial
problems.

Given the importance of the representation, a number of researches have
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suggested methods for allowing the GA to adapt its own coding. We noted
earlier that Holland proposed the inversion operator for rearranging the loci
in the string. Another approach to adapting the representation is Shaefer’s
ARGOT system (Shaefer 1987). ARGOT contains an explicit parameterized
representation of the mappings from bitstrings to real numbers and heuristics
for triggering increases and decreases in resolution and for shifts in the ranges
of these mappings. A similar idea is employed by Schraudolph and Belew
(1992) who provide a heuristic for increasing the resolution triggered when the
population begins to converge. Mathias and Whitley (1994) have proposed
what they call delta coding. When the population converges, the numeric
representation is remapped so that the parameter ranges are centered around
the best value found so far, and the algorithm is restarted. There are also
heuristics for narrowing or extending the range.

There are also GAs with mechanisms for dynamically adapting the rate
at which GA operators are used or which operator is used. Davis, who has
developed a number of nontraditional operators, proposed a mechanism for
adapting the rate at which these operators are applied based on the past success
of these operators during a run of the algorithm (Davis 1987).

8.5 Parallel genetic algorithms

All evolutionary algorithms, because they maintain a population of solutions,
are naturally parallelizable. However, because GAs use crossover, which is a
way of sharing information, there are two other variations that are unique to
GAs (Gordon and Whitley 1993). The first, most straightforward, method is
to simply have one global population with multiple processors for evaluating
individual solutions. The second method, often referred to as the island
model (alternatively, the migration or coarse-grain model), maintains separate
subpopulations. Selection and crossover take place in each subpopulation in
isolation from the other subpopulations. Every so often an individual from one
of the subpopulations is allowed to migrate to another subpopulation. This way
information is shared among subpopulations.

The third method, often referred to as the neighborhood model (alternatively,
the diffusion or fine-grain model), maintains overlapping neighborhoods. The
neighborhood for which selection (for reproduction and replacement) applies is
restricted to a region local to each individual. What counts as a neighborhood
will depend upon the neighborhood topology used. For example, if the
population is arranged upon some type of spherical structure, individuals might
be allowed to mate with (and forced to compete with) neighbors within a certain
radius.
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8.6 Conclusion

Although the above discussion has been in the context of GAs as potential
function optimizers, it should be pointed out that Holland’s initial GA work was
in the broader context of exploring GAs as adaptive systems (De Jong 1993).
GAs were designed to be a simulation of evolution, not to solve problems. Of
course, evolution has come up with some wonderful designs, but one must not
lose sight of the fact that evolution is an opportunistic process operating in an
environment that is continuously changing. Simon has described evolution as
a process of searching where there is no goal (Simon 1983). This is not to
question the usefulness of GAs as function optimizers, but only to emphasize
that the perspective of function optimization is somewhat different from that of
adaptation, and that the requirements of the corresponding algorithms will be
somewhat different.
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9
Evolution strategies

Günter Rudolph

9.1 The archetype of evolution strategies

Minimizing the total drag of three-dimensional slender bodies in a turbulent
flow was, and still is, a general goal of research in institutes of hydrodynamics.
Three students (Peter Bienert, Ingo Rechenberg, and Hans-Paul Schwefel)
met each other at such an institute, the Hermann Föttinger Institute of the
Technical University of Berlin, in 1964. Since they were fascinated not only
by aerodynamics, but also by cybernetics, they hit upon the idea to solve the
analytically (and at that time also numerically) intractable form design problem
with the help of some kind of robot. The robot should perform the necessary
experiments by iteratively manipulating a flexible model positioned at the outlet
of a wind tunnel. An experimentum crucis was set up with a two-dimensional
foldable plate. The iterative search strategy—first performed by hand, a robot
was developed later on by Peter Bienert—was expected to end up with a flat
plate: the form with minimal drag. But it did not, since a one-variable-at-a-time
as well as a discrete gradient-type strategy always got stuck in a local minimum:
an S-shaped folding of the plate. Switching to small random changes that were
only accepted in the case of improvements—an idea of Ingo Rechenberg—
brought the breakthrough, which was reported at the joint annual meeting of
WGLR and DGRR in Berlin, 1964 (Rechenberg 1965). The interpretation of
binomially distributed changes as mutations and of the decision to step back or
not as selection (on 12 June 1964) was the seed for all further developments
leading to evolution strategies (ESs) as they are known today. So much about
the birth of the ES.

It should be mentioned that the domain of the decision variables was not fixed
or even restricted to real variables at that time. For example, the experimental
optimization of the shape of a supersonic two-phase nozzle by means of
mutation and selection required discrete variables and mutations (Klockgether
and Schwefel 1970) whereas first numerical experiments with the early ES on
a Zuse Z 23 computer (Schwefel 1965) employed discrete mutations of real
variables. The apparent fixation of ESs to Euclidean search spaces nowadays
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is probably due to the fact that Rechenberg (1973) succeeded in analyzing the
simple version in Euclidean space with continuous mutation for several test
problems.

Within this setting the archetype of ESs takes the following form. An
individual a consisting of an element X ∈ Rn is mutated by adding a normally
distributed random vector Z ∼ N(0, In) that is multiplied by a scalar σ > 0 (In
denotes the unit matrix with rank n). The new point is accepted if it is better than
or equal to the old one, otherwise the old point passes to the next iteration. The
selection decision is based on a simple comparison of the objective function
values of the old and the new point. Assuming that the objective function
f : Rn → R is to be minimized, the simple ES, starting at some point X0 ∈ Rn,
is determined by the following iterative scheme:

Xt+1 =
{

Xt + σt Zt if f (Xt + σt Zt ) ≤ f (Xt )

Xt otherwise
(9.1)

where t ∈ N0 denotes the iteration counter and where (Zt : t ≥ 0) is a sequence
of independent and identically distributed standard normal random vectors.

The general algorithmic scheme (9.1) was not a novelty: Schwefel (1995,
pp 94–5), presents a survey of forerunners and related versions of (9.1) since
the late 1950s. Most methods differed in the mechanism of adjusting the
parameter σt , that is used to control the strength of the mutations (i.e. the
length of the mutation steps in n-dimensional space). Rechenberg’s solution to
control parameter σt is known as the 1/5 success rule: Increase σt if the relative
frequency of successful mutations over some period in the past is larger than
1/5, otherwise decrease σt . Schwefel (1995, p 112), proposed the following
implementation. Let t ∈ N be the generation (or mutation) counter and assume
that t ≥ 10n.

(i) If t mod n = 0 then determine the number s of successful mutations that
have occurred during the steps t − 10n to t − 1.

(ii) If s < 2n then multiply the step lengths by the factor 0.85.

(iii) If s > 2n then divide the step lengths by the factor 0.85.

First ideas to extend the simple ES (9.1) can be found in the book by Rechenberg
(1973, pp 78–86). The population consists of µ > 1 parents. Two parents are
selected at random and recombined by multipoint crossover and the resulting
individual is finally mutated. The offspring is added to the population. The
selection operation chooses the µ best individuals out of the µ + 1 in total to
serve as parents of the next iteration. Since the search space was binary, this ES
was exactly the same evolutionary algorithm as became known later under the
term steady-state genetic algorithm (Section 28.1). The usage of this algorithmic
scheme for Euclidean search spaces poses the problem of how to control the
step length control parameter σt . Therefore, the ‘steady-state’ ES is no longer
in use.
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9.2 Contemporary evolution strategies

The general algorithmic frame of contemporary ESs is easily presented by the
symbolic notation introduced by Schwefel (1977). The abbreviation (µ+λ) ES
denotes an ES that generates λ offspring from µ parents and selects the µ best
individuals from the µ + λ individuals (parents and offspring) in total. This
notation can be used to express the simple ES by (1 + 1) ES and the ‘steady-
state’ ES by (µ+ 1) ES. Since the latter is not in use it is convention that the
abbreviation (µ + λ) ES always refers to an ES parametrized according to the
relation 1 ≤ µ ≤ λ < ∞.

The abbreviation (µ, λ) ES denotes an ES that generates λ offspring from
µ parents but selects the µ best individuals only from the λ offspring. As a
consequence, λ must be necessarily at least as large as µ. However, since the
parameter setting µ = λ represents nothing more than a random walk, it is
convention that the abbreviation (µ, λ) ES always refers to an ES parametrized
according to the relation 1 ≤ µ < λ < ∞.

Apart from the population concept contemporary ESs differ from early ESs in
that an individual consists of an element x ∈ Rn of the search space plus several
individual parameters controlling the individual mutation distribution. Usually,
mutations are distributed according to a multivariate normal distribution with
zero mean and some covariance matrix C that is symmetric and positive definite.
Unless matrix C is a diagonal matrix, the mutations in each coordinate direction
are correlated (Schwefel 1995, p 240). It was shown in Rudolph (1992) that a
matrix is symmetric and positive definite if and only if it is decomposable via
C = (ST)′ST where S is a diagonal matrix with positive diagonal entries and

T =
n−1∏
i=1

n∏
j=i+1

Rij (ωk) (9.2)

is an orthogonal matrix built by a product of n (n − 1)/2 elementary rotation
matrices Rij with angles ωk ∈ (0, 2 π ]. An elementary rotation matrix Rij (ω)

is a unit matrix where four specific entries are replaced by rii = rjj = cos ω

and rij = −rji = − sin ω.
As a consequence, n (n−1)/2 angles and n scaling parameters are sufficient

to generate arbitrary correlated normal random vectors with zero mean and
covariance matrix C = (ST)′ST via Z = T′S′N , where N is a standard normal
random vector (since matrix multiplication is associative, random vector Z can
be created in O(n2) time by multiplication from right to left).

There remains, however, the question of how to choose and adjust these
individual strategy parameters. The idea that a population-based ES could be
able to adapt σt individually by including these parameters in the mutation–
selection process came up early (Rechenberg 1973, pp 132–7). Although first
experiments with the (µ+ 1) ES provided evidence that this approach works in
principle, the first really successful implementation of the idea of self-adaptation
was presented by Schwefel (1977) and it is based on the observation that a
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surplus of offspring (i.e. λ > µ) is a good advice to establish self-adaptation of
individual parameters.

To start with a simple case let C = σ 2 In. Thus, the only parameter to be
self-adapted for each individual is the step length control parameter σ . For
this purpose let the the genome of each individual be represented by the tuple
(X, σ ) ∈ Rn × R+, that undergoes the genetic operators. Now mutation is a
two-stage operation:

σt+1 = σt exp(τZτ )

Xt+1 = Xt + σt+1Z

where τ = n−1/2 and Zτ is a standard normal random variable whereas Z is
a standard normal random vector. This scheme can be extended to the general
case with n (n+ 1)/2 parameters.

(i) Let ω ∈ (0, 2 π ]n(n−1)/2 denote the angles that are necessary to build the
orthogonal rotation matrix T(ω) via (9.2). The mutated angles ω

(i)

t+1 are
obtained by

ω
(i)

t+1 = (ω
(i)
t + ϕZ(i)

ω ) mod 2π

where ϕ > 0 and the independent random numbers Z(i)
ω with i =

1, . . . , n (n− 1)/2 are standard normally distributed.
(ii) Let σ ∈ Rn

+ denote the standard deviations that are represented by
the diagonal matrix S(σ ) = diag(σ (1), . . . , σ (n)). The mutated standard
deviations are obtained as follows. Draw a standard normally distributed
random number Zτ . For each i = 1, . . . , n set

σ
(i)

t+1 = σ
(i)
t exp(τZτ + ηZ(i)

σ )

where (τ, η) ∈ R2
+ and the independent random numbers Z(i)

σ are standard
normally distributed. Note that Zτ is drawn only once.

(iii) Let X ∈ Rn be the object variables and Z be a standard normal random
vector. The mutated object variable vector is given by

Xt+1 = Xt + T(ωt+1)S(σt+1)Z.

According to Schwefel (1995) a good heuristic for the choice of the constants
appearing in the above mutation operation is

(ϕ, τ, η) = (5π/180, (2n)−1/2, (4n)−1/4)

but recent extensive simulation studies (Kursawe 1996) revealed that the above
recommendation is not the best choice—especially in the case of multimodal
objective functions it seems to be better to use weak selection pressure (µ/λ not
too small) and a parametrization obeying the relation τ > η. As a consequence,
a final recommendation cannot be given here, yet.
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As soon as µ > 1, the decision variables as well as the internal strategy
parameters can be recombined with usual recombination operators. Notice
that there is no reason to employ the same recombination operator for the
angles, standard deviations, and object variables. For example, one could
apply intermediate recombination (Chapter 33) to the angles as well as standard
deviations and uniform crossover to the object variables. With this choice
recombination of two parents works as follows. Choose two parents (X, σ, ω)

and (X ′, σ ′, ω′) at random. Then the preliminary offspring resulting from the
recombination process is(

UX + (I− U)X ′,
σ + σ ′

2
,
(ω + ω′) mod 4π

2

)

where I is the unit matrix and U is a random diagonal matrix whose diagonal
entries are either zero or one with the same probability. Note that the angles
must be adjusted to the interval (0, 2 π ].
After these preparations a sketch of a contemporary ES can be presented:

Generate µ initial parents of the type (X, σ, ω) and determine their objective
function values f (X).
repeat

do λ times:
Choose ρ ≥ 2 parents at random.
Recombine their angles, standard deviations, and object variables.
Mutate the angles, standard deviations, and object variables of the
preliminary offspring obtained via recombination.
Determine the offspring’s objective function value.
Put the offspring into the offspring population.

end do
Select the µ best individuals either from the offspring population
or from the union of the parent and offspring population.
The selected individuals represent the new parents.

until some stopping criterion is satisfied.

It should be noted that there are other proposals to adapt σt . In the case
of a (1, λ) ES with λ = 3 k and k ∈ N, Rechenberg (1994, p 47) devised
the following rule: Generate k offspring with σt , k offspring with c σt and k

offspring with σt/c for some c > 0 (c = 1.3 is recommended for n ≤ 100, for
larger n the constant c should decrease).

Further proposals, that are however still in an experimental state, try
to derandomize the adaptation process by exploiting information gathered in
preceding iterations (Ostermeier et al 1995). This approach is related to
(deterministic) variable metric (or quasi-Newton) methods, where the Hessian
matrix is approximated iteratively by certain update rules. The inverse of the
Hessian matrix is in fact the optimal choice for the covariance matrix C. A
large variety of update rules is given by the Oren–Luenberger class (Oren and
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Luenberger 1974) and it might be useful to construct probabilistic versions of
these update rules, but it should be kept in mind that ESs are designed to tackle
difficult nonconvex problems and not convex ones: the usage of such techniques
increases the risk that ESs will be attracted by local optima.

Other ideas that have not yet achieved a standard include the introduction
of an additional age parameter κ for individuals in order to have intermediate
forms of selection between the (µ + λ) ES with κ = ∞ and the (µ, λ) ES
with κ = 1 (Schwefel and Rudolph 1995), as well as the huge variety of ESs
whose population possesses a spatial structure. Since the latter is important for
parallel implementations and applies to other evolutionary algorithms as well
the description is omitted here.

9.3 Nested evolution strategies

The shorthand notation (µ +, λ) ES was extended by Rechenberg (1978) to the
expression

[ µ′ +, λ′ (µ +, λ)γ ]γ
′

ES

with the following meaning. There are µ′ populations of µ parents. These are
used to generate (e.g. by merging) λ′ initial populations of µ individuals each.
For each of these λ′ populations a (µ +, λ) ES is run for γ generations. The
criterion to rank the λ′ populations after termination might be the average fitness
of the individuals in each population. This scheme is repeated γ ′ times. The
obvious generalization to higher levels of nesting is described by Rechenberg
(1994), where it is also attempted to develop a shorthand notation to specify the
parametrization completely.

This nesting technique is of course not limited to ESs: other evolutionary
algorithms and even mixtures of them can be used instead. In fact, the somewhat
artificial distinction between ESs, genetic algorithms, and evolutionary programs
becomes more and more blurred when higher concepts enter the scene. Finally,
some fields of application of nested evolutionary algorithms will be described
briefly.

9.3.1 Alternative method to control internal parameters

Herdy (1992) used λ′ subpopulations, each of them possessing its own different
and fixed step size σ . Thus, there is no step size control at the level of
individuals. After γ generations the improvements (in terms of fitness) achieved
by each subpopulation is compared to each other and the best µ′ subpopulations
are selected. Then the process repeats with slightly modified values of σ . Since
subpopulations with a near-optimal step size will achieve larger improvements,
they will be selected (i.e. better step sizes will survive), resulting in an alternative
method to control the step size.
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9.3.2 Mixed-integer optimization

Lohmann (1992) considered optimization problems in which the decision
variables are partially discrete and partially continuous. The nested approach
worked as follows. The ESs in the inner loop were optimizing over the
continuous variables while the discrete variables were held fixed. After
termination of the inner loop, the evolutionary algorithm in the outer loop
compared the fitness values achieved in the subpopulations, selected the best
ones, mutated the discrete variables and passed them as fixed parameters to the
subpopulations in the inner loop.

It should be noted that this approach to mixed-integer optimization may
cause some problems. In essence, a Gauß–Seidel-like optimization strategy is
realized, because the search alternates between the subspace of discrete variables
and the subspace of continuous variables. Such a strategy must fail whenever
simultaneous changes in discrete and continuous variables are necessary to
achieve further improvements.

9.3.3 Minimax optimization

Sebald and Schlenzig (1994) used nested optimization to tackle minimax
problems of the type

min
x∈X
{max

y∈Y
{f (x, y)}}

where X ⊆ Rn and Y ⊆ Rm. Equivalently, one may state the problem as
follows:

min{g(x) : x ∈ X} where g(x) = max{f (x, y) : y ∈ Y }.

The evolutionary algorithm in the inner loop maximizes f (x, y) with fixed
parameters x, while the outer loop is responsible for minimize g(x)ing over the
set X.

Other applications of this technique are imaginable. An additional aspect
touches the evident degree of independence of executing the evolutionary
algorithms in the inner loop. As a consequence, nested evolutionary algorithms
are well suited for parallel computers.
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10
Evolutionary programming

V William Porto

10.1 Introduction

Evolutionary programming (EP) is one of a class of paradigms for simulating
evolution which utilizes the concepts of Darwinian evolution to iteratively
generate increasingly appropriate solutions (organisms) in light of a static or
dynamically changing environment. This is in sharp contrast to earlier research
into artificial intelligence research which largely centered on the search for
simple heuristics. Instead of developing a (potentially) complex set of rules
which were derived from human experts, EP evolves a set of solutions which
exhibit optimal behavior with regard to an environment and desired payoff
function. In a most general framework, EP may be considered an optimization
technique wherein the algorithm iteratively optimizes behaviors, parameters, or
other constructs. As in all optimization algorithms, it is important to note that
the point of optimality is completely independent of the search algorithm, and
is solely determined by the adaptive topography (i.e. response surface) (Atmar
1992).

In its standard form, the basic evolutionary program utilizes the four main
components of all evolutionary computation (EC) algorithms: initialization,
variation, evaluation (scoring), and selection. At the basis of this, as well as
other EC algorithms, is the presumption that, at least in a statistical sense,
learning is encoded phylogenically versus ontologically in each member of
the population. ‘Learning’ is a byproduct of the evolutionary process as
successful individuals are retained through stochastic trial and error. Variation
(e.g. mutation) provides the means for moving solutions around on the search
space, preventing entrapment in local minima. The evaluation function directly
measures fitness, or equivalently the behavioral error, of each member in the
population with regard to the environment. Finally, the selection process
probabilistically culls suboptimal solutions from the population, providing an
efficient method for searching the topography.

The basic EP algorithm starts with a population of trial solutions which are
initialized by random, heuristic, or other appropriate means. The size of the
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population, µ, may range over a broadly distributed set, but is in general larger
than one. Each of these trial solutions is evaluated with regard to the specified
fitness function. After the creation of a population of initial solutions, each
of the parent members is altered through application of a mutation process;
in strict EP, recombination is not utilized. Each parent member i generates
λi progeny which are replicated with a stochastic error mechanism (mutation).
The fitness or behavioral error is assessed for all offspring solutions with the
selection process performed by one of several general techniques including: (i)
the best µ solutions are retained to become the parents for the next generation
(elitist, see Section 28.4), or (ii) µ of the best solutions are statistically retained
( tournament, see Chapter 24), or (iii) proportional-based selection (Chapter 23).
In most applications, the size of the population remains constant, but there is no
restriction in the general case. The process is halted when the solution reaches
a predetermined quality, a specified number of iterations has been achieved, or
some other criterion (e.g. sufficient convergence) stops the algorithm.

EP differs philosophically from other evolutionary computational techniques
such as genetic algorithms (GAs) (Chapter 8) in a crucial manner. EP is a
top-down versus bottom-up approach to optimization. It is important to note
that (according to neo-Darwinism) selection operates only on the phenotypic
expressions of a genotype; the underlying coding of the phenotype is only
affected indirectly. The realization that a sum of optimal parts rarely leads
to an optimal overall solution is key to this philosophical difference. GAs
rely on the identification, combination, and survival of ‘good’ building blocks
(schemata) iteratively combining to form larger ‘better’ building blocks. In a
GA, the coding structure (genotype) is of primary importance as it contains
the set of optimal building blocks discovered through successive iterations.
The building block hypothesis is an implicit assumption that the fitness is a
separable function of the parts of the genome. This successively iterated local
optimization process is different from EP, which is an entirely global approach
to optimization. Solutions (or organisms) in an EP algorithm are judged solely
on their fitness with respect to the given environment. No attempt is made
to partition credit to individual components of the solutions. In EP (and in
evolution strategies (ESs), see Chapter 9), the variation operator allows for
simultaneous modification of all variables at the same time. Fitness, described
in terms of the behavior of each population member, is evaluated directly, and is
the sole basis for survival of an individual in the population. Thus, a crossover
operation designed to recombine building blocks is not utilized in the general
forms of EP.

10.2 History

The genesis of EP (Section 6.2) was motivated by the desire to generate an
alternative approach to artificial intelligence. Fogel (1962) conceived of using
the simulation of evolution to develop artificial intelligence which did not
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rely on heuristics, but instead generated organisms of increasing intellect over
time. Fogel (1964, Fogel et al 1966) made the observation that intelligent
behavior requires the ability of an organism to make correct predictions within
its environment, while being able to translate these predictions into a suitable
response for a given goal. This early work focused on evolving finite-state
machines (Chapter 18; see the articles by Mealy (1955), and Moore (1957) for
a discussion of these automata) which provided a most generic testbed for this
approach. A finite-state machine (figure 10.1) is a mechanism which operates
on a finite set (i.e. alphabet) of input symbols, possesses a finite number of
internal states, and produces output symbols from a finite alphabet. As in all
finite-state machines, the corresponding input–output symbol pairs and state
transitions from every state define the specific behavior of the machine.

Figure 10.1. A simple finite-state machine diagram. Input symbols are shown to the
left of the slash. Output symbols are to the right of the slash. The finite-state machine
is presumed to start in state A.

In a series of experiments (Fogel et al 1966), an environment was simulated
by a sequence of symbols from a finite-length alphabet. The problem was
defined as follows: evolve an algorithm which would operate on the sequence of
symbols previously observed in a manner that would produce an output symbol
which maximizes the benefit to the algorithm in light of the next symbol to
appear in the environment, relative to a well-defined payoff function.

EP was originally defined by Fogel (1964) in the following manner. A
population of parent finite-state machines, after initialization, is exposed to the
sequence of symbols (i.e. environment) which have been observed up to the
current time. As each input symbol is presented to each parent machine, the
output symbol is observed (predicted) and compared to the next input symbol.
A predefined payoff function provides a means for measuring the worth of each
prediction. After the last prediction is made, some function of the sequence of
payoff values is used to indicate the overall fitness of each machine. Offspring
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machines are created by randomly mutating each parent machine. As defined
above, there are five possible resulting modes of random mutation for a finite-
state machine. These are: (i) change an output symbol; (ii) change a state
transition; (iii) add a state; (iv) delete an existing state; and (v) change the
initial state. Other mutations were proposed but results of experiments with
these mutations were not described by Fogel et al (1966). To prevent the
possibility of creating null machines, the deletion of a state and the changing of
the initial state were allowed only when a parent machine had more than one
state.

Mutation operators are chosen with respect to a specified probability
distribution which may be uniform, or another desired distribution. The number
of mutation operations applied to each offspring is also determined with respect
to a specified probability distribution function (e.g. Poisson) or may be fixed a
priori . Each of the mutated offspring machines is evaluated over the existing
environment (set of input–output symbol pairs) in the same manner as the parent
machines.

After offspring have been created through application of the mutation
operator(s) on the members of the parent population, the machines providing
the greatest payoff with respect to the payoff function are retained to become
parent members for the next generation. Typically, one offspring is created for
each parent, and half of the total machines are retained in order to maintain a
constant population size. The process is iterated until it is required to make an
actual prediction of the next output symbol in the environment, which has yet
to be encountered. This is analogous to the presentation of a naive exemplar to
a previously trained neural network. Out of the entire population of machines,
only the best machine, in terms of its overall worth, is chosen to generate the new
output symbol. Fogel originally proposed selection of machines which score in
the top half of the entire population, i.e. a nonregressive selection mechanism.
Although discussed as a possibility to increase variance, the retention of lesser-
quality machines was not incorporated in these early experiments.

Since the topography (response surface) is changed after each presentation
of a symbol, the fitness of the evolved machines must change to reflect the
payoff from the previous prediction. This prevents evolutionary stagnation as
the adaptive topography is experiencing continuous change. As is evidenced
in nature, the complexity of the representation is increased as the finite-state
machines learn to recognize more subtle features in the experienced sequence
of symbols.

10.2.1 Early foundations

Fogel (see Fogel 1964, Fogel et al 1966) used EP on a series of successively
more difficult prediction tasks. These experiments ranged from simple two-
symbol cyclic sequences, eight-symbol cyclic sequences degraded by addition
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Figure 10.2. A plot showing the convergence of EP on finite-state machines evolved to
predict primeness of numbers.

of noise, and sequences of symbols generated by other finite-state machines to
nonstationary sequences and sequences taken from the article by Flood (1962).

In one example, the capability for predicting the ‘primeness’, i.e. whether or
not a number is prime, was tested. A nonstationary sequence of symbols was
generated by classifying each of the monotonically increasing set of integers
as prime (with symbol 1) or nonprime (with symbol 0). The payoff function
consisted of an all-or-none function where one point was provided for each
correct prediction. No points or penalty were assessed for incorrect predictions.
A small penalty term was added to maximize parsimony, through the subtraction
of 0.01 multiplied by the number of states in the machine. This complexity
penalty was added due to the limited memory available on the computers at
that time. After presentation of 719 symbols, the iterative process was halted
with the best machine possessing one state, with both output symbols being
zero. Figure 10.2 indicates the prediction score achieved in this nonstationary
environment. Because prime numbers become increasingly infrequent (Burton
1976), the asymptotic worth of this machine, given the defined payoff function,
approaches 100%.

After initial, albeit qualified, success with this experiment, the goal was
altered to provide a greater payoff for correct prediction of a rare event. Correct
prediction of a prime was worth one plus the number of nonprimes preceding it.
For the first 150 symbols, 30 correct predictions were made (primes predicted
as primes), 37 false positives (nonprimes predicted as primes), and five primes
were missed. On predicting the 151st through 547th symbols there were 65
correct predictions of primes, and 67 false positives. Of the first 35 prime
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numbers, five were missed, but of the next 65 primes, none were missed. Fogel
et al (1966) indicated that the machines demonstrated the capability to quickly
recognize numbers which are divisible by two and three as being nonprime,
and that some capability to recognize divisibility by five as being indicative
of nonprimes was also evidenced. Thus, the machines generated evidence of
learning a definition of primeness without prior knowledge of the explicit nature
of a prime number, or any ability to explicitly divide.

Fogel and Burgin (1969) researched the use of EP in game theory. In
a number of experiments, EP was consistently able to discover the globally
optimal strategy in simple two-player, zero-sum games involving a small number
of possible plays. This research also showed the ability of the technique to
outperform human subjects in more complicated games. Several extensions were
made to the simulations to address nonzero-sum games (e.g. pursuit evasion.)
A three-dimensional model was constructed where EP was used to guide an
interceptor towards a moving target. Since the target was, in most circumstances,
allowed a greater degree of maneuverability, the success or failure of the
interceptor was highly dependent upon the learned ability to predict the position
of the target without a priori knowledge of the target’s dynamics.

A different aspect of EP was researched by Walsh et al (1970) where EP
was used for prediction as a precursor to automatic control. This research
concentrated on decomposing a finite-state machine into submachines which
could be executed in parallel to obtain the overall output of the evolved system.
A primary goal of this research was to maximize parsimony in the evolving
machines. In these experiments, finite-state machines containing seven and
eight states were used as the generating function for three output symbols. The
performance of three human subjects was compared to the evolved models when
predicting the next symbol in the respective environments. In these experiments,
EP was consistently able to outperform the human subjects.

10.2.2 Extensions

The basic EP paradigm may be described by the following EP algorithm:

t := 0;
initialize P(0) := {a′1(0), a′2(0), . . . , a′µ(0)

}
evaluate P(0) :

{
�(a′1(0)), �(a′2(0)), . . . , �(a′µ(0))

}
iterate

{
mutate: P ′(t) := m�m

(P (t))

evaluate: P ′(t) :
{
�(a′1(t)), �(a′2(t)), . . . , �(a′λ(t))

}
select: P(t + 1) := s�s

(P ′(t) ∪Q)

t := t + 1;
}
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where:
a′ is an individual member in the population
µ ≥ 1 is the size of the parent population
λ ≥ 1 is the size of the offspring population
P(t) := {a′1(t), a′2(t), . . . , a′µ(t)

}
is the population at time t

� : I → R is the fitness mapping
m�m

is the mutation operator with controlling parameters �m

s�s
is the selection operator � s�s

:
(
I λ ∪ Iµ+λ

)→ Iµ

Q ∈ {∅, P (t)} is a set of individuals additionally accounted for in the
selection step, i.e. parent solutions.

Other than on initialization, the search space is generally unconstrained;
constraints are utilized for generation and initialization of starting parent
solutions. Constrained optimization may be addressed through imposition of
the requirement that (i) the mutation operator (Section 32.4) is formulated to
only generate legitimate solutions (often impossible) or (ii) a penalty function
is applied to offspring mutations lying outside the constraint bounds in such
a manner that they do not become part of the next generation. The objective
function explicitly defines the fitness values which may be scaled to positive
values (although this is not a requirement, it is sometimes performed to alter
the range for ease of implementation).

In early versions of EP applied to continuous parameter optimization (Fogel
1992) the mutation operator is Gaussian with a zero mean and variance obtained
for each component of the object variable vector as the square root of a linear
transform of the fitness value ϕ(x).

xi(k + 1) := xi(k)+
√

βi(k)ϕ(xi(k)+ γi)+Ni(0, 1)

where x(k) is the object variable vector, β is the proportionality constant, and
γ is an offset parameter. Both β and γ must be set externally for each problem.
Ni(0, 1) is the ith independent sample from a Gaussian distribution with zero
mean and unit variance.

Several extensions to the finite-state machine formulation of Fogel et al
(1966) have been offered to address continuous optimization problems as well
as to allow for various degrees of parametric self-adaptation (Fogel 1991a, 1992,
1995). There are three main variants of the basic paradigm, identified as follows:

(i) original EP, where continuous function optimization is performed without
any self-adaptation mechanism;

(ii) continuous EP where new individuals in the population are inserted directly
without iterative generational segmentation (i.e. an individual becomes part
of the existing (surviving) population without waiting for the conclusion of
a discrete generation; this is also known as steady-state selection (Section
28.3) in GAs and (µ+ 1) selection (Chapter 9) in ES);

(iii) self-adaptive EP, which augments the solution vectors with one or more
parameters governing the mutation process (e.g. variances, covariances)
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to permit self-adaptation of these parameters through the same iterative
mutation, scoring, and selection process. In addition, self-adaptive EP may
also be continuous in the sense of (ii) above.

The original EP is an extension of the formulation of Fogel et al (1966)
wherein continuous-valued functions replace the discrete alphabets of finite-
state machines. The continuous form of EP was investigated by Fogel and Fogel
(1993). To properly simulate this algorithmic variant, it is necessary to insert
new population members by asynchronous methods (e.g. event-driven interrupts
in a true multitasking, real-time operating system). Iterative algorithms running
on a single central processing unit (CPU) are much more prevalent, since they
are easier to program on today’s computers, hence most implementations of EP
are performed on a generational (epoch-to-epoch) basis.

Self-adaptive EP is an important extension of the algorithm in that it
successfully overcomes the need for explicit user-tuning of the parameters
associated with mutation. Global convergence may be obtained even in the
presence of suboptimal parameterization, but available processing time is most
often a precious resource and any mechanism for optimizing the convergence
rate is helpful. As proposed by Fogel (1992, 1995), EP can self-adapt the
variances for each individual in the following way:

xi(k + 1) := xi(k)+ υi(k) ∗Ni(0, 1)

υi(k + 1) := υi(k)+ [συi(k)]1/2 ∗Ni(0, 1).

The variable σ ensures that the variance υi remains nonnegative. Fogel
(1992) suggests a simple rule wherein ∀υi(k) ≤ 0, υi(k) is set to ξ , a value
close to but not identically equal to zero (to allow some degree of mutation).
The sequence of updating the object variable xi and variance υi was proposed to
occur in opposite order from that of ESs (Bäck and Schwefel 1993, Rechenberg
1965, Schwefel 1981). Gehlhaar and Fogel (1996) provide evidence favoring
the ordering commonly found in ES.

Further development of this theme led Fogel (1991a, 1992) to extend the
procedure to alter the correlation coefficients between components of the object
vector. A symmetric correlation coefficient matrix P is incorporated into
the evolutionary paradigm in addition to the self-adaptation of the standard
deviations. The components of P are initialized over the interval [−1, 1]
and mutated by perturbing each component, again, through the addition of
independent realizations from a Gaussian random distribution. Bounding
limits are placed upon the resultant mutated variables wherein any mutated
coefficient which exceeds the bounds [−1, 1] is reset to the upper or lower
limit, respectively. Again, this methodology is similar to that of Schwefel
(1981), as perturbations of both the standard deviations and rotation angles
(determined by the covariance matrix P) allow adaptation to arbitrary contours
on the error surface. This self-adaptation through the incorporation of correlated
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mutations across components of each parent object vector provides a mechanism
for expediting the convergence rate of EP.

Fogel (1988) developed different selection operators which utilized
tournament competition (Chapter 24) between solution organisms. These
operators assigned a number of wins for each solution organism based on a
set of individual competitions (using fitness scores as the determining factor)
among each solution and each of the q competitors randomly selected from the
total population.

10.3 Current directions

Since the explosion of research into evolutionary algorithms in the late 1980s
and early 1990s, EP has been applied to a wide range of problem domains with
considerable success. Application areas in the current literature include training,
construction, and optimization of neural networks, optimal routing (in two, three,
and higher dimensions), drug design, bin packing, automatic control, game
theory, and optimization of intelligently interactive behaviors of autonomous
entities, among many others. Beginning in 1992, annual conferences on EP have
brought much of this research into the open where these and other applications
as well as basic research have expanded into numerous interdisciplinary realms.

Notable within a small sampling of the current research is the work in neural
network design. Early efforts (Porto 1989, Fogel et al 1990, McDonnell 1992,
and others) focused on utilizing EP for training neural networks to prevent
entrapment in local minima. This research showed not only that EP was well
suited to training a range of network topologies, but also that it was often more
efficient than conventional (e.g. gradient-based) methods and was capable of
finding optimal weight sets while escaping local minima points. Later research
(Fogel 1992, Angeline et al 1994, McDonnell and Waagen 1993) involved
simultaneous evolution of both the weights and structure of feedforward and
feedback networks. Additional research into the areas of using EP for robustness
training (Sebald and Fogel 1992), and for designing fuzzy neural networks for
feature selection, pattern clustering, and classification (Brotherton and Simpson
1995) have been very successful as well as instructive.

EP has been also used to solve optimal routing problems. The traveling
salesman problem (TSP), one of many in the class of nondeterministic-
polynomial-time- (NP-) complete (see Aho et al 1974) problems, has been
studied extensively. Fogel (1988, 1993) demonstrated the capability of EP to
address such problems. A representation was used wherein each of the cities
to be visited was listed in order, with candidate solutions being permutations
of this listing. A population of random tours is scored with respect to their
Euclidean length. Each of the tours is mutated using one of many possible
inversion operations (e.g. select two cities in the tour at random and reverse the
order of the segment defined by the two cities) to generate an offspring. All of
the offspring are then scored, with either elitist or stochastic competition used to
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cull lower-scoring members from the population. Optimization of the tours was
quite rapid. In one such experiment with 1000 cities uniformly distributed, the
best tour (after only 4 × 107 function evaluations) was estimated to be within
5–7% of the optimal tour length. Thus, excellent solutions were obtained after
searching only an extremely small portion of the total potential search space.

EP has also been utilized in a number of medical applications. For
example, the issue of optimizing drug design was researched by Gehlhaar et
al (1995). EP was utilized to perform a conformational and position search
within the binding site of a protein. The search space of small molecules
which could potentially dock with the crystallographically determined binding
site was explored iteratively guided by a database of crystallographic protein–
ligand complexes. Geometries were constrained by known physical (in three
dimensions) and chemical bounds. Results demonstrated the efficacy of this
technique as it was orders of magnitude faster in finding suitable ligands than
previous hands-on methodologies. The probability of successfully predicting the
proper binding modes for these ligands was estimated at over 95% using nominal
values for the crystallographic binding mode and number of docks attempted.
These studies have permitted the rapid development of several candidate drugs
which are currently in clinical trials.

The issue of utilizing EP to control systems has been addressed widely
(Fogel and Fogel 1990, Fogel 1991a, Page et al 1992, and many others).
Automatic control of fuzzy heating, ventilation, and air conditioning (HVAC)
controllers was addressed by Haffner and Sebald (1993). In this study, a
nonlinear, multiple-input, multiple-output (MIMO) model of a HVAC system
was used and controlled by a fuzzy controller designed using EP. Typical fuzzy
controllers often use trial and error methods to determine parameters and transfer
functions, hence they can be quite time consuming with a complex MIMO
HVAC system. These experiments used EP to design the membership functions
and values (later studies were extended to find rules as well as responsibilities
of the primary controller) to automate the tuning procedure. EP worked in
an overall search space containing 76 parameters, 10 controller inputs, seven
controller outputs, and 80 rules. Simulation results demonstrated that EP was
quite effective at choosing the membership functions of the control laboratory
and corridor pressures in the model. The synergy of combining EP with fuzzy
set constructs proved quite fruitful in reducing the time required to design a
stable, functioning HVAC system.

Game theory has always been at the forefront of artificial intelligence
research. One interesting game, the iterated prisoner’s dilemma, has been
studied by numerous investigators (Axelrod 1987, Fogel 1991b, Harrald and
Fogel 1996, and others). In this two-person game, each player can choose
one of two possible behavioral policies: defection or cooperation. Defection
implies increasing one’s own reward at the expense of the opposing player,
while cooperation implies increasing the reward for both players. If the game
is played over a single iteration, the dominant move is defection. If the players’
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strategies depend on the results of previous iterations, mutual cooperation may
possibly become a rational policy, whereas if the sequence of strategies is not
correlated, the game degenerates into a series of single plays with defection
being the end result. Each player must choose to defect or cooperate on each
trial. Table 10.1 describes a general form of the payoff function in the prisoner’s
dilemma.

Table 10.1. A general form of the payoff matrix for the prisoner’s dilemma problem. γ1

is the payoff to each player for mutual cooperation. γ2 is the payoff for cooperating when
the other player defects. γ3 is the payoff for defecting when the other player cooperates.
γ4 is the payoff to each player for mutual defection. Entries (α, β) indicate payoffs to
players A and B, respectively.

Player B
C D

C (γ1, γ1) (γ2, γ3)
Player A

D (γ3, γ2) (γ4, γ4)

In addition, the payoff matrix defining the game is subject to the following
constraints (Rapoport 1966):

2γ1 > γ2 + γ3

γ3 > γ1 > γ4 > γ2.

Both neural network approaches (Harrald and Fogel 1996) and finite-state
machine approaches (Fogel 1991b) have been applied to this problem. Finite-
state machines are typically used where there are discrete choices between
cooperation and defection. Neural networks allow for a continuous range of
choices between these two opposite strategies. Results of these preliminary
experiments using EP, in general, indicated that mutual cooperation is more
likely to occur when the behaviors are limited to the extremes (the finite-
state machine representation of the problem), whereas in the neural network
continuum behavioral representation of the problem, it is easier to slip into a
state of mutual defection.

Development of interactively intelligent behaviors was investigated by Fogel
et al (1996). EP was used to optimize computer-generated force (CGF)
behaviors such that they learned new courses of action adaptively as changes
in the environment (i.e. presence or absence of opposing side forces) were
encountered. The actions of the CGFs were created at the response of an event
scheduler which recognized significant changes in the environment as perceived
by the forces under evolution. New plans of action were found during these
event periods by invoking an evolutionary program. The iterative EP process
was stopped when time or CPU limits were met, and relinquished control of the
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simulated forces back to the CGF simulator after transmitting newly evolved
instruction sets for each simulated unit. This process proved quite successful
and offered a significant improvement over other rule-based systems.

10.4 Future research

Important research is currently being conducted into the understanding of the
convergence properties of EP, as well as the basic mechanisms of different
mutation operators and selection mechanisms. Certainly of great interest is the
potential for self-adaptation of exogeneous parameters of the mutation operation
(meta and Rmeta-EP), as this not only frees the user from the often difficult
task of parameterization, but also provides a built-in, automated mechanism for
providing optimal settings throughout a range of problem domains. The number
of application areas of this optimization technique is constantly growing. EP,
along with the other EC techniques, is being used on previously untenable, often
NP-complete, problems which occur quite often in commercial and military
problems.
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Bäck T and Schwefel H-P 1993 An overview of evolutionary algorithms for parameter
optimization Evolutionary Comput. 1 1–23

Brotherton T W and Simpson P K 1995 Dynamic feature set training of neural
networks for classification Evolutionary Programming IV: Proc. 4th Ann. Conf. on
Evolutionary Programming (San Diego, CA, 1995) ed J R McDonnell, R G Reynolds
and D B Fogel (Cambridge, MA: MIT Press) pp 83–94

Burton D M 1976 Elementary Number Theory (Boston, MA: Allyn and Bacon) p 136–52
Flood M M 1962 Stochastic learning theory applied to choice experiments with cats,

dogs and men Behavioral Sci. 7 289–314
Fogel D B 1988 An evolutionary approach to the traveling salesman problem Biol.

Cybernet. 60 139–44
——1991a System Identification through Simulated Evolution (Needham, MA: Ginn)
——1991b The evolution of intelligent decision making in gaming Cybernet. Syst. 22

223–36
——1992 Evolving Artificial Intelligence PhD Dissertation, University of California



References 101

——1993 Applying evolutionary programming to selected traveling salesman problems
Cybernet. Syst. 24 27–36

——1995 Evolutionary Computation, Toward a New Philosophy of Machine Intelligence
(Piscataway, NJ: IEEE)

Fogel D B and Fogel L J 1990 Optimal routing of multiple autonomous
underwater vehicles through evolutionary programming Proc. Symp. on Autonomous
Underwater Vehicle Technology (Washington, DC: IEEE Oceanic Engineering
Society) pp 44–7

Fogel D B, Fogel L J and Porto V W 1990 Evolving neural networks Biol. Cybernet. 63
487–93

Fogel G B and Fogel D B 1993 Continuous evolutionary programming: analysis and
experiments Cybernet. Syst. 26 79–90

Fogel L J 1962 Autonomous automata Industrial Res. 4 14–9
Fogel L J 1964 On The Organization of Intellect PhD Dissertation, University of

California
Fogel L J and Burgin G H 1969 Competitive Goal-Seeking through Evolutionary

Programming Air Force Cambridge Research Labratories Final Report Contract
AF19(628)-5927

Fogel L J, Owens A J and Walsh M J 1966 Artificial Intelligence through Simulated
Evolution (New York: Wiley)

Fogel L J, Porto V W and Owen M 1996 An intelligently interactive non-rule-based
computer generated force Proc. 6th Conf. on Computer Generated Forces and
Behavioral Representation (Orlando, FL: Institute for Simulation and Training
STRICOM-DMSO) pp 265–70

Gehlhaar D K and Fogel D B 1996 Tuning evolutionary programming for
conformationally flexible molecular docking Proc. 5th Ann. Conf. on Evolutionary
Programming (1996) ed L J Fogel, P J Angeline and T Bäck (Cambridge, MA:
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Derivative methods in genetic
programming

Kenneth E Kinnear, Jr

11.1 Introduction

This chapter describes the fundamental concepts of genetic programming (GP)
(Koza 1989, 1992). Genetic programming is a form of evolutionary algorithm
which is distinguished by a particular set of choices as to representation,
genetic operator design, and fitness evaluation. When examined in isolation,
these choices define an approach to evolutionary computation (EC) which is
considered by some to be a specialization of the genetic algorithm (GA). When
considered together, however, these choices define a conceptually different
approach to evolutionary computation which leads researchers to explore new
and fruitful lines of research and practical applications.

11.2 Genetic programming defined and explained

Genetic programming is implemented as an evolutionary algorithm in which
the data structures that undergo adaptation are executable computer programs.
Fitness evaluation in genetic programming involves executing these evolved
programs. Genetic programming, then, involves an evolution-directed search of
the space of possible computer programs for ones which, when executed, will
produce the best fitness.

In short, genetic programming breeds computer programs. To create the
initial population a large number of computer programs are generated at random.
Each of these programs is executed and the results of that execution are used
to assign a fitness value to each program. Then a new population of programs,
the next generation, is created by directly copying certain selected existing
programs, where the selection is based on their fitness values. This population
is filled out by creating a number of new offspring programs through genetic
operations on existing parent programs which are selected based, again, on their
fitness. Then, this new population of programs is again evaluated and a fitness
is assigned to each program based on the results of its evaluation. Eventually
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this process is terminated by the creation and evaluation of a ‘correct’ program
or the recognition of some other specific termination criteria.

More specifically, at the most basic level, genetic programming is defined
as a genetic algorithm with some unusual choices made as to the representation
of the problem, the genetic operators used to modify that representation, and
the fitness evaluation techniques employed.

11.2.1 A specialized representation: executable programs

Any evolutionary algorithm is distinguished by the structures used to represent
the problem to be solved. These are the structures which undergo transformation,
and in which the potential solutions reside.

Originally, most genetic algorithms used linear strings of bits (Chapter 15)
as the structures which evolved (Holland 1975), and the representation of the
problem was typically the encoding of these bits as numeric or logical parameters
of a variety of algorithms. The evolving structures were often used as parameters
to human-coded algorithms. In addition, the bitstrings used were frequently of
fixed length, which aided in the translation into parameters for the algorithms
involved.

More recently, genetic algorithms have appeared with real-valued numeric
sequences used as the evolvable structures, still frequently used as parameters to
particular algorithms. In recent years, many genetic algorithm implementations
have appeared with sequences which are of variable length, sometimes based
on the order of the sequences, and which contain more complex and structured
information than parameters to existing algorithms.

The representation used by genetic programming is that of an executable
program. There is no single form of executable program which is used by
all genetic programming implementations, although many implementations use
a tree-structured representation (Chapter 19) highly reminiscent of a LISP
functional expression. These representations are almost always of a variable
size, though for implementation purposes a maximum size is usually specified.

Figure 11.1 shows an example of a tree-structured representation for a
genetic programming implementation. The specific task for which this is a
reasonable representation is the learning of a Boolean function from a set
of inputs. This figure contains two different types of node (as do most
genetic programming representations) which are called functions and terminals.
Terminals are usually inputs to the program, although they may also be constants.
They are the variables which are set to values external to the program itself prior
to the fitness evaluation performed by executing the program. In this example
d0 and d1 are the terminals. They can take on binary values of either zero or
one.

Functions take inputs and produce outputs and possibly produce side-effects.
The inputs can be either a terminal or the output of another function. In the
above example, the functions are AND, OR, and NOT. Two of these functions
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Figure 11.1. Tree-structured representation used in genetic programming.

are functions of two inputs, and one is a function of one input. Each produces
a single output and no side effect.

The fitness evaluation for this particular individual is determined by the
effectiveness with which it will produce the correct logical output for all of the
test cases against which it is tested.

One way to characterize the design of a representation for an application
of genetic programming to a particular problem is to view it as the design of
a language, and this can be a useful point of view. Perhaps it is more useful,
however, to view the design of a genetic programming representation as that
of the design of a virtual machine—since usually the execution engine must
be designed and constructed as well as the representation or language that is
executed.

The representation for the program (i.e. the definition of the functions and
terminals) must be designed along with the virtual machine that is to execute
them. Rarely are the programs evolved in genetic programming given direct
control of the central processor of a computer (although see the article by
Nordin (1994)). Usually, these programs are interpreted under control of a
virtual machine which defines the functions and terminals. This includes the
functions which process the data, the terminals that provide the inputs to the
programs, and any control functions whose purpose is to affect the execution
flow of the program.

As part of this virtual machine design task, it is important to note that the
output of any function or the value of any terminal may be used as the input to
any function. Initially, this often seems to be a trivial problem, but when actually
performing the design of the representation and virtual machine to execute that
representation, it frequently looms rather large. Two solutions are typically used
for this problem. One approach is to design the virtual machine, represented by
the choice of functions and terminals, to use only a single data type. In this way,
the output of any function or the value of any terminal is acceptable as input to
any function. A second approach is to allow more than one data type to exist
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in the virtual machine. Each function must then be defined to operate on any of
the existing data types. Implicit coercions are performed by each function on
its input to convert the data type that it receives to one that it is more normally
defined to process. Even after handling the data type problem, functions must
be defined over the entire possible range of argument values. Simple arithmetic
division must be defined to return some value even when division by zero is
attempted.

It is important to note that the definition of functions and the virtual machine
that executes them is not restricted to functions whose only action is to provide
a single output value based on their inputs. Genetic programming functions
are often defined whose primary purpose is the actions they take by virtue of
their side-effects. These functions must return some value as well, but their real
purpose is interaction with an environment external to the genetic programming
system.

An additional type of side-effect producing function is one that implements
a control structure within the virtual machine defined to execute the genetically
evolved program. All of the common programming control constructs such as
if–then–else, while–do, for, and others have been implemented as evolvable
control constructs within genetic programming systems. Looping constructs
must be protected in such a way that they will never loop forever, and usually
have an arbitrary limit set on the number of loops which they will execute.

As part of the initialization of a genetic programming run, a large number of
individual programs are generated at random. This is relatively straightforward,
since the genetic programming system is supplied with information about the
number of arguments required by each function, as well as all of the available
terminals. Random program trees are generated using this information, typically
of a relatively small size. The program trees will tend to grow quickly to be
quite large in the absence of some explicit evolutionary pressure toward small
size or some simple hard-coded limits to growth.

11.2.2 Genetic operators for evolving programs

The second specific design approach that distinguishes genetic programming
from other types of genetic algorithm is the design of the genetic operators.
Having decided to represent the problem to be solved as a population of
computer programs, the essence of an evolutionary algorithm is to evaluate
the fitness of the individuals in the population and then to create new members
of the population based in some way on the individuals which have the highest
fitness in the current population.

In genetic algorithms, recombination is typically the key genetic operator
employed, with some utility ascribed to mutation as well. In this way,
genetic programming is no different from any other genetic algorithm. Genetic
algorithms usually have genetic material organized in a linear fashion and
the recombination, or crossover, algorithm defined for such genetic material
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is quite straightforward (see Section 33.1). The usual representation of
genetic programming programs as tree-structured combinations of functions and
terminals requires a different form of recombination algorithm. A major step in
the invention of genetic programming was the design of a recombination operator
which would simply and easily allow the creation of an offspring program tree
using as inputs the program trees of two individuals of generally high fitness as
parents (Cramer 1985, Koza 1989, 1992).

In any evolutionary algorithm it is vitally important that the fitness of the
offspring be related to that of the parents, or else the process degenerates into
one of random search across whatever representation space was chosen. It
is equally vital that some variation, indeed heritable variation, be introduced
into the offspring’s fitness, otherwise no improvement toward an optimum is
possible.

Figure 11.2. Recombination in genetic programming.

The tree-structured genetic material usually used in genetic programming
has a particularly elegant recombination operator that may be defined for it.
In figure 11.2, there are two parent program trees, (a) and (b). They are to
be recombined through crossover to create an offspring program tree (c). A
subtree is chosen in each of the parents, and the offspring is created by inserting
the subtree chosen from (b) into the place where the subtree was chosen in
(a). This very simply creates an offspring program tree which preserves the
same constraints concerning the number of inputs to each function as each
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parent tree. In practice it yields a offspring tree whose fitness has enough
relationship to that of its parents to support the evolutionary search process.
Variations in this crossover approach are easy to imagine, and are currently the
subject of considerable active research in the genetic programming community
(D’haeseleer 1994, Teller 1996).

Mutation (Chapter 32) is a genetic operator which can be applied to a single
parent program tree to create an offspring tree. The typical mutation operator
used selects a point inside a parent tree, and generates a new random subtree
to replace the selected subtree. This random subtree is usually generated by the
same procedure used to generate the initial population of program trees.

11.2.3 Fitness evaluation of genetically evolved programs

Finally, then, the last detailed distinction between genetic programming and a
more usual implementation of the genetic algorithm is that of the assignment of
a fitness value for a individual.

In genetic programming, the representation of the individual is a program
which, when executed under control of a defined virtual machine, implements
some algorithm. It may do this by returning some value (as would be the case
for a system to learn a specific Boolean function) or it might do this through the
performance of some task through the use of functions which have side-effects
that act on a simulated (or even the real) world.

The results of the program’s execution are evaluated in some way, and this
evaluation represents the fitness of the individual. This fitness is used to drive
the selection process for copying into the next generation or for the selection of
parents to undergo genetic operations yielding offspring. Any selection operator
from those presented in Chapters 22–33 can be used.

There is certainly a desire to evolve programs using genetic programming
that are ‘general’, that is to say that they will not only correctly process the
fitness cases on which they are evolved, but will process correctly any fitness
cases which could be presented to them. Clearly, in the cases where there are
infinitely many possible cases, such as evolving a general sorting algorithm
(Kinnear 1993), the evolutionary process can only be driven by a very limited
number of fitness cases. Many of the lessons from machine learning on the
tradeoffs between generality and performance on training cases have been
helpful to genetic programming researchers, particularly those from decision
tree approaches to machine learning (Iba et al 1994).

11.3 The development of genetic programming

LISP was the language in which the ideas which led to genetic programming
were first developed (Cramer 1985, Koza 1989, 1992). LISP has always been
one of the preeminent language choices for implementation where programs
need to be treated as data. In this case, programs are data while they are being
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evolved, and are only considered executable when they are undergoing fitness
evaluation.

As genetic programming itself evolved in LISP, the programs that were
executed began to look less and less like LISP programs. They continued to be
tree structured but soon few if any of the functions used in the evolved programs
were standard LISP functions. Around 1992 many people implemented genetic
programming systems in C and C++, along with many other programming
languages. Today, other than a frequent habit of printing the representation
of tree-structured genetic programs in a LISP-like syntax, there is no particular
connection between genetic programming and LISP.

There are many public domain implementations of genetic programming in
a wide variety of programming languages. For further details, see the reading
list at the end of this section.

11.4 The value of genetic programming

Genetic programming is defined as a variation on the theme of genetic
algorithms through some specific selections of representation, genetic operators
appropriate to that representation, and fitness evaluation as execution of that
representation in a virtual machine. Taken in isolation, these three elements
do not capture the value or promise of genetic programming. What makes
genetic programming interesting is the conceptual shift of the problem being
solved by the genetic algorithm. A genetic algorithm searches for something,
and genetic programming shifts the search from that of parameter discovery
for some existing algorithm designed to solve a problem to a search for a
program (or algorithm) to solve the problem directly. This shift has a number
of ramifications.

• This conceptualization of evolving computer programs is powerful in part
because it can change the way that we think about solving problems.
Through experience, it has become natural to think about solving
problems through a process of human-oriented program discovery. Genetic
programming allows us to join this approach to problem solving with
powerful EC-based search techniques.

An example of this is a variation of genetic programming called
stack genetic programming (Perkis 1994), where the program is a variable-
length linear string of functions and terminals, and the argument passing
is defined to be on a stack. The genetic operators in a linear system
such as this are much closer to the traditional genetic algorithm operators,
but the execution and fitness evaluation (possibly including side-effects) is
equivalent to any other sort of genetic programming. The characteristics of
stack genetic programming have not yet been well explored but it is clear
that it has rather different strengths and weaknesses than does traditional
genetic programming.
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Many of the approaches to simulation of adaptive behavior involve
simple programs designed to control animats . The conceptualization of
evolving computer programs as presented by genetic programming fits well
with work on evolving adaptive entities (Reynolds 1994, Sims 1994).

• There has been a realization that not only can we evolve programs that are
built from human-created functions and terminals, but that the functions
from which they are built can evolve as well. Koza’s invention of
automatically defined functions (ADFs) (Koza 1994) is one such example
of this realization. ADFs allow the definitions of certain subfunctions to
evolve even while the functions that call them are evolving. For certain
classes of problems, ADFs result in considerable increases in performance
(Koza 1994, Angeline and Pollack 1993, Kinnear 1994).

• Genetic programming is capable of integrating a wide variety of existing
capabilities, and has potential to tie together several complementary
subsystems into an overall hybrid system. The functions need not be simple
arithmetic or logical operators, but could instead be fast Fourier transforms,
GMDH systems, or other complex building blocks. They could even be
the results of other evolutionary computation algorithms.

• The genetic operators that create offspring programs from parent programs
are themselves programs. These programs can also be evolved either as
part of a separate process, or in a coevolutionary way with the programs on
which they operate. While any evolutionary computation algorithm could
have parameters that affect the genetic operators be part of the evolutionary
process, genetic programming provides a natural way to let the operators
(defined as programs) evolve directly (Teller 1996, Angeline 1996).

• Genetic programming naturally enhances the possibility for increasingly
indirect evolution. As an example of the possibilities, genetic programming
has been used to evolve grammars which, when executed, produce the
structure of an untrained neural network. These neural networks are then
trained, and the trained networks are then evaluated on a test set. The results
of this evaluation are then used as the fitnesses of the evolved grammars
(Gruau 1993).

This last example is a step along the path toward modeling embryonic
development in genetic programming. The opportunity exists to evolve
programs whose results are themselves programs. These resulting programs
are then executed and their values or side-effects are evaluated—and become
the fitness for the original evolving, program creating programs. The analogy
to natural embryonic development is clear, where the genetic material, the
genotype, produces through development a body, the phenotype, which then
either does or does not produce offspring, the fitness (Kauffman 1993).

Genetic programming is valuable in part because we find it natural to
examine issues such as those mentioned above when we think about evolutionary
computation from the genetic programming perspective.
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other EC-based papers.

6. Eshelman L J (ed) 1995 Proc. 6th Int. Conf. on Genetic Algorithms (Pittsburgh, PA,
July 1995) (Cambridge, MA: MIT Press)

Contains a considerable number of applications of genetic programming to
increasingly diverse areas.

7. Angeline P J and Kinnear K E Jr (eds) 1996 Advances in Genetic Programming II
(Cambridge, MA: MIT Press)

A volume devoted exclusively to research papers on genetic programming, each
longer and more in depth than those presented in most conference proceedings.

8. Kauffman S A 1993 The Origins of Order: Self-Organization and Selection in
Evolution (New York: Oxford University Press)
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A tour-de-force of interesting ideas, many of them applicable to genetic
programming as well as other branches of evolutionary computation.

9. ftp.io.com pub/genetic-programming

An anonymous ftp site with considerable public domain information and
implementations of genetic programming systems. This is a volunteer site, so its
lifetime is unknown.
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Learning classifier systems

Robert E Smith

12.1 Introduction

The learning classifier system (LCS) (Goldberg 1989, Holland et al 1986) is
often referred to as the primary machine learning technique that employs genetic
algorithms (GAs). It is also often described as a production system framework
with a genetic algorithm as the primary rule discovery method. However, the
details of LCS operation vary widely from one implementation to another. In
fact, no standard version of the LCS exists. In many ways, the LCS is more
of a concept than an algorithm. To explain details of the LCS concept, this
article will begin by introducing the type of machine learning problem most
often associated with the LCS. This discussion will be followed by a overview
of the LCS, in its most common form. Final sections will introduce the more
complex issues involved in LCSs.

12.2 Types of learning problem

To introduce the LCS, it will be useful to describe types of machine learning
problem. Often, in the literature, machine learning problems are described in
terms of cognitive psychology or animal behavior. This discussion will attempt
to relate the terms used in machine learning to engineering control.

Consider the generic control problem shown in figure 12.1. In this
problem, inputs from an external control system, combined with uncontrollable
disturbances from other sources, change the state of the plant. These changes
in state are reflected in the state information provided by the plant. Note that,
in general, the state information can be incomplete and noisy.

Consider the supervised learning problem shown in figure 12.2 (Barto 1990).
In this problem, an inverse plant model (or teacher) is available that provides
errors directly in terms of control actions. Given this direct error feedback, the
parameters of the control system can be adjusted by means of gradient descent,
to minimize error in control actions. Note that this is the method used in the
neural network backpropagation algorithm.
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disturbances
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Figure 12.1. A generic control problem.
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Figure 12.2. A supervised learning problem.

Now consider the reinforcement learning problem shown in figure 12.3
(Barto 1990). Here, no inverse plant model is available. However, a critic
is available that indicates error in the state information from the plant. Because
error is not directly provided in terms of control actions, the parameters of the
controller cannot be directly adjusted by methods such as gradient descent.

Plant
disturbances

control actions

State Evaluator
(or "critic")

state info.

error in
state

Figure 12.3. A reinforcement learning problem.

The remaining discussion will consider the control problem to operate as a
Markov decision problem. That is, the control problem operates in discrete time
steps, the plant is always in one of a finite number of discrete states, and a finite,
discrete number of control actions are available. At each time step, the control
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action alters the probability of moving the plant from the current state to any
other state. Note that deterministic environments are a specific case. Although
this discussion will limit itself to discrete problems, most of the points made
can be related directly to continuous problems.

A characteristic of many reinforcement learning problems is that one may
need to consider a sequence of control actions and their results to determine
how to improve the controller. One can examine the implications of this by
associating a reward or cost with each control action. The error in state in
figure 12.3 can be thought of as a cost. One can consider the long-term effects
of an action formally as the expected, infinite-horizon discounted cost:

t=∞∑
t=0

λtct

where 0 ≤ λ ≤ 1 is the discount parameter, and ct is the cost of the action
taken at time t .

To describe a strategy for picking actions, consider the following approach:
for each action u associated with a state i, assign a value Q(i, u). A ‘greedy’
strategy is to select the action associated with the best Q at every time step.
Therefore, an optimum setting for the Q-values is one in which a ‘greedy’
strategy leads to the minimum expected, infinite-horizon discounted cost. Q-
learning is a method that yields optimal Q-values in restricted situations.
Consider beginning with random settings for each Q-value, and updating each
Q-value on-line as follows:

Qt+1(i, ut ) = Qt(i, u)(1− α)+ α
[
ci(ut )+ λ min Q(j, ut+1)

]
where min Q(j, ut+1) is the minimum Q available in state j , which is the state
arrived in after action ut is taken in state i (Barto et al 1991, Watkins 1989).
The parameter α is a learning rate parameter that is typically set to a small
value between zero and one. Arguments based on dynamic programming and
Bellman optimality show that if each state–action pair is tried an infinite number
of times, this procedure results in optimal Q-values. Certainly, it is impractical
to try every state–action pair an infinite number of times. With finite exploration,
Q-values can often be arrived at that are approximately optimal. Regardless of
the method employed to update a strategy in a reinforcement learning problem,
this exploration–exploitation dilemma always exists.

Another difficulty in the Q-value approach is that it requires storage of
a separate Q-value for each state–action pair. In a more practical approach,
one could store a Q-value for a group of state–action pairs that share the
same characteristics. However, it is not clear how state–action pairs should
be grouped. In many ways, the LCS can be thought of as a GA-based technique
for grouping state–action pairs.
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12.3 Learning classifier system introduction

Consider the following method for representing a state–action pair in a
reinforcement learning problem: encode a state in binary, and couple it to an
action, which is also encoded in binary. In other words, the string

0 1 1 0 / 0 1 0

represents one of 16 states and one of eight actions. This string can also be
seen as a rule that says ‘IF in state 0 1 1 0, THEN take action 0 1 0’. In an
LCS, such a rule is called a classifier. One can easily associate a Q-value, or
other performance measures, with any given classifier.

Now consider generalizing over actions by introducing a ‘don’t care’
character (#) into the state portion of a classifier. In other words, the string

# 1 1 # / 0 1 0

is a rule that says ‘IF in state 0 1 1 0 OR state 0 1 1 1 OR state 1 1 1 0 OR
state 1 1 1 1, THEN take action 0 1 0’. The introduction of this generality
allows an LCS to represent clusters of states and associated actions. By using
the genetic algorithm to search for such strings, one can search for ways of
clustering states together, such that they can be assigned joint performance
statistics, such as Q-values.

Note, however, that Q-learning is not the most common method of credit
assignment in LCSs. The most common method is called the bucket brigade

Black Box Environment

detectors

message
space

effectors

CA

CR

LCS

GA

rule set

matching

external
messages

internal
messages

state output action input "reward"

Figure 12.4. The structure of an LCS.
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algorithm for updating a classifier performance statistic called strength. Details
of the bucket brigade algorithm will be introduced later in this section.

The structure of a typical LCS is shown in figure 12.4. This is what is
known as a stimulus–response LCS, since no internal messages are used as
memory. Details of internal message posting in LCSs will be discussed later.
In this system, detectors encode state information from an environment into
binary messages, which are matched against a list of rules called classifiers.
The classifiers used are of the form

IF (condition) THEN (action).

The operational cycle of this LCS is:

(i) Detectors post environmental messages on the message list.
(ii) All classifiers are matched against all messages on the message list.
(iii) Fully matched classifiers are selected to act.
(iv) A conflict resolution (CR) mechanism narrows the list of active classifiers

to eliminate contradictory actions.
(v) The message list is cleared.
(vi) The CR-selected classifiers post their messages.
(vii) Effectors read the messages from the list, and take appropriate actions in

the environment.
(viii) If a reward (or cost) signal is received, it is used by a credit allocation

(CA) system to update parameters associated with the individual classifiers
(such as the traditional strength measure, Q-like values, or other measures
(Booker 1989, Smith 1991)).

12.4 ‘Michigan’ and ‘Pitt’ style learning classifier systems

There are two methods of using the genetic algorithm in LCSs. One is for each
genetic algorithm population member to represent an entire set of rules for the
problem at hand. This type of LCS is typified by Smith’s LS-1 which was
developed at the University of Pittsburgh. Often, this type of LCS is called
the ‘Pitt’ approach. Another approach is for each genetic algorithm population
member to represent a single rule. This type of LCS is typified by the CS-
1 of Holland and Reitman (1978), which was developed at the University of
Michigan, and is often called the ‘Michigan’ approach.

In the ‘Pitt’ approach, crossover and other operators are often employed
that change the number of rules in any given population member. The ‘Pitt’
approach has the advantage of evaluating a complete solution within each
genetic algorithm individual. Therefore, the genetic algorithm can converge to a
homogeneous population, as in an optimization problem, with the best individual
located by the genetic algorithm search acting as the solution. The disadvantage
is that each genetic algorithm population member must be completely evaluated
as a rule set. This entails a large computational expense, and may preclude
on-line learning in many situations.
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In the ‘Michigan’ approach, one need only evaluate a single rule set, that
comprised by the entire population. However, one cannot use the usual genetic
algorithm procedures that will converge to a homogeneous population, since one
rule is not likely to solve the entire problem. Therefore, one must coevolve a
set of cooperative rules that jointly solve the problem. This requires a genetic
algorithm procedure that yields a diverse population at steady state, in a fashion
that is similar to sharing (Deb and Goldberg 1989, Goldberg and Richardson
1987), or other multimodal genetic algorithm procedures. In some cases simply
dividing reward between similar classifiers that fire can yield sharing-like effects
(Horn et al 1994).

12.5 The bucket brigade algorithm (implicit form)

As was noted earlier, the bucket brigade algorithm is the most common form of
credit allocation for LCSs. In the bucket brigade, each classifier has a strength,
S, which plays a role analogous to a Q-value. The bucket brigade operates as
follows:

(i) Classifier A is selected to act at time t .
(ii) Reward rt is assigned in response to this action.
(iii) Classifier B is selected to act at time t + 1.
(iv) The strength of classifier A is updated as follows:

St+1
A = St

A(1− α)+ α [rt + (λSB)] .

(v) The algorithm repeats.

Note that this is the implicit form of the bucket brigade, first introduced by
Wilson (Goldberg 1989, Wilson 1985).

Note that this algorithm is essentially equivalent to Q-learning, but with one
important difference. In this case, classifier A’s strength is updated with the
strength of the classifier that actually acts (classifier B). In Q-learning, the Q-
value for the rule at time t is updated with the best Q-valued rule that matches
the state at time t + 1, whether that rule is selected to act at time t + 1 or not.
This difference is key to the convergence properties associated with Q-learning.
However, it is interesting to note that recent empirical studies have indicated
that the bucket brigade (and similar procedures) may be superior to Q-learning
in some situations (Rummery and Niranjan 1994, Twardowski 1993).

A wide variety of variations of the bucket brigade exits. Some include a
variety of taxes, which degrade strength based on the number of times a classifier
has matched and fired and the number of generations since the classifier’s
creation. or other features. Some variations include a variety of methods for
using classifier strength in conflict resolution through strength-based bidding
procedures (Holland et al 1986). However, how these techniques fit into the
broader context of machine learning, through similar algorithms such as Q-
learning, remains a topic of research.
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In many LCSs, strength is used as fitness in the genetic algorithm. However,
a promising recent study indicates that other measures of classifier utility may
be more effective (Wilson 1995).

12.6 Internal messages

The LCS discussed to this point has operated entirely in stimulus–response
mode. That is, it possesses no internal memory that influences which rule
fires. In a more advanced form of the LCS, the action sections of the rule
are internal messages that are posted on the message list. Classifiers have a
condition that matches environmental messages (those which are posted by the
environment) and a condition that matches internal messages (those posted by
other classifiers). Some internal messages will cause effectors to fire (causing
actions in the environment), and others simply act as internal memory for the
LCS.

The operational cycle of a LCS with internal memory is as follows:

(i) Detectors post environmental messages on the message list.
(ii) All classifiers are matched against all messages on the message list.
(iii) Fully matched classifiers are selected to act.
(iv) A conflict resolution (CR) mechanism narrows the list of active classifiers

to eliminate contradictory actions, and to cope with restrictions on the
number of messages that can be posted.

(v) The message list is cleared.
(vi) The CR-selected classifiers post their messages.
(vii) Effectors read the messages from the list, and take appropriate actions in

the environment.
(viii) If a reward (or cost) signal is received, it updates parameters associated

with the individual classifiers.

In LCSs with internal messages, the bucket brigade can be used in its
original, explicit form. In this form, the next rule that acts is ‘linked’ to the
previous rule through an internal message. Otherwise, the mechanics are similar
to those noted above. Once classifiers are linked by internal messages, they can
form rule chains that express complex sequences of actions.

12.7 Parasites

The possibility of rule chains introduced by internal messages, and by ‘payback’
credit allocation schemes such as the bucket brigade or Q-learning, also
introduces the possibility of rule parasites. Simply stated, parasites are rules that
obtain fitness through their participation in a rule chain or a sequence of LCS
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actions, but serve no useful purpose in the problem environment. In some cases,
parasite rules can prosper, while actually degrading overall system performance.

A simple example of parasite rules in LCSs is given by Smith (1994). In this
study, a simple problem is constructed where the only performance objective is
to exploit internal messages as internal memory. Although fairly effective rule
sets were evolved in this problem, parasites evolved that exploited the bucket
brigade, and the existing rule chains, but that were incorrect for overall system
performance. This study speculates that such parasites may be an inevitable
consequence in systems that use temporal credit assignment (such as the bucket
brigade) and evolve internal memory processing.

12.8 Variations of the learning classification system

As was stated earlier, this article only outlines the basic details of the LCS
concept. It is important to note that many variations of the LCS exist. These
include:

• Variations in representation and matching procedures. The {1, 0, #}
representation is by no means defining to the LCS approach. For instance,
Valenzuela-Rendón (1991) has experimented with a fuzzy representation
of classifier conditions, actions, and internal messages. Higher-cardinality
alphabets are also possible. Other variations include simple changes
in the procedures that match classifiers to messages. For instance,
sometimes partial matches between messages and classifier conditions
are allowed (Booker 1982, 1985). In other systems, classifiers have
multiple environmental or internal message conditions. In some suggested
variations, multiple internal messages are allowed on the message list at
the same time.

• Variations in credit assignment. As was noted above, a variety of credit
assignment schemes can be used in LCSs. The examination of such
schemes is the subject of much broader research in the reinforcement
learning literature. Alternate schemes for the LCS prominently include
epochal techniques, where the history of reward (or cost) signals is recorded
for some period of time, and classifiers that act during the epoch are updated
simultaneously.

• Variations in discovery operators. In addition to various versions of the
genetic algorithm, LCSs often employ other discovery operators. The most
common nongenetic discovery operators are those which create new rules
to match messages for which no current rules exist. Such operators are
often called create, covering, or guessing operators (Wilson 1985). Other
covering operators are suggested that create new rules that suggest actions
not accessible in the current rule set (Riolo 1986, Robertson and Riolo
1988).
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12.9 Final comments

As was stated in section 12.1, the LCS remains a concept, more than a specific
algorithm. Therefore, some of the details discussed here are necessarily sketchy.
However, recent research on the LCS is promising. For a particularly clear
examination of a simplified LCS, see a recent article by Wilson (1994). This
article also recommends clear avenues for LCS research and development.
Interesting LCS applications are also appearing in the literature (Smith and
Dike 1995).

Given the robust character of evolutionary computation algorithms, the
machine learning techniques suggested by the LCS concept indicate a powerful
avenue of future evolutionary computation application.
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13
Hybrid methods

Zbigniew Michalewicz

There is some experimental evidence (Davis 1991, Michalewicz 1993) that the
enhancement of evolutionary methods by some additional (problem-specific)
heuristics, domain knowledge, or existing algorithms can result in a system
with outstanding performance. Such enhanced systems are often referred to as
hybrid evolutionary systems.

Several researchers have recognized the potential of such hybridization of
evolutionary systems. Davis (1991, p 56) wrote:

When I talk to the user, I explain that my plan is to hybridize the
genetic algorithm technique and the current algorithm by employing
the following three principles:

• Use the Current Encoding. Use the current algorithm’s encoding
technique in the hybrid algorithm.

• Hybridize Where Possible. Incorporate the positive features of the
current algorithm in the hybrid algorithm.

• Adapt the Genetic Operators. Create crossover and mutation
operators for the new type of encoding by analogy with bit
string crossover and mutation operators. Incorporate domain-
based heuristics as operators as well.

[...] I use the term hybrid genetic algorithm for algorithms created by
applying these three principles.

The above three principles emerged as a result of countless experiments of
many researchers, who tried to ‘tune’ their evolutionary algorithms to some
problem at hand, that is, to create ‘the best’ algorithm for a particular class
of problems. For example, during the last 15 years, various application-
specific variations of evolutionary algorithms have been reported (Michalewicz
1996); these variations included variable-length strings (including strings whose
elements were if–then–else rules), richer structures than binary strings, and
experiments with modified genetic operators to meet the needs of particular
applications. Some researchers (e.g. Grefenstette 1987) experimented with
incorporating problem-specific knowledge into the initialization routine of an
evolutionary system; if a (fast) heuristic algorithm provides individuals of the
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initial population for an evolutionary system, such a hybrid evolutionary system
is guaranteed to do no worse than the heuristic algorithm which was used for
the initialization.

Usually there exist several (better or worse) heuristic algorithms for a given
problem. Apart from incorporating them for the purpose of initialization, some
of these algorithms transform one solution into another by imposing a change
in the solution’s encoding (e.g. 2-opt step for the traveling salesman problem).
One can incorporate such transformations into the operator set of evolutionary
system, which usually is a very useful addition.

Note also (see Chapters 14 and 31) that there is a strong relationship between
encodings of individuals in the population and operators, hence the operators
of any evolutionary system must be chosen carefully in accordance with the
selected representation of individuals. This is a responsibility of the developer
of the system; again, we would cite Davis (1991, p 58):

Crossover operators, viewed in the abstract are operators that combine
subparts of two parent chromosomes to produce new children. The
adopted encoding technique should support operators of this type, but
it is up to you to combine your understanding of the problem, the
encoding technique, and the function of crossover in order to figure
out what those operators will be. [...]

The situation is similar for mutation operators. We have decided
to use an encoding technique that is tailored to the problem domain;
the creators of the current algorithm have done this tailoring for
us. Viewed in the abstract, a mutation operator is an operator that
introduces variations into the chromosome. [...] these variations can
be global or local, but they are critical to keeping the genetic pot
boiling. You will have to combine your knowledge of the problem,
the encoding technique, and the function of mutation in a genetic
algorithm to develop one or more mutation operators for the problem
domain.

Very often hybridization techniques make use of local search operators,
which are considered as ‘intelligent mutations’. For example, the best
evolutionary algorithms for the traveling salesman problem use 2-opt or 3-opt
procedures to improve the individuals in the population (see e.g. Mühlenbein et
al 1988). It is not unusual to incorporate gradient-based (or hill-climbing)
methods as ways for a local improvement of individuals. It is also not
uncommon to combine simulated annealing techniques with some evolutionary
algorithms (Adler 1993).

The class of hybrid evolutionary algorithms described so far consists
of systems which extend evolutionary paradigm by incorporating additional
features (local search, problem-specific representations and operators, and
the like). This class also includes also so-called morphogenic evolutionary
techniques (Angeline 1995), which include mappings (development functions)
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between representations that evolve (i.e. evolved representations) and
representations which constitutes the input for the evaluation function (i.e.
evaluated representations). However, there is another class of evolutionary
hybrid methods, where the evolutionary algorithm acts as a separate component
of a larger system. This is often the case for various scheduling systems, where
the evolutionary algorithm is just responsible for ordering particular items. This
is also the case for fuzzy systems, where the evolutionary algorithms may control
the membership function, or of neural systems, where evolutionary algorithms
may optimize the topology or weights of the network.

References

Adler D 1993 Genetic algorithms and simulated annealing: a marriage proposal Proc.
IEEE Int. Conf. on Neural Networks pp 1104–9

Angeline P J 1995 Morphogenic evolutionary computation: introduction, issues, and
examples Proc. 4th Ann. Conf. on Evolutionary Programming (San Diego, CA,
March 1995) ed J R McDonnell, R G Reynolds and D B Fogel (Cambridge, MA:
MIT Press) pp 387–401

Davis L 1991 Handbook of Genetic Algorithms (New York: Van Nostrand Reinhold)
Grefenstette J J 1987 Incorporating problem specific knowledge into genetic algorithms

Genetic Algorithms and Simulated Annealing ed L Davis (Los Altos, CA: Morgan
Kaufmann) pp 42–60

Michalewicz Z 1993 A hierarchy of evolution programs: an experimental study
Evolutionary Comput. 1 51–76

——1996 Genetic Algorithms + Data Structures = Evolution Programs 3rd edn (New
York: Springer)

Mühlenbein H, Gorges-Schleuter M and Krämer O 1988 Evolution algorithms in
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14
Introduction to representations

Kalyanmoy Deb

14.1 Solutions and representations

Every search and optimization algorithm deals with solutions, each of which
represents an instantiation of the underlying problem. Thus, a solution must
be such that it can be completely realized in practice; that is, either it can
be fabricated in a laboratory or in a workshop or it can be used as a control
strategy or it can be used to solve a puzzle, and so on. In most engineering
problems, a solution is a real-valued vector specifying dimensions to the key
parameters of the problem. In control system problems, a solution is a time-
or frequency-dependent functional variation of key control parameters. In game
playing and some artificial-intelligence-related problems, a solution is a strategy
or an algorithm for solving a particular task. Thus, it is clear that the meaning
of a solution is inherent to the underlying problem.

As the structure of a solution varies from problem to problem, a solution
of a particular problem can be represented in a number of ways. Usually, a
search method is most efficient in dealing with a particular representation and
is not so efficient in dealing with other representations. Thus, the choice of an
efficient representation scheme depends not only on the underlying problem but
also on the chosen search method. The efficiency and complexity of a search
algorithm largely depends on how the solutions have been represented and how
suitable the representation is in the context of the underlying search operators.
In some cases, a difficult problem can be made simpler by suitably choosing a
representation that works efficiently with a particular algorithm.

In a classical search and optimization method, all decision variables are
usually represented as vectors of real numbers and the algorithm works on
one vector of solution to create a new vector of solution (Deb 1995, Reklaitis
et al 1983). Different EC methods use different representation schemes
in their search process. Genetic algorithms (GAs) have been mostly used
with a binary string representing the decision variables. Evolution strategy
and evolutionary programming studies have used a combination of real-
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valued decision variables and a set of strategy parameters as a solution vector.
In genetic programming, a solution is a LISP code representing a strategy or
an algorithm for solving a task. In permutation problems solved using an
EC method, a series of node numbers specifying a complete permutation is
commonly used as a solution. In the following subsection, we describe a number
of important representations used in EC studies.

14.2 Important representations

In most applications of GAs, decision variables are coded in binary strings
of 1s and 0s. Although the variables can be integer or real valued, they are
represented by binary strings of a specific length depending on the required
accuracy in the solution. For example, a real-valued variable xi bounded in
the range (a, b) can be coded in five-bit strings with the strings (00000) and
(11111) representing the real values a and b, respectively. Any of the other
30 strings represents a solution in the range (a, b). Note that, with five bits,
the maximum attainable accuracy is only (b − a)/(25 − 1). Binary coding is
discussed further in Chapter 15. Although binary string coding has been most
popular in GAs, a number of researchers prefer to use Gray coding to eliminate
the Hamming cliff problem associated with binary coding (Schaffer et al 1989).
In Gray coding, the number of bit differences between any two consecutive
strings is one, whereas in binary strings this is not always true. However, as
in the binary strings, even in Gray-coded strings a bit change in any arbitrary
location may cause a large change in the decoded integer value. Moreover,
the decoding of the Gray-coded strings to the corresponding decision variable
introduces an artificial nonlinearity in the relationship between the string and
the decoded value.

The coding of the variables in string structures make the search space discrete
for GA search. Therefore, in solving a continuous search space problem,
GAs transform the problem into a discrete programming problem. Although
the optimal solutions of the original continuous search space problem and the
derived discrete search space problem may be marginally different (with large
string lengths), the obtained solutions are usually acceptable in most practical
search and optimization problems. Moreover, since GAs work with a discrete
search space, they can be conveniently used to solve discrete programming
problems, which are usually difficult to solve using traditional methods.

The coding of the decision variables in strings allows GAs to exploit the
similarities among various strings in a population to guide the search. The
similarities in string positions are represented by ternary strings (with 1, 0, and
∗, where a ∗ matches a 1 or a 0) known as schema. The power of GA search
is considered to lie in the implicit parallel schema processing.

Although string codings have been mostly used in GAs, there have been
some studies with direct real-valued vectors in GAs (Deb and Agrawal 1995,
Chaturvedi et al 1995, Eshelman and Schaffer 1993, Wright 1991). In those
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applications, decision variables are directly used and modified genetic operators
are used to make a successful search. A detailed discussion of the real-valued
vector representations is given in Chapter 16.

In evolution strategy (ES) and evolutionary programming (EP) studies, a
natural representation of the decision variables is used where a real-valued
solution vector is used. The numerical values of the decision variables are
immediately taken from the solution vector to compute the objective function
value. In both ES and EP studies, the crossover and mutation operators are used
variable by variable. Thus, the relative positioning of the decision variables in
the solution vector is not an important matter. However, in recent studies of
ES and EP, in addition to the decision variables, the solution vector includes a
set of strategy parameters specifying the variance of search mutation for each
variable and variable combinations. For n decision variables, both methods use
an additional number between one and n(n + 1)/2 such strategy parameters,
depending on the degree of freedom the user wants to provide for the search
algorithm. These adaptive parameters control the search of each variable,
considering its own allowable variance and covariance with other decision
variables. We discuss these representations in Section 16.2.

In permutation problems, the solutions are usually a vector of node identifiers
representing a permutation. Depending on the problem specification, special care
is taken in creating valid solutions representing a valid permutation. In these
problems, the absolute positioning of the node identifiers is not as important as
the relative positioning of the node identifiers. The representation of permutation
problems is discussed further in Chapter 17.

In early EP works, finite-state machines were used to evolve intelligent
algorithms which were operated on a sequence of symbols so as to produce an
output symbol which would maximize the algorithm’s performance. Finite-state
representations were used as solutions to the underlying problem. The input
and output symbols were taken from two different finite-state alphabet sets. A
solution is represented by specifying both input and output symbols to each link
connecting the finite states. The finite-state machine tranforms a sequence of
input symbols to a sequence of output symbols. The finite-state representations
are discussed in Chapter 18.

In genetic programming studies, a solution is usually a LISP program
specifying a strategy or an algorithm for solving a particular task. Functions
and terminals are used to create a valid solution. The syntax and structure of
each function are maintained. Thus, if an OR function is used in the solution,
at least two arguments are assigned from the terminal set to make a valid OR
operation. Usually, the depth of nestings used in any solution is restricted to
a specified upper limit. In recent applications of genetic programming, many
special features are used in representing a solution. As the iterations progress,
a part of the solution is frozen and defined as a metafunction with specified
arguments. We shall discuss these features further in Chapter 19.

As mentioned earlier, the representation of a solution is important in the
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working of a search algorithm, including evolutionary algorithms. In EC studies,
although a solution can be represented in a number of ways, the efficacy of a
representation scheme cannot be judged alone; instead it depends largely on the
chosen recombination operators. In the context of schema processing and the
building block hypothesis, it can be argued that a representation that allows good
yet important combinations of decision variables to propagate by the action of the
search operators is likely to perform well. Radcliffe (1993) outlines a number of
properties that a recombination operator must have in order to properly propagate
good building blocks. Kargupta et al (1992) have shown that the success of
GAs in solving a permutation problem coded by three different representations
strongly depends on the appropriate recombination operator used. Thus, the
choice of a representation scheme must not be made alone, but must be made
in conjuction with the choice of the search operators. Guidelines for a suitable
representation of decision variables are discussed in Chapter 20.

14.3 Combined representations

In many search and optimization problems, the solution vector may contain
different types of variable. For example, in a mixed-integer programming
problem (common to many engineering and decision-making problems) some
of the decision variables could be real valued and some could be integer valued.
In an engineering gear design problem, the number of teeth in a gear and the
thickness of the gear could be two important design variables. The former
variable is an integer variable and the latter is a real-valued variable. If
the integer variable is coded in five-bit binary strings and the real variable
is coded in real numbers, a typical mixed-string representation of the above
gear design problem may look like (10011 23.5), representing 19 gear teeth
and a thickness of 23.5 mm. Sometimes, the variables could be of different
types. In a typical civil engineering truss structure problem, the topology of
the truss (the connectivity of the truss members represented as presence or
absence of members) and the member cross-sectional areas (real valued) are
usually the design decision variables. These combined problems are difficult
to solve using traditional methods, simply because the search rule in those
algorithms does not allow mixed representations. Although there exists a number
of mixed-integer programming algorithms such as the branch-and-bound method
or the penalty function method, these algorithms treat the discrete variables
as real valued and impose an artificial pressure for these solutions to move
towards the desired discrete values. This is achieved either by adding a set of
additional constraints or by penalizing infeasible solutions. These algorithms, in
general, require extensive computations. However, the string representation of
variables in GAs and the flexibility of using a discrete probability distribution
for creating solutions in ES and EP studies allow them to be conveniently
used to solve such combined problems. In these problems, a solution vector
can be formed by concatenating substrings or numerical values representing
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or specifying each type of variable, as depicted in the above gear design
problem representation. Each part of the solution vector is then operated by
a suitable recombination and mutation operator. In the above gear design
problem representation using GAs, a binary crossover operator may be used for
the integer variable represented by the binary string and a real-coded crossover
can be used for the continuous variable. Thus, the recombination operator
applied to these mixed representations becomes a collection of a number of
operators suitable for each type of variable (Deb 1997). Similar mixed schemes
for mutation operators need also to be used for such combined representations.
These representations are discussed further in Chapter 26.
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Binary strings

Thomas Bäck

The classical representation used in so-called canonical genetic algorithms
consists of binary vectors (often called bitstrings or binary strings) of fixed length
�; that is, the individual space I is given by I = {0, 1}� and individuals a ∈ I are
denoted as binary vectors a = (a1, . . . , a�) ∈ {0, 1}� (see the book by Goldberg
(1989)). The mutation operator (Section 32.1) then typically manipulates these
vectors by randomly inverting single variables ai with small probability, and
the crossover operator (Section 33.1) exchanges segments between two vectors
to form offspring vectors.

This representation is often well suited to problems where potential
solutions have a canonical binary representation, i.e. to so-called pseudo-Boolean
optimization problems of the form f : {0, 1}� → R. Some examples of such
combinatorial optimization problems are the maximum-independent-set problem
in graphs, the set covering problem, and the knapsack problem, which can be
represented by binary vectors simply by including (excluding) a vertex, set,
or item i in (from) a candidate solution when the corresponding entry ai = 1
(ai = 0).

Canonical genetic algorithms, however, also emphasize the binary
representation in the case of problems f : S → R where the search space S

fundamentally differs from the binary vector space {0, 1}�. The most prominent
example of this is given by the application of canonical genetic algorithms for
continuous parameter optimization problems f : Rn → R as outlined by Holland
(1975) and empirically investigated by De Jong (1975). The mechanisms of
encoding and decoding between the two different spaces {0, 1}� and Rn then
require us to restrict the continuous space to finite intervals [ui, vi] for each
variable xi ∈ R, to divide the binary vector into n segments of (in most
cases) equal length �x , such that � = n�x , and to interpret a subsegment
(a(i−1)�x+1, . . . , ai�x

) (i = 1, . . . , n) as the binary encoding of the variable
xi . Decoding then either proceeds according to the standard binary decoding
function �i : {0, 1}� → [ui, vi], where (see Bäck 1996)

�i(a1, . . . , a�) = ui + vi − ui

2�x − 1

(
�x−1∑
j=0

ai �x−j 2j

)
(15.1)
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or by using a Gray code interpretation of the binary vectors, which ensures that
adjacent integer values are represented by binary vectors with Hamming distance
one (i.e. they differ by one entry only). For the Gray code, equation (15.1) is
extended by a conversion of the Gray code representation to the standard code,
which can be done for example according to

�i(a1, . . . , a�x
) = ui + vi − ui

2�x − 1

(
�x−1∑
j=0

(
�x−j⊕
k=1

a(i−1)�x+k

)
2j

)
(15.2)

where ⊕ denotes addition modulo two.
It is clear that this mapping from the representation space I = {0, 1}� to

the search space S = ∏n
i=1[ui, vi] is injective but not surjective, i.e. not all

points of the search space are represented by binary vectors, such that the
genetic algorithm performs a grid search and, depending on the granularity
of the grid, might fail to locate an optimum precisely (notice that �x and the
range [ui, vi] determine the distance of two grid points in dimension i according
to �xi = (vi − ui)/(2�x − 1)). Moreover, both decoding mappings given by
equations (15.1) and (15.2) introduce additional nonlinearities to the overall
objective function f ′ : {0, 1}� → R, where f ′(a) = (f ◦ ×n

i=1�
i)(a), and

the standard code according to equation (15.1) might cause the problem f ′ to
become harder than the original optimization problem f (see the work of Bäck
(1993, 1996, ch 6) for a more detailed discussion).

While parameter optimization is still the dominant field where canonical
genetic algorithms are applied to problems in which the search space is
fundamentally different from the binary space {0, 1}�, there are other examples
as well, such as the traveling salesman problem (Bean 1993) and job shop
scheduling (Nakano and Yamada 1991). Here, rather complex mappings from
{0, 1}� to the search space were defined—to improve their results, Yamada and
Nakano (1992) later switched to a more canonical integer representation space,
giving a further indication that the problem characteristics should determine the
representation and not vice versa.

The reasons why a binary representation of individuals in genetic algorithms
is favored by some researchers can probably be split into historical and schema-
theoretical aspects. Concerning the history, it is important to notice that Holland
(1975, p 21) does not define adaptive plans to work on binary variables (alleles)
ai ∈ {0, 1}, but allows arbitrary but finite individual spaces I = A1 × . . .×A�,
where Ai = {αi1 , . . . , αiki

}. Furthermore, his notion of schemata (certain
subsets of I characterized by the fact that all members—so-called instances
of a schema—share some similarities) does not require binary variables either,
but is based on extending the sets Ai defined above by an additional ‘don’t
care’ symbol (Holland 1975, p 68). For the application example of parameter
optimization, however, he chooses a binary representation (Holland 1975, pp 57,
70), probably because this is the canonical way to map the continuous object
variables to the discrete allele sets Ai defined in his adaptive plans, which in turn
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are likely to be discrete because they aim at modeling the adaptive capabilities
of natural evolution on the genotype level.

Interpreting a genetic algorithm as an algorithm that processes schemata,
Holland (1975, p 71) then argues that the number of schemata available under
a certain representation is maximized by using binary variables; that is, the
maximum number of schemata is processed by the algorithm if ai ∈ {0, 1}.
This result can be derived by noticing that, when the cardinality of an alphabet
A for the allele values is k = |A|, the number of different schemata is (k + 1)�

(i.e. 3� in the case of binary variables). For binary alleles, 2� different solutions
can be represented by vectors of length �, and in order to encode the same
number of solutions by a k-ary alphabet, a vector of length

�′ = �
ln 2

ln k
(15.3)

is needed. Such a vector, however, is an instance of (k+1)�
′
schemata, a number

that is always smaller than 3� for k > 2; that is, fewer schemata exist for an
alphabet of higher cardinality, if the same number of solutions is represented.

Goldberg (1989, p 80) weakens the general requirement for a binary alphabet
by proposing the so-called principle of minimal alphabets , which states that ‘The
user should select the smallest alphabet that permits a natural expression of the
problem’ (presupposing, however, that the binary alphabet permits a natural
expression of continuous parameter optimization problems and is no worse
than a real-valued representation (Goldberg 1991)). Interpreting this strictly,
the requirement for binary alphabets can be dropped, as many practitioners
(e.g. Davis 1991 and Michalewicz 1996) who apply (noncanonical) genetic
algorithms to industrial problems have already done, using nonbinary, problem-
adequate representations such as real-valued vectors (Chapter 16), integer lists
representing permutations (Chapter 17), finite-state machine representations
(Chapter 18), and parse trees (Chapter 19).

At present, there are neither clear theoretical nor empirical arguments that
a binary representation should be used for arbitrary problems other than those
that have a canonical representation as pseudo-Boolean optimization problems.
From an optimization point of view, where the quality of solutions represented
by individuals in a population is to be maximized, the interpretation of genetic
algorithms as schema processors and the corresponding implicit parallelism and
schema theorem results are of no practical use. From our point of view, the
decoding function � : {0, 1}� → S that maps the binary representation to the
canonical search space a problem is defined on plays a much more crucial role
than the schema processing aspect, because, depending on the properties of �,
the overall pseudo-Boolean optimization problem f ′ = f ◦ � might become
more complex than the original search problem f : S → R. Consequently,
one might propose the requirement that, if a mapping between representation
space and search space is used at all, it should be kept as simple as possible
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and obey some structure preserving conditions that still need to be formulated
as a guideline for finding a suitable encoding.
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16
Real-valued vectors

David B Fogel

16.1 Object variables

When posed with a real-valued function optimization problem of the form ‘find
the vector x such that F(x) : Rn → R is minimized (or maximized)’, evolution
strategies (Bäck and Schwefel 1993) and evolutionary programming (Fogel
1995, pp 75–84, 136–7) typically operate directly on the real-valued vector
x (with the components of x identified as object parameters). In contrast,
traditional genetic algorithms operate on a coding (often binary) of the vector
x (Goldberg 1989, pp 80–4). The choice to use a separate coding rather than
operating on the parameters themselves relies on the fundamental belief that
it is useful to operate on subsections of a problem and try to optimize these
subsections (i.e. building blocks) in isolation, and then subsequently recombine
them so as to generate improved solutions. More specifically, Goldberg (1989,
p 80) recommends

The user should select a coding so that short, low-order schemata are
relevant to the underlying problem and relatively unrelated to schemata
over other fixed positions.

The user should select the smallest alphabet that permits a natural
expression of the problem.

Although the smallest alphabet generates the greatest implicit parallelism, there
is no empirical evidence to indicate that binary codings allow for greater
effectiveness or efficiency in solving real-valued optimization problems (see
the tutorial by Davis (1991, p 63) for a commentary on the ineffectiveness of
binary codings).

Evolution strategies and evolutionary programming are not generally
concerned with the recombination of building blocks in a solution and do not
consider schema processing. Instead, solutions are viewed in their entirety, and
no attempt is made to decompose whole solutions into subsections and assign
credit to these subsections.

136
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With the belief that maximizing the number of schemata being processed
is not necessarily useful, or may even be harmful (Fogel and Stayton 1994),
there is no compelling reason in a real-valued optimization problem to act
on anything except the real values of the vector x themselves. Moreover,
there has been a general trend away from binary codings within genetic
algorithm research (see e.g. Davis 1991, Belew and Booker 1991, Forrest
1993, and others). Michalewicz (1992, p 82) indicated that for real-valued
numerical optimization problems, floating-point representations outperform
binary representations because they are more consistent and more precise and
lead to faster execution. This trend may reflect a growing rejection of the
building block hypothesis as an explanation for how genetic algorithms act as
optimization procedures.

With evolution strategies and evolutionary programming, the typical method
for searching a real-valued solution space is to add a multivariate zero-mean
Gaussian random variable to each parent involved in the creation of offspring
(see Section 32.2). In consequence, this necessitates the setting of the covariance
matrix for the Gaussian perturbation. If the covariances between parameters
are ignored, only a vector of standard deviations in each dimension is required.
There are a variety of methods for setting these standard deviations. Section 32.2
offers a variety of procedures for mutating real-valued vectors.

16.2 Object variables and strategy parameters

It has been recognized since 1967 (Rechenberg 1994, Reed et al 1967) that
it is possible for each solution to possess an auxiliary vector of parameters
that determine how the solution will be changed. Two general procedures
for adjusting the object parameters via Gaussian mutation have been proposed
(Schwefel 1981, Fogel et al 1991) (see Section 32.2). In each case, a vector
of strategy parameters for self-adaptation is included with each solution and
is subject to random variation. The vector may include covariance or rotation
information to indicate how mutations in each parameter may covary. Thus the
representation consists of two or three vectors:

(x, σ, α)

where x is the vector of object parameters (x1, . . . , xn), σ is the vector of
standard deviations, and α is the vector of rotation angles corresponding to
the covariances between mutations in each dimension, and may be omitted if
these covariances are set to be zero. The vector σ may have n components
(σ1, . . . , σn) where each entry corresponds to the standard deviation in the
ith dimension, i = 1, . . . , n. The vector σ may also degenerate to a scalar
σ in which case this single value is used as the standard deviation in all
dimensions. Intermediate numbers of standard deviations are also possible,
although such implementation is uncommon (this also applies to the rotation
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angles α). Very recent efforts by Ostermeier et al (1994) offer a variation on
the methods of Schwefel (1981) and further study is required to determine the
general effectiveness of this new technique (see Section 32.2).

Recent efforts in genetic algorithms have also included self-adaptive
procedures (see e.g. Spears 1995) and these may incorporate similar real-valued
coding for variation operators including crossover and point mutations, on both
real-valued or binary or otherwise coded object parameters.
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17
Permutations

Darrell Whitley

17.1 Introduction

To quote Knuth (1973), ‘A permutation of a finite set is an arrangement of its
elements into a row.’ Given n unique objects, n! permutations of the objects
exist. There are various properties of permutations that are relevant to the
manipulation of permutation representations by evolutionary algorithms, both
from a representation point of view and from an analytical perspective.

As researchers began to apply evolutionary algorithms to applications that are
naturally represented as permutations, it became clear that these problems pose
different coding challenges than traditional parameter optimization problems.
First, for some types of problem there are multiple equivalent solutions. When
a permutation is used to represent a cycle, as in the traveling salesman problem
(TSP), then all shifts of the permutation are equivalent solutions. Furthermore,
all reversals of a permutation are also equivalent solutions. Such symmetries
can pose problems for evolutionary algorithms that rely on recombination.

Another problem is that permutation problems cannot be processed using
the same general recombination and mutation operators which are applied to
parameter optimization problems. The use of a permutation representation may
in fact mask very real differences in the underlying combinatorial optimization
problems. An example of these differences is evident in the description of
classic problems such as the TSP and the problem of resource scheduling.

The traveling salesman problem is the problem of visiting each vertex (i.e.
city) in a full connected graph exactly once while minimizing a cost function
defined with respect to the edges between adjacent vertices. In simple terms,
the problem is to minimize the total distance traveled while visiting all the cities
and returning to the point of origin. The TSP is closely related to the problem
of finding a Hamiltonian circuit in an arbitrary graph. The Hamiltonian circuit
is a set of edges that form a cycle which visits every vertex exactly once.
It is relatively easy to show that the problem of finding a set of Boolean
values that yield an evaluation of ‘true’ for a three-conjunction normal form
Boolean expression is directly polynomial-time reducible to the problem of
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finding a Hamiltonian circuit in a specific type of graph (Cormen et al 1990).
The Hamiltonian circuit problem in turn is reducible to the TSP. All of these
problems have a nondeterministic polynomial-time (NP) solution but have no
known polynomial-time solution. These problems are also members of the set
of hardest problems in NP, and hence are NP complete.

Permutations are also important for scheduling applications, variants of
which are also often NP complete. Some scheduling problems are directly
related to the TSP. Consider minimizing setup times between a set of N jobs,
where the function Setup(A, B) is the cost of switching from job A to job B. If
Setup(A, B) = Setup(B, A) this is a variant of the symmetric TSP, except that
the solution may be a path instead of a cycle through the graph (i.e. it visits
every vertex, but does not necessarily return to the origin.) The TSP and setup
minimization problem may also be nonsymmetric: the cost of going from vertex
A to B may not be equal to the cost of going from vertex B to A.

Other types of scheduling problem are different from the TSP. Assume that
one must schedule service times for a set of customers. If this involves access
to a critical resource, then those customers that are scheduled early may have
access to resources that are unavailable to later customers. If one is scheduling
appointments, for example, later customers will have less choice with respect
to which time slots are available to them. In either case, access to limited
resources is critical. We would like to optimize the match between resources
and customers. This could allow us to give more customers what they want in
terms of resources, or the goal might be to increase the number of customers
who can be serviced. In either case, permutations over the set of customers
can be used as a priority queue for scheduling. While there are various classic
problems in the scheduling literature, the term resource scheduling is used here
to refer to scheduling applications where resources are consumed.

Permutations are also sometimes used to represent multisets. A multiset is
also sometimes referred to as a bag, which is analogous to a set except that a
bag may contain multiple copies of identical elements. In sets, the duplication
of elements is not significant, so that

{a, a, b} = {a, b}.
However, in the following multiset,

M = {a, a, b, b, b, c, d, e, e, f, f}
there are two a’s, three b’s, one c, one d, two e’s and two f’s, and duplicates
are significant. In scheduling applications that map jobs to machines, it may
be necessary to schedule two jobs of type a, three jobs of type b, and so on.
Note that it is not necessary that all jobs of type a be scheduled contiguously.
While M in the above illustration contains 11 elements, there are not 11! unique
permutations. Rather, the number of unique permutations is given by

11!

2!3!1!1!2!2!
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and in general
n!

n1!n2!n3! . . .

where n is the number of elements in the multiset and ni is the number of
elements of type i (Knuth 1973). Radcliffe (1993) considers the application of
genetic and evolutionary operators when the solution is expressed as a set or
multiset (bag).

Before looking in more detail at the relationship between permutations and
evolutionary algorithms, some general properties of permutations are reviewed
that are both interesting and useful.

17.2 Mapping integers to permutations

The set of n! permutations can be mapped onto the set of integers in various
ways. Whitley and Yoo (1995) give the following algorithm which converts an
integer X into the corresponding permutation.

(i) Choose some ordering of the permutation which is defined to be sorted.
(ii) Sort and index the N elements (N ≥ 1) of the permutation from 1 to N .

Pick an index X for a specific permutation such that 0 ≤ X < N !.
(iii) If X = 0, pick all remaining elements in the sorted permutation list in the

sequence in which they occur and stop.
(iv) IF X < (N − 1)! pick the first element of the remaining list; GOTO (vi).

Otherwise, continue.
(v) Find Y such that (Y−1)(N−1)! ≤ X < Y(N−1)!. The Y th element of the

sort list is the next element of the permutation. X = X−(Y−1)((N−1)!).
(vi) Delete the chosen element from the list of sorted elements; N = N − 1;

GOTO (iii).

This algorithm can also be inverted to map integers to permutations. For
permutations of length three this generates the following correspondance:

X = 0 indexes 123 X = 3 indexes 231
X = 1 indexes 132 X = 4 indexes 312
X = 2 indexes 213 X = 5 indexes 321.

17.3 The inverse of a permutation

One important property of a permutation is that it has a well-defined inverse
(Knuth 1973). Let a1a2 . . . an be a permutation of the set {1, 2, . . . , n}. This
can be written in a two-line form(

1 2 3 . . . n

a1 a2 a3 . . . an

)
.

The inverse is obtained by reordering both rows such that the second row is
transformed into the sequence 123 . . . n; the reordering of the first that occurs as
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a consequence of reordering the second row yields the inverse of permutation
a1a2a3 . . . an. The inverse is denoted a′1a

′
2a
′
3 . . . a′n. Knuth (1973) gives the

following example of a permutation, 5 9 1 8 2 6 4 7 3, and shows that its
inverse can be obtained as follows:(

591826473
123456789

)
=
(

123456789
359716842

)

which yields the inverse 3 5 9 7 1 6 8 4 2. Knuth also points out that a′j = k

if and only if ak = j. The inverse can be used as part of a function for
mapping permutations to a canonical form, which in turn makes it easier to
model problems with permutation representations.

17.4 The mapping function

When modeling evolutionary algorithms it is often useful to compute a
transmission function ri,j (k) which yields the probability of recombining strings
i and j and obtaining an arbitrary string k. Whitley and Yoo (1995) explain how
to compute the transmission function for a single string k and then to generalize
the results to all other strings. In this case, the strings represent permutations
and the remapping function, denoted @, functions as follows:

r3421,1342(3124) = r3421@3124,1342@3124(1234).

The computation Y = A@X behaves as follows. Let any permutation
X be represented by x1x2x3 . . . xn. Then a1a2a3 . . . an@x1x2x3 . . . xn yields
Y = y1y2y3 . . . yn where yi = j when ai = xj . Thus, (3421@3124) yields
(1432) since (a1 = 3 = x1) ⇒ (y1 = 1). Next, (a2 = 4 = x4) ⇒ (y2 = 4),
(a3 = 2 = x3) ⇒ (y3 = 3), and (a4 = 1 = x2) ⇒ (y4 = 2). This mapping
function is analogous to the bitwise addition (mod 2) used to reorder the vector
s for binary strings. However, note that A@X = X@A. Furthermore, for
permutation recombination operators it is not generally true that ri,j = rj,i .

This allows one to compute the transmission function with respect to a
canonical permutation, in this case 1234, and generalize this mapping to all other
permutations. This mapping can be achieved by simple element substitution.
First, the function r can be generalized as follows:

r3421,1342(3124) = rwzyx,xwzy(wxyz)

where w, x, y, and z are variables representing the elements of the permutation
(e.g. w = 3, x = 1, y = 2, z = 4). If wxyz now represents the canonically
ordered permutation 1234,

rwzyx,xwzy(wxyz) = r1432,2143(1234) = r3421@3124,1342@3124(1234).
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We can also relate this mapping operator to the process of finding an inverse.
The permutations in the expression

r3421,1342(3124) = r1432,2143(1234)

are included as rows in an array. To map the left-hand side of the preceding
expression to the terms in the right-hand side, first compute the inverses for
each of the terms in the left-hand side:

(
3421
1234

)
=
(

1234
4312

)
(

1342
1234

)
=
(

1234
1423

)
(

3124
1234

)
=
(

1234
2314

)
.

Collect the three inverses into a single array. We also then add 1 2 3 4 to the
array and inverse the permutation 2 3 1 4, at the same time rearranging all the
other permutations in the array:


4312
1423
2314
1234


 =




1432
2143
1234
3124


 .

This yields the permutations 1432, 2143, and 1234 which represent the
desired canonical form as it relates to the notion of substitution into a symbolic
canonical form. One can also reverse the process to find the permutations pi

and pj in the following context:

r1432,2143(1234) = rpi ,pj
(3124) = rpi@3124,pj @3124(1234).

17.5 Matrix representations

When comparing the TSP to the problem of resource scheduling, in one case
adjacency is important (the TSP) and in the other case relative order is important
(resource scheduling). One might also imagine problems where absolute position
is important. One way in which the differences between adjacency and relative
order can be illustrated is to use a matrix representation of the information
contained in a permutation.

When we discuss adjacency in the TSP, we typically are referring to a
symmetric TSP: the distance of going from city A to B is the same as going
from B to A. Thus, when we define a matrix representing a tour, there will be
two edges in every row of the matrix, where a row–column entry of 1 represents
an edge connecting the two cities. Thus, the matrices for the tours [A B C D E
F] and [C D E B F A] (left and right, respectively) are as follows:
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A B C D E F A B C D E F
A 0 1 0 0 0 1 A 0 0 1 0 0 1
B 1 0 1 0 0 0 B 0 0 0 0 1 1
C 0 1 0 1 0 0 C 1 0 0 1 0 0
D 0 0 1 0 1 0 D 0 0 1 0 1 0
E 0 0 0 1 0 1 E 0 1 0 1 0 0
F 1 0 0 0 1 0 F 1 1 0 0 0 0

One thing that is convenient about the matrix representation is that it is
easy to extract information about where common edges occur. This can also be
expressed in the form of a matrix, where a zero or one respectively is placed in
the matrix where there is agreement in the two parent structures. If the values
in the parent matrices conflict, we will place a # in the matrix. Using the two
above structures as parents, the following common information is obtained:

A B C D E F
A 0 # # 0 0 1
B # 0 # 0 # #
C # # 0 1 0 0
D 0 0 1 0 1 0
E 0 # 0 1 0 #

F 1 # 0 0 # 0

This matrix can be interpreted in the following way. If we convert the
# symbols to * symbols, then (in the notation typically used by the genetic
algorithm community) a hyperplane is defined in this binary space in which
both of the parents reside. If a recombination operator is applied, the offspring
should also reside in this same subspace (this is the concept of respect, as used
by Radcliffe (1991); note mutation can still be applied after recombination).

This matrix representation does bring out one feature rather well: the
common subtour information can automatically and easily be extracted and
passed on to the offspring during recombination.

The matrix defining the common hyperplane information also defines those
offspring that represent a recombination of the information contained in the
parent structures. In fact, any assignment of 0 or 1 bits to the locations
occupied by the # symbols could be considered valid recombinations, but not
all are feasible solutions to the TSP, because not all recombinations result in a
Hamiltonian circuit. We would like to have an offspring that is not only a valid
recombination, but also a feasible solution.

The matrix representation can also make explicit relative order information.
Consider the same two parents: [A B C D E F] and [C D E B F A]. Relative order
can be represented as follows. Each row will be the relative order information
for a particular element of a permutation. The columns will be all permutation
elements in some canonical order. If A is the first element in a permutation,
then a one will be placed in every column (except column A; the diagonal will
again be zero) to indicate A precedes all other cities. This representation is
given by Fox and McMahon (1991). Thus, the matrices for [A B C D E F] and
[C D E B F A] are as follows (left and right, respectively):
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A B C D E F A B C D E F
A 0 1 1 1 1 1 A 0 0 0 0 0 0
B 0 0 1 1 1 1 B 1 0 0 0 0 1
C 0 0 0 1 1 1 C 1 1 0 1 1 1
D 0 0 0 0 1 1 D 1 1 0 0 1 1
E 0 0 0 0 0 1 E 1 1 0 0 0 1
F 0 0 0 0 0 0 F 1 0 0 0 0 0

In this case, the lower triangle of the matrix flags inversions, which should
not be confused with an inverse. If a1a2a3 . . . an is a permutation of the
canonically ordered set 1, 2, 3, . . . , n then the pair (ai, aj ) is an inversion if
i < j and ai > aj (Knuth 1973). Thus, the number of 1 bits in the lower
triangles of the above matrices is also a count of the number of inversions
(which should also not be confused with the inversion operator used in simple
genetic algorithms, see Holland 1975, p 106, Goldberg 1989, p 166).

The common information can also extracted as before. This produces the
following matrix:

A B C D E F
A 0 # # # # #
B # 0 # # # 1
C # # 0 1 1 1
D # # 0 0 1 1
E # # 0 0 0 1
F # 0 0 0 0 0

Note that this binary matrix is again symmetric around the diagonal, except
that the lower triangle and upper triangle have complementary bit values. Thus
only N(N − 1)/2 elements are needed to represent relative order information.

There have been few studies of how recombination crossover operators
generate offspring in this particular representation space. Fox and McMahon
(1991) offer some work of this kind and also define several operators that work
directly on these binary matrices for relative order.

While matrices may not be the most efficient form of implementation, they
do provide a tool for better understanding sequence recombination operators
designed to exploit relative order. It is clear that adjacency and relative order
relationships are different and are best expressed by different binary matrices.
Likewise, absolute position information also has a different matrix representation
(for example, rows could represent cities and the columns represent positions).
Cycle crossover (Section 33.3.6; see Starkweather et al 1991, Oliver et al 1987)
appears to be a good absolute position operator, although it is hard to find
problems in the literature where absolute position is critical.

17.6 Alternative representations

Let P be an arbitrary permutation and Pj be the j th element of the permutation.
One notable alternative representation of a permutation is to define some
canonical ordering, C, over the elements in the permutation and then define
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a vector of integers, I , such that the integer in position j corresponds to the
position in which element Cj appears in P . Such a vector I can then serve as
a representation of a permutation. More precisely,

P(Ij ) = Cj .

To illustrate:
C = a b c d e f g h

I = 6 2 5 3 8 7 1 4 which represents P = g b d h c a f e.

This may seem like a needless indirection, but consider that I can
be generalized to allow a larger number of possible values than there are
permutation elements. I can also be generalized to allow all real values
(although for computer implementations the distinction is somewhat artificial
since all digital representations of real values are discrete and finite). We
now have a parameter-based presentation of the permutation such that we can
generate random vectors I representing permutations. If the number of values
for which elements in I are defined is dramatically larger than the number of
elements in the permutation, then duplicate values in randomly generated vectors
will occur with very small probability.

This representation allows a permutation problem to be treated as if it were
a more traditional parameter optimization problem with the constraint that no
two elements of vector I should be equal, or that there is a well defined way
to resolve ties. Evolutionary algorithm techniques normally used for parameter
optimization problems can thus be applied to permutation problems using this
representation.

This idea has been independently invented on a couple of occasions. The
first use of this coding method was by Steve Smith of Thinking Machines. A
version of this coding was used by the ARGOT Strategy (Shaefer 1987) and the
representation was picked up by Syswerda (1989) and by Schaffer et al (1989)
for the TSP. More recently, a similar idea was introduced by Bean (1994) under
the name random keys.

17.7 Ordering schemata and other metrics

Goldberg and Lingle (1985) built on earlier work by Franz (1972) to describe
similarity subsets between different permutations. Franz’s calculations were
related to the use of inversion operators for traditional genetic algorithm binary
representations. The use of inversion operators is very much relevant to the
topic of permutations, since in order to apply inversion the binary alleles must be
tagged in some way and inversion acts in the space of all possible permutations
of allele orderings. Thus,

((6 0)(3 1)(2 0)(8 1)(1 0)(5 1)(7 0)(4 0))

is equivalent to
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((1 0)(2 0)(3 1)(4 0)(5 1)(6 0)(7 0)(8 1))

which represents the binary string 00101001 in a position-independent fashion
(Holland 1975).

Goldberg and Lingle were more directly concerned with problems where
the permutation was itself the problem representation, and, in particular, they
present early results for the TSP. They also introduced the partially mapped
crossover (PMX) operator and the notion of ordering schemata, or o-schemata.
For o-schemata, the symbol ! acts as a wild card match symbol. Thus, the
template

! ! 1 ! ! 7 3 !

represents all permutations with a one as the third element, a seven as the
sixth element, and a three as the seventh element. Given o selected positions
in a permutation of length l, there are (l − o)! permutations that match an o-
schemata. One can also count the number of possible o-schema. There are
clearly

(
l

o

)
ways to choose o fixed positions; there are also

(
l

o

)
ways to pick the

permutation elements that fill the slots, and o! ways of ordering the elements
(i.e. the number of permutations over the chosen combination of subelements).
Thus, Goldberg (1989, Goldberg and Lingle 1985) notes that the total number
of o-schemata, nos, can be calculated by

nos =
l∑

j=0

l!

(l − j)!j !

l!

(l − j)!
.

Note that in this definition of the o-schemata, relative order is not accounted for.
In other words, if relative order is important then all of the following shifted
o-schemata,

1 ! ! 7 3 ! ! !
! 1 ! ! 7 3 ! !
! ! 1 ! ! 7 3 !
! ! ! 1 ! ! 7 3

could be viewed as equivalent. Such schemata may or may not ‘wrap around’.
Goldberg discusses o-schemata which have an absolute fixed position (o-
schemata, type a) and those with relative position which are shifts of a specified
template (o-schemata, type r).

This work on o-schemata predates the distinctions between relative
order permutation problems, absolute position problems, and adjacency-based
problems. Thus, o-schemata appear to be better for understanding resource
scheduling applications than for the TSP. In subsequent work, Kargupta et
al (1992) attempt to use ordering schemata to construct deceptive functions
for ordering problems—that is, problems where the average fitness values of
the o-schemata provide misleading information. Note that such problems are
constructed to mislead simple genetic algorithms and may or may not be difficult
with respect to other types of algorithm. (For a discussion of deception see
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the article by Goldberg (1987) and Whitley (1991) and for another perspective
see the article by Grefenstette (1993).) The analysis of Kargupta et al (1992)
considers PMX, a uniform ordering crossover operator (UOX), and a relative
ordering crossover operator (ROX).

An alternative way of constructing relative order problems and of
comparing the similarity of permutations is given by Whitley and Yoo
(1995). Recall that a relative order matrix has a 1 bit in position (X, Y ) if
row element X appears before column element Y in a permutation. Note
that the matrix representation yields a unique binary representation for each
permutation. Using this representation one can also define the Hamming
distance between two permutations P1 and P2; Hamming distance is denoted
by HD(index(P1), index(P2)), where the permutations are represented by their
integer index. In the following examples, the Hamming distance is computed
with respect to the lower triangle (i.e. it is a count of the number of 1 bits in
the lower triangle):

A B C D
---------

A | 0 1 1 1
A B C D B | 0 0 1 1 HD(0,0) = 0

C | 0 0 0 1
D | 0 0 0 0

A B C D
---------

A | 0 0 0 0
B D C A B | 1 0 1 1 HD(0,11) = 4

C | 1 0 0 0
D | 1 0 1 0

A B C D
---------

A | 0 0 0 0
D C B A B | 1 0 0 0 HD(0,23) = 6

C | 1 1 0 0
D | 1 1 1 0

Whitley and Yoo (1995) point out that this representation is not perfect.
Since 2(N2) > N !, certain binary strings are undefined. For example, consider
the following upper triangle:

1 1 1
0 1
0

Element 1 occurs before 2, 3, and 4, which poses no problem, but 2 occurs
after 3, 2 occurs before 4, and 4 occurs before 3. Using > to denote relative
order, this implies a nonexistent ordering such that
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3 > 2 > 4 but 4 > 3

Thus, not all matrices correspond to permutations. Nevertheless, the binary
representation does afford a metric in the form of Hamming distance and
suggests an alternative way of constructing deceptive ordering problems, since
once a binary representation exists several methods for constructing misleading
problems could be employed. Deb and Goldberg (1992) explain how to construct
trap functions. Whitley (1991) also discusses the construction of deceptive
binary functions.

While the topic of deception has been the focus of some controversy
(cf Grefenstette 1993), there are few tools for understanding the difficulty or
complexity of permutation problems. Whitley and Yoo found that simulation
results failed to provide clear evidence that deceptive functions built using o-
schema fitness averages really were misleading or difficult for simple genetic
algorithms.

Aside from the fact that many problems with permutation-based
representations are known to be NP complete problems, there is little work which
characterizes the complexity of specific instances of these problems, especially
from a genetic algorithm perspective. One can attempt to estimate the size
and depth of basins of attraction, but such methods must presuppose the use
of a particular search methods. The use of different local search operators can
induce different numbers of local optima and different sized basins of attraction.
Changing representations can have the same effect.

17.8 Operator descriptions and local search

Section 32.3, on mutation for permutations, also provides information on local
search operators, the best known of which is 2-opt. Information on the most
commonly used forms of recombination for permutation-based representations is
found in Section 33.3. For a general discussion of permutations, see the books by
Niven (1965) and Knuth (1973). Whitley and Yoo (1995) present methods for
constructing infinite-population models for simple genetic algorithms applied
to permutation problems which can be easily converted into finite-population
Markov models.
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Finite-state representations

David B Fogel

18.1 Introduction

A finite-state machine is a mathematical logic. It is essentially a computer
program: it represents a sequence of instructions to be executed, each depending
on a current state of the machine and the current stimulus. More formally, a
finite-state machine is a 5-tuple

M = (Q, τ, ρ, s, o)

where Q is a finite set, the set of states, τ is a finite set, the set of input symbols,
ρ is a finite set, the set of output symbols, s : Q × τ → Q is the next state
function, and o : Q× τ → ρ is the next output function.

Any 5-tuple of sets and functions satisfying this definition is to be interpreted
as the mathematical description of a machine that, if given an input symbol x

while it is in state q, will output the symbol o(q, x) and transition to state s(q, x).
Only the information contained in the current state describes the behavior of the
machine for a given stimulus. The entire set of states serves as the ‘memory’ of
the machine. Thus a finite-state machine is a transducer that can be stimulated
by a finite alphabet of input symbols, that can respond in a finite alphabet
of output symbols, and that possesses some finite number of different internal
states. The corresponding input–output symbol pairs and next-state transitions
for each input symbol, taken over every state, specify the behavior of any finite-
state machine, given any starting state. For example, a three-state machine is
shown in figure 18.1. The alphabet of input symbols are elements of the set
{0, 1}, whereas the alphabet of output symbols are elements of the set {α, β, γ }
(input symbols are shown to the left of the slash, output symbols are shown to
the right). The finite-state machine transforms a sequence of input symbols into
a sequence of output symbols. Table 18.1 indicates the response of the machine
to a given string of symbols, presuming that the machine is found in state C.
It is presumed that the machine acts when each input symbol is perceived and
the output takes place before the next input symbol arrives.
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Figure 18.1. A three-state finite machine. Input symbols are shown to the left of the
slash. Output symbols are to the right of the slash. Unless otherwise specified, the
machine is presumed to start in state A. (After Fogel et al 1966, p 12).

Table 18.1. The response of the finite-state machine shown in figure 18.1 to a string of
symbols. In this example, the machine starts in state C.

Present state C B C A A B
Input symbol 0 1 1 1 0 1
Next state B C A A B C
Output symbol β α γ β β α

18.2 Applications

Finite-state representations are often convenient when the required solutions to
a particular problem of interest require the generation of a sequence of symbols
having specific meaning. For example, consider the problem offered by Fogel
et al (1966) of predicting the next symbol in a sequence of symbols taken from
some alphabet A (here, τ = ρ = A). A population of finite-state machines is
exposed to the environment, that is, the sequence of symbols that have been
observed up to the current time. For each parent machine, as each input symbol
is offered to the machine, each output symbol is compared with the next input
symbol. The worth of this prediction is then measured with respect to the
given payoff function (e.g. all–none, absolute error, squared error, or any other
expression of the meaning of the symbols). After the last prediction is made,
a function of the payoff for each symbol (e.g. average payoff per symbol)
indicates the fitness of the machine. Offspring machines are created through
mutation (Section 32.4) and/or recombination (Section 33.4). The machines that
provide the greatest payoff are retained to become parents of the next generation.
This process is iterated until an actual prediction of the next symbol (as yet
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Figure 18.2. A finite-state machine evolved in prisoner’s dilemma experi-
ments detailed by Fogel (1995b, p 215). The input symbols form the set
{(C, C), (C, D), (D, C), (D, D)} and the output symbols form the set {C, D}. The
machine also has an associated first move indicated by the arrow; here the machine
cooperates initially then proceeds into state 6.

inexperienced) in the environment is required. The best machine generates this
prediction, the new symbol is added to the experienced environment, and the
process is repeated.

There is an inherent versatility in such a procedure. The payoff function
can be arbitrarily complex and can possess temporal components; there is
no requirement for the classical squared-error criterion or any other smooth
function. Further, it is not required that the predictions be made with a one-step
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look ahead. Forecasting can be accomplished at an arbitrary length of time into
the future. Multivariate environments can be handled, and the environmental
process need not be stationary because the simulated evolution will adapt to
changes in the transition statistics.

For example, Fogel (1991, 1993, 1995a) has used finite-state machines to
describe behaviors in the iterated prisoner’s dilemma. The input alphabet was
selected as the set {(C, C), (C, D), (D, C), (D, D)} where C corresponds to a
move for cooperation and D corresponds to a move for defection. The ordered
pair (X, Y ) indicates that the machine played X in the last move, while its
opponent played Y . The output alphabet was the set {C, D} and corresponded
to the next move of the machine based on the previous pair of moves and the
current state of the machine (see figure 18.2).

Other applications of finite-state representations have been offered. For
example, Jefferson et al (1991), Angeline and Pollack (1993), and others
employed a finite-state machine to describe the behavior of a simulated ant
on a trail placed on a grid. The input alphabet was the set {0, 1}, where 0
indicated that the ant did not see a trail cell ahead and 1 indicated that it did see
such a cell ahead. The output alphabet was {M, L, R, N} where M indicated
a move forward, L indicated a turn to the left without moving, R indicated a
turn to the right without moving, and N indicated a condition to do nothing.
The task was to evolve a finite-state machine that would generate a sequence of
moves to traverse the trail in the shortest number of time steps.
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Parse trees

Peter J Angeline

When an executable structure such as a program or a function is the object of
an evolutionary computation, representation plays a crucial role in determining
the ultimate success of the system. If a traditional, syntax-laden programming
language is chosen to represent the evolving programs, then manipulation by
simple evolutionary operators will most likely produce syntactically invalid
offspring. A more beneficial approach is to design the representation to ensure
that only syntactically correct programs are created. This reduces the ultimate
size of the search space considerably. One method for ensuring syntactic
correctness of generated programs is to evolve the desired program’s parse
tree rather than an actual, unparsed, syntax-laden program. Use of the parse
tree representation completely removes the ‘syntactic sugar’ introduced into
a programming language to ensure human readability and remove parsing
ambiguity.

Cramer (1985), in the first use of a parse tree representation in a
genetic algorithm, described two distinct representations for evolving sequential
computer programs based on a simple algorithmic language and emphasized the
need for offspring programs to remain syntactically correct after manipulation
by the genetic operators. To accomplish this, Cramer investigated two encodings
of the language into fixed-length integer representations.

Cramer (1985) first represented a program as an ordered collection of
statements. Each statement consisted of N integers; the first integer identified
the command to be executed and the remainder specified the arguments
to the command. If the command required fewer than N − 1 arguments,
then the trailing integers in the statement were ignored. Depending on the
syntax of the statement’s command, an integer argument could identify a
variable to be manipulated or a statement to be executed. Consequently,
even though the program was stored as a sequence it implicitly encoded an
execution tree that could be reconstructed by replacing all arguments referring
to program statements with the actual statement. Cramer (1985) noted that
this representation was not suitable for manipulation by genetic operators and
occasionally resulted in infinite loops when two auxiliary statements referred to
each other.
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The second representation for simple programs reviewed by Cramer (1985)
alleviated some of the deficiencies of the first by making the implicit tree
representation explicit. Instead of evolving a sequence of statements with
arguments that referred to other statements, this representation replaces these
arguments with the actual statement. For instance, an encoded program would
have the form (0 (3 5) (1 3 (1 4 (4 5)))) where a matching set of parentheses
denotes a single complete statement. Note that in the language used by Cramer
(1985), a subtree argument does not return a value to the calling statement but
only designates a command to be executed.

Probably the best known use of the parse tree representation is that by Koza
(1992), an example of which is shown in figure 19.1. The only difference
between the representations used in genetic programming (Koza 1992) and the
explicit parse tree representation (Cramer 1985) is that the subtree arguments in
genetic programming return values to their calling statements. This provides
a direct mechanism for the communication of intermediate values to other
portions of the parse tree representation and fortifies a subtree as an independent
computational unit. The variety of problems investigated by Koza (1992)
demonstrates the flexibility and applicability of this representational paradigm.

An appealing aspect of the parse tree representation is its natural recursive
definition, which allows for dynamically sized structures. All parse tree
representations investigated to date have included an associated restriction on
the size of the evolving programs. Without such a restriction, the natural
dynamics of evolutionary systems would continually increase the size of the
evolving programs, eventually swamping the available computational resources.
Size restrictions take on two distinct forms. Depth limitation restricts the
size of evolving parse trees based on a user-defined maximal depth parameter.
Node limitation places a limit on the total number of nodes available for an
individual parse tree. Node limitation is the preferred method of the two
since it encodes fewer restrictions on the structural organization of the evolving
programs (Angeline 1996).

In a parse tree representation, the primitive language—the contents of
the parse tree—determines the power and suitability of the representation.
Sometimes the elements of this language are taken from existing programming
languages, but typically it is more prudent to design the primitive language so
that it takes into consideration as much domain-specific knowledge as available.
Failing to select language primitives tailored to the task at hand may prevent
the acquisition of solutions. For instance, if the objective is to evolve a function
that has a particular periodic behavior, it is important to include base language
primitives that also have periodic behavior, such as the mathematical functions
sin x and cos x.

Due to the acyclic structure of parse trees, iterative computations are often
not naturally represented. It is often difficult for an evolutionary computation to
correctly identify appropriate stopping criteria for loop constructs introduced
into the primitive language. To compensate, the evolved function often is



Parse trees 157

evaluated within an implied ‘repeat until done’ loop that reexecutes the evolved
function until some predetermined stopping criterion is satisfied. For instance,
Koza (1992) describes evolving a controller for an artificial ant for which the
fitness function repeatedly applies its program until a total of 400 commands
are executed or the ant completes the task. Numerous examples of such implied
loops can be found in the genetic programming literature (e.g. Koza 1992,
pp 147, 329, 346, Teller 1994, Reynolds 1994, Kinnear 1993).

Often it is necessary to include constants in the primitive language, especially
when mathematical expressions are being evolved. The general practice is to
include as a potential terminal of the language a special symbol that denotes a
constant. When a new individual is created and this symbol is selected to be a
terminal, rather than enter the symbol into the parse tree, a numerical constant
is inserted drawn uniformly from a user-defined range (Koza 1992). Figure 19.1
shows a number of numerical constants that would be inserted into the parse
tree in this manner.

Figure 19.1. An example parse tree representation for a complex numerical function. The
function if-lt-0 is a numerical conditional that returns the value of its second argument
if its first argument evaluates to a negative number and otherwise returns the value of
its third argument. The function % denotes a protected division operator that returns a
value of 1.0 if the second argument (the denominator) is zero.

Typically, the language defined for a parse tree representation is syntactically
homogenous, meaning that the return values of all functions and terminals are
the same computational type, (e.g. integer). Montana (1995) has investigated the
evolution of multityped parse trees and shown that extra syntactic considerations
do not drastically increase the complexity of the associated genetic operators.
Koza (1992) also investigates constrained parse tree representations.

Given the recursive nature of parse trees, they are a natural representation
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in which to investigate issues concerning induction of modular structures.
Currently, three methods for inducing modular parse trees have been proposed.
Angeline and Pollack (1994) add two mutation operators to their Genetic
Program Builder (GLiB) system, which dynamically form and destroy modular
components out of the parse tree. The compress mutation operation, which bears
some resemblance to the encapsulate operator of Koza (1992), selects a subtree
and makes it a new representational primitive in the language. The expand
mutation operation reverses the actions of the compress mutation by selecting a
compressed subtree in the individual and replacing it with the original subtree.
Angeline and Pollack (1994) claim that the natural evolutionary dynamics of the
genetic program automatically discover effective modularizations of the evolving
programs. Rosca and Ballard (1996) with their Adaptive Representation method
use a set of heuristics to evaluate the usefulness of all subtrees in the population
and then create subroutines from the ones that are most useful. Koza (1994)
describes a third method for creating modular programs, called automatically
defined functions (ADFs) (see Chapter 11), which allow the user to determine the
number of subroutines to which the main program can refer. During evolution,
the definitions of both the main routine and all of its subroutines are evolved
in parallel. Koza and Andre (1996) have more recently included a number of
mutations to dynamically modify various aspects of ADFs in order to reduce
the amount of prespecification required by the user.
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Guidelines for a suitable encoding

David B Fogel and Peter J Angeline

In any evolutionary computation application to an optimization problem, the
human operator determines at least four aspects of the approach: representation,
variation operators, method of selection, and objective function. It could be
argued that the most crucial of these four is the objective function because it
defines the purpose of the operator in quantitative terms. Improperly specifying
the objective function can lead to generating the right answer to the wrong
problem. However it should be clear that the selections made for each of
these four aspects depend in part on the choices made for all the others. For
example, the objective function cannot be specified in the absence of a problem
representation. The choice for appropriate representation, however, cannot
be made in the absence of anticipating the variation operators, the selection
function, and the mathematical formulation of the problem to be solved. Thus,
an iterative procedure for adjusting the representation and search and selection
procedures in light of a specified objective function becomes necessary in many
applications of evolutionary computation. This section focuses on selecting the
representation for a problem, but it is important to remain cognizant of the
interdependent nature of these operations within any evolutionary computation.

There have been proposals that the most suitable encoding for any problem
is a binary encoding (Chapter 15) because it maximizes the number of
schemata being searched implicitly (Holland 1975, Goldberg 1989), but there
have been many examples in the evolutionary computation literature where
alternative representations have provided for algorithms with greater efficiency
and optimization effectiveness when compared with identical problems (see
e.g. the articles by Bäck and Schwefel (1993) and Fogel and Stayton (1994)
among others). Davis (1991) and Michalewicz (1996) comment that in many
applications real-valued (Chapter 16) or other representations may be chosen to
advantage over binary encodings. There does not appear to be any general
benefit to maximizing implicit parallelism in evolutionary algorithms, and,
therefore, forcing problems to fit binary representation is not recommended.

The close relationship between representation and other facets of
evolutionary computation suggests that, in many cases, the appropriate choice of
representation arises from the operator’s ability to visualize the dynamics of the
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resulting search on an adaptive landscape. For example, consider the problem
of finding the minimum of the quadratic surface

f (x, y) = x2 + y2 x, y ∈ R.

Immediately, it is easy to visualize this function as shown in figure 20.1.
If an evolutionary approach to the problem were to be taken, an intuitive
representation suggested by the surface is to operate on the real values of
(x, y) directly (rather than recoding these values into some other alphabet).
Accordingly, a reasonable choice of variation operator would be the imposition
of a continuous random perturbation to each dimension (x, y) (perhaps a
zero-mean Gaussian perturbation as is common in evolution strategies and
evolutionary programming). This would be followed by a hard selection against
all but the best solution in the current population, given that the function is
strongly convex. With even slight experience, the resulting population dynamics
of this approach can be visualized without executing a single line of code. In
contrast, for this problem other representational choices and variation operators
(e.g. mapping the real numbers into binary and then applying crossover operators
to the binary encoding) are contrived, difficult to visualize, and appear more
likely to be ineffectual (see Schraudolph and Belew 1992, Fogel and Stayton
1994).

Figure 20.1. A quadratic bowl in two dimensions. The shape of the response surface
suggests a natural approach for optimization. The intuitive choice is to use real-valued
encodings and continuous variation operators. The shape of a response surface can be
useful in suggesting choices for suitable encodings.

Thus, the basic recommendation for choosing a suitable encoding is that
the representation should be suggested from the problem at hand. If a traveling
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salesman problem is to be investigated, obvious natural choices for the encoding
are a list of cities to be visited in order, or a corresponding list of edges. For
a discrete-symbol time-series prediction problem, finite-state machines (Chapter
18)may be especially appropriate. For continuous time-series prediction, other
model forms (e.g. neural networks, ARMA, or Box–Jenkins) appear better
suited. In nonstationary environments, that is, fitness functions that are dynamic
rather than static, it is often necessary to include some form of memory in
the representation. Diplodic representations—representations that include two
alleles per gene—have been used to model cyclic environments (Goldberg and
Smith 1987, Ng and Wong 1995). The most natural choice for representation
is a subjective choice, and it will differ across investigators, although, like
a suitable scientific model, a suitable representation should be as complex as
necessary (and no more so) and should ‘explain’ the phenomena investigated,
which here means that the resulting search should be visualizable or imaginable
to some extent.
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Other representations

Peter J Angeline and David B Fogel

21.1 Mixed-integer structures

Many real-world applications suggest the use of representations that are hybrids
of the canonical representations. One common instance is the simultaneous use
of discrete and continuous object variables, with a general formulation of the
global optimization problem as follows (Bäck and Schütz 1995):

min{f (x, d)|x ∈ M, Rn ⊇ M, d ∈ N, Znd ⊇ N}.

Within evolution strategies and evolutionary programming, the common
representation is simply the real-integer vector pair (i.e. no effort is made to
encode these vectors into another representation such as binary). Sections 32.6
and 33.6 offer methods for mutating and recombining the above representations.

Mixed representations also occur in the application of evolutionary
algorithms to neural networks or fuzzy logic systems, where real-world
parameters are used to define weights or shapes of membership functions and
integer values are used to define the number of nodes and their connections, or
the number of membership functions (see e.g. Fogel 1995, Angeline et al 1994,
McDonnell and Waagen 1994, Haffner and Sebald 1993).

21.2 Introns

In contrast to the above hybridization of different forms of representation,
another ‘nontraditional’ approach has involved the inclusion of noncoding
regions (introns) within a solution (see e.g. Levenick 1991, Golden et al 1995,
Wu and Lindsay 1995). Solutions are represented in the form

x1|intron|x2|intron| . . . |intron|xn

where there are n components to vector x. Introns have been hypothesized to
allow for greater efficiency in recombining building blocks (see Section33.6).
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In the standard genetic algorithm representation, the semantics of an allele
value (how the allele is interpreted) is usually tied to its position in the fixed-
length n-ary string. For instance, in a binary string representation, each position
signifies the presence or absence of a specific feature in the genome being
decoded. The difficulty with such a representation is that with positions in
the string representation that are semantically linked but separated by a large
number of intervening positions in the string crossover has a high probability
of disrupting beneficial settings for these two positions. Goldberg et al (1989)
describe a representation for a genetic algorithm that embodies one approach to
addressing this problem. In their messy genetic algorithm (mGA), each allele
value is represented as a pair of values, one specifying the actual allele value
and one specifying the position the allele occupies. Messy GAs are defined to be
of variable length, and Goldberg et al (1989) describe appropriate methods for
resolving underdetermined or overdetermined genomes. In this representation it
is important to note that the semantics are literally carried along with the allele
value in the form of the allele’s string position.

21.3 Diploid representations

Diploid representations, representations that include multiple allele values for
each position in the genome, have been offered as mechanisms for modeling
cyclic environments. In a diploid representation, a method for determining
which allele value for a gene will be expressed is required to adjudicate
when the allele values do not agree. Building on earlier investigations (see
e.g. Bagley 1967, Hollstein 1971, Brindle 1981), Goldberg and Smith (1987)
demonstrate that an evolving dominance map allows quicker adaptation to
cyclical environment changes than either a haploid representation or a diploid
representation using a fixed dominance mapping. Goldberg and Smith (1987)
use a triallelic representation from Hollstein (1971): 1, i, and 0. Both 1 and i
map to the allele value of ‘1’, while 0 maps to the allele value of ‘0’ with 1
dominating both i and 0 and 0 dominating i. Thus, the dominance of a 1 over
a 0 allele value could be altered via mutation by altering the value to an i. Ng
and Wong (1995) extend the multiallele approach to dominance computation
by adding a fourth value for a recessive 0. Thus 1 dominates 0 and o while 0
dominates i and o. When both allele values for a gene are dominant or recessive,
then one of the two values is chosen randomly to be the dominant value. Ng
and Wong (1995) also suggest that the dominance of all of the components in
the genome should be reversed when the fitness value of an individual falls by
20% or more between generations.
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Introduction to selection

Kalyanmoy Deb

22.1 Working mechanisms

Selection is one of the main operators used in evolutionary algorithms. The
primary objective of the selection operator is to emphasize better solutions
in a population. This operator does not create any new solution, instead it
selects relatively good solutions from a population and deletes the remaining,
not-so-good, solutions. Thus, the selection operator is a mix of two different
concepts—reproduction and selection. When one or more copies of a good
solution are reproduced, this operation is called reproduction. Multiple copies
of a solution are placed in a population by deleting some inferior solutions.
This concept is known as selection. Although some EC studies use both these
concepts simultaneously, some studies use them separately.

The identification of good or bad solutions in a population is usually
accomplished according to a solution’s fitness. The essential idea is that a
solution having a better fitness must have a higher probability of selection.
However, selection operators differ in the way the copies are assigned to
better solutions. Some operators sort the population according to fitness and
deterministically choose the best few solutions, whereas some operators assign
a probability of selection to each solution according to fitness and make a copy
using that probability distribution. In the probabilistic selection operator, there
is some finite, albeit small, probability of rejecting a good solution and choosing
a bad solution. However, a selection operator is usually designed in a way so
that the above is a low-probability event. There is, of course, an advantage of
allowing this stochasticity (or flexibility) in the evolutionary algorithms. Due
to a small initial population or an improper parameter choice or in solving a
complex nonlinear fitness function, the best few individuals in a finite population
may sometimes represent a suboptimal region. If a deterministic selection
operator is used, these seemingly good individuals in the population will be
emphasized and the population may finally converge to a wrong solution.
However, if a stochastic selection operator is used, diversity in the population
will be maintained by occasionally choosing not-so-good solutions. This event
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may prevent EC algorithms from making a hasty decision in converging to a
wrong solution.

In the following, we present a pseudocode for the selection operator and
then discuss briefly some of the popular selection operators.

22.2 Pseudocode

Some EC algorithms (specifically, genetic algorithms (GAs) and genetic
programming (GP)) usually apply the selection operator first to select good
solutions and then apply the recombination and mutation operators on these
good solutions to create a hopefully better set of solutions. Other EC algorithms
(specifically, evolution strategies (ES) and evolutionary programming (EP))
prefer using the recombination and mutation operator first to create a set of
solutions and then use the selection operator to choose a good set of solutions.
The selection operator in (µ+ λ) ES and EP techniques chooses the offspring
solutions from a combined population of parent solutions and solutions obtained
after recombination and mutation. In the case of EP, this is done statistically.
However, the selection operator in (µ, λ) ES chooses the offspring solutions
only from the solutions obtained after the recombination and mutation operators.
Since the selection operators are different in different EC studies, it is difficult
to present a common code for all selection operators. However, the following
pseudocode is a generic for most of the selection operators used in EC studies.

The parameters µ and λ are the numbers of parent solutions and offspring
solutions after recombination and mutation operators, respectively. The
parameter q is a parameter related to the operator’s selective pressure, a matter
we discuss later in this section. The population at iteration t is denoted by
P(t) = {a1, a2, . . .} and the population obtained after the recombination and
mutation operators is denoted by P ′(t) = {a′1, a′2, . . .}. Since GAs and GP
techniques use the selection operator first, the population P ′(t) before the
selection operation is an empty set, with no solutions. The fitness function
is represented by F (t).

Input: µ, λ, q, P(t) ∈ Iµ, P ′(t) ∈ I λ, F (t)

Output: P ′′(t) = {a′′1, a′′2 . . . , a′′µ} ∈ Iµ

1 for i ← 1 to µ

a′′i (t) ← sselection(P (t), P ′(t), F (t), q);
2 return({a′′1(t), . . . ,a′′µ(t)});

Detailed discussions of some of the selection operators are presented in the
subsequent sections. Here, we outline a brief introduction to some of the popular
selection schemes, mentioned as sselection in the above pseudocode.

In the proportionate selection operator, the expected number of copies a
solution receives is assigned proportionally to its fitness. Thus, a solution having
twice the fitness of another solution receives twice as many copies. The simplest
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form of the proportionate selection scheme is known as the roulette-wheel
selection, where each solution in the population occupies an area on the roulette
wheel proportional to its fitness. Then, conceptually, the roulette wheel is spun
as many times as the population size, each time selecting a solution marked
by the roulette-wheel pointer. Since the solutions are marked proportionally to
their fitness, a solution with a higher fitness is likely to receive more copies
than a solution with a low fitness. There exists a number of variations to this
simple selection scheme, which are discussed in Chapter 23. However, one
limitation of the proportionate selection scheme is that since copies are assigned
proportionally to the fitness values, negative fitness values are not allowed.
Also, this scheme cannot handle minimization problems directly. (Minimization
problems must be transformed to an equivalent maximization problem in order
to use this operator.) Selecting solutions proportional to their fitness has two
inherent problems. If a population contains a solution having exceptionally
better fitness than the rest of the solutions in the population, this so-called
supersolution will occupy most of the roulette-wheel area. Thus, most spinning
of the roulette wheel is likely to choose the same supersolution. This may cause
the population to lose genetic diversity and cause the algorithm to prematurely
converge to a suboptimal solution. The second inherent difficulty may arise
later in a simulation run, when most of the population members have more or
less the same fitness. In this case, the roulette wheel is marked almost equally
for each solution in the population and every solution becomes equally likely
to be selected. This has the effect of a random selection. Both these inherent
difficulties can be avoided by using a scaling scheme, where every solution
fitness is linearly mapped between a lower and an upper bound before marking
the roulette wheel (Goldberg 1989). This allows the selection operator to assign
a controlled number of copies, thereby eliminating both the above problems of
too large and random assignments. We discuss this scaling scheme further in the
next section. Although this selection scheme has been mostly used with GAs
and GP applications, in principle it can also be used with both multimembered
ES and EP techniques.

In the tournament selection operator, both the scaling problems mentioned
above are eliminated by playing tournaments among a specified number of parent
solutions according to fitness of solutions. In a tournament of q solutions, the
best solution is selected either deterministically or probabilistically. After the
tournament is played, there are two options—either all participating q solutions
are replaced into the population for the next tournament or they are not replaced
until a certain number of tournaments have been played. In its simplest form
(called the binary tournament selection), two solutions are picked and the better
solution is chosen. One advantage of this selection method is that this scheme
can handle both minimization and maximization problems without any structural
change in the fitness function. Only the solution having either the highest or
the lowest objective function value need to be chosen depending on whether
the problem is a maximization or a minimization problem. Moreover, it has
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no restriction on negative objective function values. An added advantage of
this scheme is that it is ideal for a parallel implementation. Since only a few
solutions are required to be compared at a time without resorting to calculation
of the population average fitness or any other population statistic, all solutions
participating in a tournament can be sent to one processor. Thus, tournaments
can be played in parallel on multiple processors and the complete selection
process may be performed quickly. Because of these properties, tournament
selection is fast becoming a popular selection scheme in most EC studies.
Tournament selection is discussed in detail in Chapter 24.

The ranking selection operator is similar to proportionate selection except
that the solutions are ranked according to descending or ascending order of
their fitness values depending on whether it is a maximization or minimization
problem. Each solution is assigned a ranked fitness based on its rank in
the population. Thereafter, copies are allocated with the resulting selection
probabilities of the solutions calculated using the ranked fitness values. Like
tournament selection, this selection scheme can also handle negative fitness
values. There exists a number of other schemes based on the concept of the
ranking of solutions; these are discussed in Chapter 25.

In the Boltzmann selection operator, a modified fitness is assigned to each
solution based on a Boltzmann probability distribution: Fi = 1/(1+exp(Fi/T )),
where T is a parameter analogous to the temperature term in the Boltzmann
distribution. This parameter is reduced in a predefined manner in successive
iterations. Under this selection scheme, a solution is selected based on the
above probability distribution. Since a large value of T is used initially, almost
any solution is equally likely to be selected, but, as the iterations progress, the
parameter T becomes small and only good solutions are selected. We discuss
this selection scheme further in Chapter 26.

In the (µ + λ) ES, the selection operator selects µ best solutions
deterministically from a pool of all µ parent solutions and λ offspring
solutions. Since all parent and offspring solutions are compared, if performed
deterministically, this selection scheme guarantees preservation of the best
solution found in any iteration.

On the other hand, in the (µ, λ) ES, the selection operator chooses µ

best solutions from λ (usually λ > µ) offspring solutions obtained by the
recombination and mutation operators. Unlike the (µ+λ) ES selection scheme,
the best solution found in any iteration is not guaranteed to be preserved
throughout a simulation. However, since many offspring solutions are created in
this scheme, the search is more exhaustive than that in the (µ+ λ) ES scheme.
In most applications of the (µ, λ) ES selection scheme, a deterministic selection
of best µ solutions is adopted.

In modern variants of the EP technique, a slightly different selection scheme
is used. In a pool of parent (of size µ) and offspring solutions (of size the same
as the parent population size), each solution is first assigned a score depending
on how many solutions it is better than from a set of random solutions (of size
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q) chosen from the pool. The complete pool is then sorted in descending order
of this score and the first µ solutions are chosen deterministically. Thus, this
selection scheme is similar to the (µ+µ) ES selection scheme with a tournament
selection of q tournament size. Bäck et al (1994) analyzed this selection scheme
as a combination of (µ+ µ) ES and tournament selection schemes, and found
some convergence characteristics of this operator.

Goldberg and Deb (1991) have compared a number of popular selection
schemes in terms of their convergence properties, selective pressure, takeover
times, and growth factors, all of which are important in the understanding of
the power of different selection schemes used in GA and GP studies. Similar
studies have also been performed by Bäck et al (1994) for selection schemes
used in ES and EP studies. A detailed discussion of some analytical as well as
experimental comparisons of selection schemes is presented in Chapter 29. In
the following section, we briefly discuss the theory of selective pressure and its
importance in choosing a suitable selection operator for a particular application.

22.3 Theory of selective pressure

Selection operators are characterized by a parameter known as the selective
pressure, which relates to the takeover time of the selection operator. The
takeover time is defined as the speed at which the best solution in the initial
population would occupy the complete population by repeated application of the
selection operator alone (Bäck 1994, Goldberg and Deb 1991). If the takeover
time of a selection operator is large (that is, the operator takes a large number
of iterations for the best solution to take over the population), the selective
pressure of the operator is small, and vice versa. Thus, the selective pressure or
the takeover time is an important parameter for successful operation of an EC
algorithm (Bäck 1994, Goldberg et al 1993). This parameter gives an idea of
how greedy the selection operator is in terms of making the population uniform
with one particular solution. If a selection operator has a large selective pressure,
the population loses diversity in the population quickly. Thus, in order to avoid
premature convergence to a wrong solution, either a large population is required
or highly disruptive recombination and mutation operators are needed. However,
a selection operator with a small selection pressure makes a slow convergence
and permits the recombination and mutation operators enough iterations to
properly search the space. Goldberg and Deb (1991) have calculated takeover
times of a number of selection operators used in GAs and GP studies and Bäck
(1994) has calculated the takeover time for a number of selection operators used
in ES, EP, and GA studies. The former study has also introduced two other
parameters—early and late growth rate—characterizing the selection operators.

The growth rate is defined as the ratio of the number of the best solutions
in two consecutive iterations. Since most selection operators have different
growth rates as the iterations progress, two different growth rates—early and
late growth rates—are defined. The early growth rate is calculated initially,
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when the proportion of the best solution in the population is negligible. The
late growth rate is calculated later, when the proportion of the best solution in
the population is large (about 0.5). The early growth rate is important, especially
if a quick near-optimizer algorithm is desired, whereas the late growth rate can
be a useful measure if precision in the final solution is important. Goldberg
and Deb (1991) have calculated these growth rates for a number of selection
operators used in GAs. A comparison of different selection schemes based on
some of the above criteria is given in Chapter 29.

The above discussion suggests that, for a successful EC simulation, the
required selection pressure of a selection operator depends on the recombination
and mutation operators used. A selection scheme with a large selection pressure
can be used, but only with highly disruptive recombination and mutation
operators. Goldberg et al (1993) and later Thierens and Goldberg (1993) have
found functional relationships between the selective pressure and the probability
of crossover for successful working of selectorecombinative GAs. These studies
show that a large selection pressure can be used but only with a large probability
of crossover. However, if a reasonable selection pressure is used, GAs work
successfully for a wide variety of crossover probablities. Similar studies can
also be performed with ES and EP algorithms.
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Proportional selection and sampling
algorithms

John Grefenstette

23.1 Introduction

Selection (Chapter 22) is the process of choosing individuals for reproduction in
an evolutionary algorithm. One popular form of selection is called proportional
selection. As the name implies, this approach involves creating a number
of offspring in proportion to an individual’s fitness. This approach was
proposed and analyzed by Holland (1975) and has been used widely in many
implementations of evolutionary algorithms.

Besides having some interesting mathematical properties, proportional
selection provides a natural counterpart in artificial evolutionary systems to the
usual practice in population genetics of defining an individual’s fitness in terms
of its number of offspring.

For clarity of discussion, it is convenient to decompose the selection process
into distinct steps, namely:

(i) map the objective function to fitness,
(ii) create a probability distribution proportional to fitness, and
(iii) draw samples from this distribution.

The first three sections of this article discuss these steps. The final section
discusses some results in the theory of proportional selection, including the
schema theorem and the impact of the fitness function, and two characterizations
of selective pressure.

23.2 Fitness functions

The evaluation process of individuals in an evolutionary algorithm begins with
the user-defined objective function,

f : Ax → R
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where Ax is the object variable space. The objective function typically measures
some cost to be minimized or some reward to be maximized. The definition of
the objective function is, of course, application dependent. The characterization
of how well evolutionary algorithms perform on different classes of objective
functions is a topic of continuing research. However, a few general design
principles are clear when using an evolutionary algorithm.

(i) The objective function must reflect the relevant measures to be optimized.
Evolutionary algorithms are notoriously opportunistic, and there are several
known instances of an algorithm optimizing the stated objective function,
only to have the user realize that the objective function did not actually
represent the intended measure.

(ii) The objective function should exhibit some regularities over the space
defined by the selected representation.

(iii) The objective function should provide enough information to drive the
selective pressure of the evolutionary algorithm. For example, ‘needle-in-
a-haystack’ functions, i.e. functions that assign nearly equal value to every
candidate solution except the optimum, should be avoided.

The fitness function
� : Ax → R+

maps the raw scores of the objective function to a non-negative interval. The
fitness function is often a composition of the objective function and a scaling
function g:

�(ai(t)) = g(f (ai(t)))

where ai(t) ∈ Ax . Such a mapping is necessary if the goal is to minimize
the objective function, since higher fitness values correspond to lower objective
values in this case. For example, one fitness function that might be used when
the goal is to minimize the objective function is

�(ai(t)) = fmax − f (ai(t))

where fmax is the maximum value of the objective function. If the global
maximum value of the objective function is unknown, an alternative is

�(ai(t)) = fmax(t)− f (ai(t))

where fmax(t) is the maximum observed value of the objective function up to
time t . There are many other plausible alternatives, such as

�(ai(t)) = 1

1+ f (ai(t))− fmin(t)

where fmin(t) is the minimum observed value of the objective function up to
time t . For maximization problems, this becomes

�(ai(t)) = 1

1+ fmax(t)− f (ai(t))
.

Note that the latter two fitness functions yield a range of (0, 1].
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23.2.1 Fitness scaling

As an evolutionary algorithm progresses, the population often becomes
dominated by high-performance individuals with a narrow range of objective
values. In this case, the fitness functions described above tend to assign similar
fitness values to all members of the population, leading to a loss in the selective
pressure toward the better individuals. To address this problem, fitness scaling
methods that accentuate small differences in objective values are often used in
order to maintain a productive level of selective pressure.

One approach to fitness scaling (Grefenstette 1986) is to define the fitness
function as a time-varying linear transformation of the objective value, for
example

�(ai(t)) = αf (ai(t))− β(t)

where α is +1 for maximization problems and −1 for minimization problems,
and β(t) represents the worst value seen in the last few generations. Since β(t)

generally improves over time, this scaling method provides greater selection
pressure later in the search. This method is sensitive, however, to ‘lethals’,
poorly performing individuals that may occasionally arise through crossover or
mutation. Smoother scaling can be achieved by defining β(t) as a recency-
weighted running average of the worst observed objective values, for example

β(t) = δβ(t − 1)+ (1− δ)(fworst(t))

where δ is an update rate of, say, 0.1, and fworst(t) is the worst objective value
in the population at time t .

Sigma scaling (Goldberg 1989) is based on the distribution of objective
values within the current population. It is defined as follows:

�(ai(t)) =
{

f (ai(t))− (f̄ (t)− cσf (t)) if f (ai(t)) > (f̄ (t)− cσf (t))

0 otherwise

where f̄ (t) is the mean objective value of the current population, σf (t) is the
(sample) standard deviation of the objective values in the current population,
and c is a constant, say c = 2. The idea is that f̄ (t)−cσf (t) represents the least
acceptable objective value for any reproducing individual. As the population
improves, this statistic tracks the improvement, yielding a level of selective
pressure that is sensitive to the spread of performance values in the population.

Fitness scaling methods based on power laws have also been proposed. A
fixed transformation of the form

�(ai(t)) = f (ai(t))
k,

where k is a problem-dependent parameter, is used by Gillies (1985). Boltzmann
selection (de la Maza and Tidor 1993) is a power-law-based scaling method that
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draws upon techniques used in simulated annealing. The fitness function is a
time-varying transformation given by

�(ai(t)) = exp (f (ai(t))/T )

where the parameter T can be used to control the level of selective pressure
during the course of the evolution. It is suggested by de la Maza and Tidor
(1993) that, if T decreases with time as in a simulated annealing procedure,
then a higher level of selective pressure results than with proportional selection
without fitness scaling.

23.3 Selection probabilities

Once the fitness values are assigned, the next step in proportional selection is
to create a probability distribution such that the probability of selecting a given
individual for reproduction is proportional to the individual’s fitness. That is,

Prprop(i) = �(i)∑µ

i=1 �(i)
.

23.4 Sampling

In an incremental, or steady-state, algorithm, the probability distribution can
be used to select one parent at a time. This procedure is commonly called
the roulette wheel sampling algorithm, since one can think of the probability
distribution as defining a roulette wheel on which each slice has a width
corresponding to the individual’s selection probability, and the sampling can
be envisioned as spinning the roulette wheel and testing which slice ends up at
the top. The pseudocode for this is shown below:

Input: probability distribution Pr
Output: n, the selected parent

1 roulette wheel (Pr):
2 n ← 1;
3 sum ← Pr(n);
4 sample u ∼ U(0, 1);
5 while sum < u do

n ← (n+ 1);
sum ← sum+ Pr(n);

od
6 return (n);
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In a generational algorithm, the entire population is replaced during each
generation, so the probability distribution is sampled µ times. This could be
implemented by µ independent calls to the roulette wheel procedure, but such an
implementation may exhibit a high variance in the number of offspring assigned
to each individual. For example, it is possible that the individual with the largest
selection probability may be assigned no offspring in a particular generation.
Baker (1987) developed an algorithm called stochastic universal sampling (SUS)
that exhibits less variance than repeated calls to the roulette wheel algorithm.
The idea is to make a single draw from a uniform distribution, and use this
to determine how many offspring to assign to all parents. The pseudocode for
SUS follows:

Input: a probability distribution, Pr; the total number of children
to assign, λ.
Output: c = (c1, . . . , cµ), where ci is the number of children assigned
to individual ai , and

∑
ci = λ.

1 SUS(Pr, λ):
2 sample u ∼ U(0, 1

λ
);

3 sum ← 0.0;
4 for i = 1 to µ do
5 ci ← 0;
6 sum ← sum+ Pr(i);
7 while u < sum do
8 ci ← ci + 1;
9 u ← u+ 1

λ
;

od
od

10 return c;

Note that the pseudocode allows for any number λ > 0 of children to
be specified. If λ = 1, SUS behaves like the roulette wheel function. For
generational algorithms, SUS is usually invoked with λ = µ.

In can be shown that the expected number of offspring that SUS assigns to
individual i is λ Pr(i), and that on each invocation of the procedure, SUS assigns
either �λ Pr(i)� or �λ Pr(i)� offspring to individual i. Finally, SUS is optimally
efficient, making a single pass over the individuals to assign all offspring.

23.5 Theory

The section presents some results from the theory of proportional selection.
First, the schema theorem is described, following by a discussion of the effects
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of the fitness function on the allocation of trials to schemata. The selective
pressure of proportional selection is characterized in two ways. First, the
selection differential describes the effects of selection on the mean population
fitness. Second, the takeover time describes the convergence rate of population
toward the optimal individual, in the absence of other genetic operators.

23.5.1 The schema theorem

In the above description, Prprop(i) is the probability of selecting individual i for
reproduction. In a generational evolutionary algorithm, the entire population is
replaced, so the expected number of offspring of individual i is µ Prprop(i). This
value is called the target sampling rate, tsr(ai, t) of the individual (Grefenstette
1991). For any selection algorithm, the allocation of offspring to individuals
induces a corresponding allocation to hyperplanes represented by the individuals:

tsr(H, t) =def

m(H,t)∑
i=1

tsr(ai, t)

m(H, t)

where ai ∈ H and m(H, t) denotes the number of representatives of hyperplane
H in population P(t). In the remainder of this discussion, we will refer to
tsr(H, t) as the target sampling rate of H at time t .

For proportional selection, we have

tsr(ai, t) = �(ai)

�̄(t)

where � is the fitness function and �̄(t) denotes the average fitness of the
individuals in P(t). The most important feature of proportional selection is
that it induces the following target sampling rates for all hyperplanes in the
population:

tsr(H, t) =
m(H,t)∑

i=1

tsr(ai, t)

m(H, t)

=
m(H,t)∑

i=1

�(ai)

�̄(t) m(H, t)

= �(H, t)

�̄(t)
(23.1)

where �(H, t) is simply the average fitness of the representatives of H in P(t).
This result is the heart of the schema theorem (Holland 1975), which has been
called the fundamental theorem of genetic algorithms (Goldberg 1989).
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Schema theorem. In a genetic algorithm using a proportional selection
algorithm, the following holds for each hyperplane H represented in P(t):

M(H, t + 1) ≥ M(H, t)

(
�(H, t)

�̄(t)

)
(1− pdisr(H, t))

where M(H, t) is the expected number of representatives of hyperplane H in
P(t), and pdisr(H, t) is the probability of disruption due to genetic operators
such as crossover and mutation.

Holland provides an analysis of the disruptive effects of various genetic
operators, and shows that hyperplanes with short defining lengths, for example,
have a small chance of disruption due to one-point crossover and mutation
operators. Others have extended this analysis to many varieties of genetic
operators.

The main thrust of the schema theorem is that trials are allocated in
parallel to a large number of hyperplanes (i.e. the ones with short definition
lengths) according to the sampling rate (23.1), with minor disruption from the
recombination operators. Over succeeding generations, the number of trials
allocated to extant short-definition-length hyperplanes with persistently above-
average observed fitness is expected to grow rapidly, while trials to those with
below-average observed fitness generally decline rapidly.

23.5.2 Effects of the fitness function

In his early analysis of genetic algorithms, Holland implicitly assumes a
nonnegative fitness and does not explicitly address the problem of mapping from
the objective function to fitness in his brief discussion of function optimization
(Holland 1975, ch 3). Consequently, many of the schema analysis results in the
literature use the symbol f to refer to the fitness and not to objective function
values. The methods mentioned above for mapping the objective function to the
fitness values must be kept in mind when interpreting the schema theorem. For
example, consider two genetic algorithms that both use proportional selection
but that differ in that one uses the fitness function

�1(x) = αf (x)+ β

and the other uses the fitness function

�2(x) = �1(x)+ γ

where γ = 0. Then for any hyperplane H represented in a given population
P(t), the target sampling rate for H in the first algorithm is

tsr1(H, t) = �1(H, t)

�̄1(t)



Theory 179

while the target sampling rate for H in the second algorithm is

tsr2(H, t) = �2(H, t)

�̄2(t)

= �1(H, t)+ γ

�̄1(t)+ γ
.

Even though both genetic algorithms behave according to the schema theorem,
they clearly allocate trials to hyperplane H at different rates, and thus produce
entirely different sequences of populations. The relationship between the schema
theorem and the objective function becomes even more complex if the fitness
function � is dynamically scaled during the course of the algorithm. Clearly,
the allocation of trials described by schema theorem depends on the precise
form of the fitness function used in the evolutionary algorithm. And of course,
crossover and mutation will also interact with selection.

23.5.3 Selection differential

Drawing on the terminology of selective breeding, Mühlenbein and Schlierkamp-
Voosen (1993) define the selection differential S(t) of a selection method as the
difference between the mean fitness of the selected parents and the mean fitness
of the population at time t . For proportional selection, they show that the
selection differential is given by

S(t) = σ 2
p (t)

�̄(t)

where σ 2
p (t) is the fitness variance of the population at time t . From this

formula, it is easy to see that, without dynamic fitness scaling, an evolutionary
algorithm tends to stagnate over time since σ 2

p (t) tends to decrease and �̄(t)

tends to increase. The fitness scaling techniques described above are intended
to mitigate this effect. In addition, operators which produce random variation
(e.g. mutation) can also be used to reduce stagnation in the population.

23.5.4 Takeover time

Takeover time refers to the number of generations required for an evolutionary
algorithm operating under selection alone (i.e. no other operators such as
mutation or crossover) to converge to a population consisting entirely of
instances of the optimal individual, starting from a population that contains a
single instance of the optimal individual. Goldberg and Deb (1991) show that,
assuming � = f , the takeover time τ in a population of size µ for proportional
selection is

τ1 = µ ln µ− 1

c
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for f1(x) = xc, and

τ2 = µ ln µ

c

for f2(x) = exp(cx). Goldberg and Deb compare these results with several other
selection mechanisms and show that the takeover time for proportional selection
(without fitness scaling) is larger than for many other selection methods.
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24
Tournament selection

Tobias Blickle

24.1 Working mechanism

In tournament selection a group of q individuals is randomly chosen from
the population. They may be drawn from the population with or without
replacement. This group takes part in a tournament ; that is, a winning individual
is determined depending on its fitness value. The best individual having the
highest fitness value is usually chosen deterministically though occasionally a
stochastic selection may be made. In both cases only the winner is inserted
into the next population and the process is repeated λ times to obtain a
new population. Often, tournaments are held between two individuals (binary
tournament). However, this can be generalized to an arbitrary group size q

called tournament size.
The following description assumes that the individuals are drawn with

replacement and the winning individual is deterministically selected.

Input: Population P(t) ∈ I λ, tournament size q ∈ {1, 2, . . . , λ}
Output: Population after selection P(t)′

1 tournament(q, a1, . . . ,aλ):
2 for i ← 1 to λ do
3 a′i ← best fit individual from q randomly chosen

individuals from {a1, . . . ,aλ};
od

4 return {a′1, . . . ,a′λ}.
Tournament selection can be implemented very efficiently and has the time

complexity O(λ) as no sorting of the population is required. However, the
above algorithm leads to high variance in the expected number of offspring as
λ independent trials are carried out.

Tournament selection is translation and scaling invariant (de la Maza and
Tidor 1993). This means that a scaling or translation of the fitness value does
not affect the behavior of the selection method. Therefore, scaling techniques
as used for proportional selection are not necessary, simplifying the application
of the selection method.
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Furthermore, tournament selection is well suited for parallel evolutionary
algorithms. In most selection schemes global calculations are necessary to
compute the reproduction rates of the individuals. For example, in proportional
selection the mean of the fitness values in the population is required, and in
ranking selection and truncation selection a sorting of the whole population is
necessary. However, in tournament selection the tournaments can be performed
independently of each other such that only groups of q individuals need to
communicate.

24.2 Parameter settings

q = 1 corresponds to no selection at all (the individuals are randomly picked
from the population). Binary tournament is equivalent to linear ranking selection
with η− = 1/λ (Blickle and Thiele 1995a), where η− gives the expected number
of offspring of the worst individual. With increasing q the selection pressure
increases (for a quantitative discussion of selection pressure see below). For
many applications in genetic programming values q ∈ {6, . . . , 10} have been
recommended.

24.3 Formal description

Tournament selection has been well studied (Goldberg and Deb 1991, Bäck
1994, 1995, Blickle and Thiele 1995a, b, Miller and Goldberg 1995). The
following description is based on the fitness distribution of the population.

Let γ (P ) denote the number of unique fitness values in the population.
Then ρ(P ) = (ρF1(P ), ρF2(P ), . . . , ρFγ (P )(P )) ∈ [0, 1]γ (P ) is the fitness distribution
of the population P , with F1(P ) < F2(P ) < · · · < Fγ(P )(P ). ρFi(P )

gives the proportion of individuals with fitness value Fi(P ) in the population
P . Furthermore the cumulative fitness distribution is denoted by R(P ) =
(RF1(P ), RF2(P ), . . . , RFγ(P )(P )) ∈ [0, 1]γ (P ). RFi(P ) gives the number of
individuals with fitness value Fi(P ) or less in the population P , i.e. RFi(P ) =∑j=i

j=1 ρFj (P ) and RF0(P ) := 0.
With these definitions, the selection operator s can be viewed as an operator

on fitness distributions (Blickle and Thiele 1995b). The expected fitness
distribution after tournament selection with tournament size q is stour(q) :
Rγ (P ) �→ Rγ (P ), stour(q)(ρ(P )) = (ρ ′F1(P ), ρ

′
F2(P ), . . . , ρ

′
Fγ (P )), where

ρ ′Fi(P ) = (RFi(P ))
q − (RFi−1(P ))

q . (24.1)

The expected number of occurrences of an individual with fitness value
Fi(P ) is given by ρ ′Fi(P )/ρFi(P ). Consequently, stochastic universal sampling
(Baker 1987) (see Chapter 23) can also be used for tournament selection. This
almost completely reduces the usually high variance in the expected number of
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offspring. However, the time complexity of the selection algorithm increases to
O(λ ln λ) as calculation of the fitness distribution is required.

For the analytical analysis it is advantageous to use continuous fitness
distributions. The continuous form of (24.1) is given by

ρ̄ ′(F ) = qρ̄(F )
(
R̄(F )

)q−1
(24.2)

where ρ̄(F ) is the continuous form of ρ(P ), R̄(F ) = ∫ F

F0(P )
ρ̄(x) dx is the

cumulative continuous fitness distribution and F0(P ) < F ≤ Fγ(P )(P ) the
range of the distribution function ρ̄(F ).

24.4 Properties

24.4.1 Concatenation of tournaments

An interesting property of tournament selection is the concatenation of several
selection phases. Assuming an arbitrary population with a fitness distribution
ρ̄, tournament selection with tournament size q1 is applied followed by
tournament selection with tournament size q2 on the resulting population and
no recombination in between. The obtained expected fitness distribution is the
same as if only a single tournament selection with tournament size q1q2 were
applied to the initial distribution ρ̄ (Blickle and Thiele 1995b):

stour(q2)(stour(q1)(ρ̄)) = stour(q1q2)(ρ̄). (24.3)

24.4.2 Takeover time

The takeover time was introduced by Goldberg and Deb (1991) to describe the
selection pressure of a selection method. The takeover time τ ∗ is the number of
generations needed under pure selection for a initial single best-fit individual to
fill up the whole population. The takeover time can, for example, be calculated
combining (24.1) and (24.3) as follows. Only the best individual is considered
and its expected proportion ρ ′best after tournament selection can be obtained as
ρ ′best = 1− (1− 1/λ)q , which is a special case of (24.1) using ρbest = 1/λ and
Rbest = 1. Performing τ such tournaments subsequently with no recombination
in between leads to ρ̂best = 1 − (1 − 1/λ)q

τ

by repeatedly applying (24.3).
Goldberg and Deb (1991) solved this equation for τ and gave the following
approximation for the takeover time:

τ ∗tour(q) ≈ 1

ln q
(ln λ+ ln(ln λ)). (24.4)

Figure 24.1 shows the dependence of the takeover time on the tournament size
q. For scaling purposes an artificial population size of λ = e is assumed, such
that (24.4) simplifies to τ ∗tour(q) ≈ 1/ ln q.
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24.4.3 Selection intensity

The selection intensity is another measure for the strength of selection which
is borrowed from population genetics. The selection intensity S is the change
in the average fitness of the population due to selection divided by the mean
variance of the population before selection σ , that is, S = (u∗ − u)/σ , with
u average fitness before selection, and u∗ average fitness after selection. To
eliminate the dependence of the selection intensity on the initial distribution
one usually assumes a Gaussian-distributed initial population (Mühlenbein and
Schlierkamp-Voosen 1993). Under this assumption, the selection intensity of
tournament selection is determined by

Stour(q) =
∫ ∞

−∞
qx

1

(2π)1/2 e−x2/2

(∫ x

−∞

1

(2π)1/2
e−y2/2 dy

)q−1

dx. (24.5)

The dependence of the selection intensity on the tournament size is shown
in figure 24.1.
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q0

0.5

1
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S(q)

θ(q)

τ*(q)

Figure 24.1. The selection intensity S, the loss of diversity θ , and the takeover time τ ∗

(for λ = e) of tournament selection in dependence on the tournament size q.

The known exact solutions of the integral equation (24.5) are given in
table 24.1. These values can also be obtained using the results of the order
statistics theory (Bäck 1995). The following formula was derived by Blickle
and Thiele (1995b) and approximates the selection intensity with a relative error
of less than 1% for tournament sizes of q > 5:

Stour(q) ≈ (2(ln(q)− ln((4.14 ln(q))1/2)))1/2.
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Table 24.1. Known exact values for the selection intensity of tournament selection.

q 1 2 3 4 5

Stour(q) 0 1
π1/2

3
2π1/2

6
ππ1/2 tan−1 21/2 10

π1/2

(
3

2π
tan−1 21/2 − 1

4

)

24.4.4 Loss of diversity

During every selection phase bad individuals are replaced by copies of better
ones. Thereby a certain amount of ‘genetic material’ contained in the bad
individuals is lost. The loss of diversity θ is the proportion of the population
that is not selected for the next population (Blickle and Thiele 1995b). Baker
(1989) introduces a similar measure called ‘reproduction rate, RR’. RR gives the
percentage of individuals that is selected to reproduce, hence RR = 100(1− θ).

For tournament selection this value computes to (Blickle and Thiele 1995b)

θtour(q) = q−1/(q−1) − q−q/(q−1).

It is interesting to note that the loss of diversity is independent of the initial
fitness distribution ρ̄. Furthermore, a relatively moderate tournament size of
q = 5 leads to a loss of diversity of almost 50% (see figure 24.1).
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25
Rank-based selection

John Grefenstette

25.1 Introduction

Selection is the process of choosing individuals for reproduction or survival in
an evolutionary algorithm. Rank-based selection or ranking means that only
the rank ordering of the fitness of the individuals within the current population
determines the probability of selection.

As discussed in Chapter 23, the selection process may be decomposed into
distinct steps:

(i) Map the objective function to fitness.
(ii) Create a probability distribution based on fitness.
(iii) Draw samples from this distribution.

Ranking simplifies step (i), the mapping from the objective function f to
the fitness function �. All that is needed is

�(ai) = δf (ai)

where δ is +1 for maximization problems and −1 for minimization problems.
Ranking also eliminates the need for fitness scaling (see Section 23.1), since

selection pressure is maintained even if the objective function values within the
population converge to a very narrow range, as often happens as the population
evolves.

This section discusses step (ii), the creation of the selection probability
distribution based on fitness. The final step (iii) is independent of the selection
method, and the stochastic universal sampling algorithm (see Section 23.4) is
an appropriate sampling procedure.

Besides its simplicity, other motivations for using rank-based selection
include:

(i) Under proportional selection, a ‘super’ individual, i.e. an individual with
vastly superior objective value, might completely take over the population
in a single generation unless an artificial limit is placed on the maximum
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number of offspring for any individual. Ranking helps prevent premature
convergence due to ‘super’ individuals, since the best individual is always
assigned the same selection probability, regardless of its objective value.

(ii) Ranking may be a natural choice for problems in which it is difficult
to precisely specify an objective function, e.g. if the objective function
involves a person’s subjective preference for alternative solutions. For
such problems it may make little sense to pay too much attention to the
exact values of the objective function, if exact values exist at all.

The following sections describe various forms of linear and nonlinear ranking
algorithms. The final section presents some of the theory of rank-based selection.

25.2 Linear ranking

Linear ranking assigns a selection probability to each individual that is
proportional to the individual’s rank (where the rank of the least fit is defined
to be zero and the rank of the most fit is defined to be µ−1, given a population
of size µ). For a generational algorithm, linear ranking can be implemented
by specifying a single parameter, βrank, the expected number of offspring to be
allocated to the best individual during each generation. The selection probability
for individual i is then defined as follows:

Prlin rank(i) = αrank + [rank(i)/(µ− 1)](βrank − αrank)

µ

where αrank is the number of offspring allocated to the worst individual. The
sum of the selection probabilities is then

µ−1∑
i=0

αrank + [rank(i)/(µ− 1)](βrank − αrank)

µ
= αrank + βrank − αrank

µ(µ− 1)

µ−1∑
i=0

i

= αrank + 1
2 (βrank − αrank)

= 1
2 (βrank + αrank).

It follows that αrank = 2−βrank, and 1 ≤ βrank ≤ 2. That is, the expected number
of offspring of the best individual is no more than twice that of the population
average. This shows how ranking can avoid premature convergence caused by
‘super’ individuals.

25.3 Nonlinear ranking

Nonlinear ranking assigns selection probabilities that are based on each
individual’s rank, but are not proportional to the rank. For example, the selection
probabilities might be proportional to the square of the rank:

Prsq rank(i) = α + [rank(i)2/(µ− 1)2](β − α)

c
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where c = (β − α)µ(2µ− 1)/6(µ− 1) + µα is a normalization factor. This
version has two parameters, α and β, where 0 < α < β, such that the selection
probabilities range from α/c to β/c.

Even more aggressive forms of ranking are possible. For example, one could
assign selection probabilities based on a geometric distribution:

Prgeom rank = α(1− α)µ−1−rank(i).

This distribution arises if selection occurs as a result of independent Bernoulli
trials over the individuals in rank order, with the probability of selecting the next
individual equal to α, and was introduced in the GENITOR system (Whitley
and Kauth 1988, Whitley 1989).

Another variation that provides exponential probabilities based on rank is

Prexp rank(i) = 1− e−rank(i)

c
(25.1)

for a suitable normalization factor c. Both of the latter methods strongly bias
the selection toward the best few individuals in the population, perhaps at the
cost of premature convergence.

25.4 (µ, λ), (µ+ λ) and threshold selection

The (µ, λ) and (µ + λ) methods used in evolution strategies (see Chapter
9 and Schwefel 1977) are deterministic rank-based selection methods. In
(µ, λ) selection, λ = kµ for some k > 1. The process is that k offspring
are generated from each parent in the current population through mutation or
possibly recombination, and the best µ offspring are selected for retention. This
method is similar to the technique called beam search in artificial intelligence
(Shapiro 1990). Experimental studies indicate that a value of k ≈ 7 is optimal
(Schwefel 1987).

In (µ+λ) selection, the best µ individuals are selected from the union of the
µ parents and the λ offspring. Thus, (µ+λ) is an elitist method, since it always
retains the best individuals unless they are replaced by superior individuals.
According to Bäck and Schwefel (1993), the (µ, λ) method is preferable to
(µ+ λ), since it is more robust on probabilistic or changing environments.

The (µ, λ) method is closely related to methods known as threshold selection
or truncation selection in the genetic algorithm literature. In threshold selection
the best T µ individuals are assigned a uniform selection probability, and the
rest of the population is discarded:

Prthresh rank(i) =
{

0 if rank(i) < (1− T )µ

1/T µ otherwise.

The parameter T is the called the threshold, where 0 < T ≤ 1. According to
Mühlenbein and Schlierkamp-Voosen (1993), T should be chosen in the range
0.1–0.5.
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Threshold selection is essentially a (µ′, λ) method, with µ′ = T µ and
λ = µ, except that threshold selection is usually implemented as a probabilistic
procedure using the distribution Prthresh rank, while systems using (µ, λ) are
usually deterministic.

25.5 Theory

The theory of rank-based selection has received less attention than the
proportional selection method, due in part to the difficulties in applying the
schema theorem to ranking. The next subsection describes the issues that arise
in the schema analysis of ranking, and shows that ranking does exhibit a form
of implicit parallelism. Characterizations of the selective pressure of ranking
are also described, including its fertility rate, selective differential, and takeover
time. Finally, a simple substitution result is mentioned.

25.5.1 Ranking and implicit parallelism

The use of rank-based selection makes it difficult to relate the schema theorem
to the original objective function, since the mean observed rank of a schema is
generally unrelated to the mean observed objective value for that schema. As
a result, the relative target sampling rates (see Section 23.5.1) of two schemata
under ranking cannot be predicted based on the mean objective values of the
schemata, in contrast to proportional selection. For example, consider the
following case:

f (a1) = 59 f (a2) = 15 f (a3) = 5 f (a4) = 1 f (a5) = 0

where
a1, a4, a5 ∈ H1 a2, a3 ∈ H2.

Assume that the goal is to maximize the objective function f . Even though
f (H1) = 20 > 10 = f (H2), ranking will assign a higher target sampling rate
to H2 than to H1.

However, ranking does exhibit a weaker form of implicit parallelism,
meaning that it allocates search effort in a way that differentiates among a
large number of competing areas of the search space on the basis of a limited
number of explicit evaluations of knowledge structures (Grefenstette 1991). The
following definitions assume that the goal is to maximize the objective function.

A fitness function � is called monotonic if

�(ai) ≤ �(aj ) ⇔ f (ai) ≤ f (aj ).

That is, a monotonic fitness function does not reverse the sense of any pairwise
ranking provided by the objective function. A fitness function is called strictly
monotonic if it is monotonic and

f (ai) < f (aj ) ⇒ �(ai) < �(aj ).
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A strictly monotonic fitness function preserves the relative ranking of any two
individuals in the search space with distinct objective function values. Since
�(ai) = δf (ai), ranking uses a strictly monotonic fitness function by definition.

Likewise, a selection algorithm is called monotonic if

tsr(ai) ≤ tsr(aj ) ⇔ �(ai) ≤ �(aj )

where tsr(a) is the target sampling rate, or expected number of offspring, for
individual a. That is, a monotonic selection algorithm is one that respects
the survival-of-the-fittest principle. A selection algorithm is called strictly
monotonic if it is monotonic and

�(ai) < �(aj ) ⇒ tsr(ai) < tsr(aj ).

A strictly monotonic selection algorithm assigns a higher selection probability to
individuals with better fitness values. Linear ranking selection and proportional
selection are both strictly monotonic, whereas threshold selection is monotonic
but not strict, since it may assign the same number of offspring to individuals
with different fitness values.

Finally, an evolutionary algorithm is called admissible if its fitness function
and selection algorithm are both monotonic. An evolutionary algorithm is strict
iff its fitness function and selection algorithm are both strictly monotonic.

Now, consider two arbitrary subsets of the solution space, A and B,
sorted by objective function value. By definition, B partially dominates A

(A ≺ B) at time t if each representative of B is at least as good as the
corresponding representative of A. The following theorem (Grefenstette 1991)
partially characterizes the implicit parallelism exhibited by ranking (any many
other selection methods):

Implicit parallelism of admissible evolutionary algorithms. In any admissible
evolutionary algorithm, if (A ≺ B) then tsr(A) ≤ tsr(B). Furthermore, in any
strict evolutionary algorithm, if (A ≺ B) then tsr(A) < tsr(B).

One illustration of this result to rank-based selection is shown in figure 25.1.
Let A be the set of points in the space with objective function values between
the dotted lines. Let B be the set of points in the space with objective values
above the region between the dotted lines. Then, in any population that contains
points from both set A and set B, the number of offspring allocated to B by any
strict evolutionary algorithm grows strictly faster than the number allocated to
set A, since any subset of B dominates any subset of A. This example illustrates
implicit parallelism because it holds no matter where the dotted lines are drawn.
This result holds not only for rank-based selection, but for any fitness function
and selection algorithm that satisfy the requirement of admissibility.
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f(x)

x

A

B

Figure 25.1. Two regions defined by range of objective values.

25.5.2 Fertility rate

The fertility rate F of a selection method is the proportion of the population that
is expected to have at least one offspring as a result of the selection process.
Other terms that have been used for this include fertility factor (Baker 1985,
1987), reproductive rate (Baker, 1989), and diversity (Blickle and Thiele, 1995).

Baker (1987, 1989) shows that, for linear ranking, the fertility rate obeys
the following formula:

F = 1− β − 1

4

where β is the number of offspring allocated to the best individual, 1 ≤ β ≤ 2.
So F ranges in value from 1 (if β = 1) to 0.75 (if β = 2) for linear ranking.

25.5.3 Selection differential

Drawing on the terminology of selective breeding, Mühlenbein and Schlierkamp-
Voosen (1993) define the selection differential S(t) of a selection method as the
difference between the mean fitness of the selected parents and the mean fitness
of the population at time t . If the fitness values are normally distributed the
selection differential for truncation selection is approximately

S(t) ≈ Iσp

where σp is the standard deviation of the fitness values in the population, and
I is a value called the selection intensity. Bäck (1995) quantifies the selection
intensity for general (µ, λ) selection as follows:

I = 1

µ

λ∑
i=λ−µ+1

E(Zi:λ)
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where Zi:λ are order statistics based in the fitness of individuals in the current
population. That is, I is the average of the expectations of the µ best samples
taken from iid normally distributed random variables Z. This analysis shows
that I is approximately proportional to λ/µ, and experimental studies confirm
this relationship (Bäck 1995, Mühlenbein and Schlierkamp-Voosen 1993).

25.5.4 Takeover time

Takeover time refers to the number of generations required for an evolutionary
algorithm operating under selection alone (i.e. no other operators such as
mutation or crossover) to converge to a population consisting entirely of
instances of the optimal individual, starting from a population that contains
a single instance of the optimal individual. According to Goldberg and Deb
(1991), the approximate takeover time τ in a population of size µ for rank-
based selection is

τ ≈ ln µ+ ln(ln µ)

ln 2

for linear ranking with βrank = 2 and

τ ≈ 2

µ− 1
ln(µ− 1)

for linear ranking with 1 < βrank < 2.

25.5.5 Substitution theorem

One interesting feature of rank-based selection is that it is clearly less sensitive
to the objective function than proportional selection. As a result, it possible
to make the following observation about evolutionary algorithms that use rank-
based selection:

Substitution theorem. Let EA be an evolutionary algorithm that uses rank-
based selection, along with any forms of mutation and recombination that
are independent of the the objective values of individuals. If EA optimizes
an objective function f then EA also optimizes the function g ◦ f , for any
monotonically increasing g.

Proof. For any monotonically increasing function g, the composition g ◦ f

induces the same rank ordering of the search space as f . It follows that a rank-
based algorithm EA produces an identical sequence of populations for objective
functions f and g ◦ f , assuming that mutation and recombination in EA are
independent of the the objective values of individuals. Since f and g ◦ f have
the same optimal solutions, the result follows.
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For example, a rank-based evolutionary algorithm that optimizes a given
function f (x) in t steps will also optimize the function (f (x))n in t steps, for
any even n > 0.
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26
Boltzmann selection

Samir W Mahfoud

26.1 Introduction

Boltzmann selection mechanisms thermodynamically control the selection
pressure in an evolutionary algorithm (EA), using principles from simulated
annealing (SA) (Kirpatrick et al 1983). Boltzmann selection mechanisms can
be used to indefinitely prolong an EA’s search, in order to locate better final
solutions.

In EAs that employ Boltzmann selection mechanisms, it is often impossible
to separate the selection mechanism from the rest of the EA. In fact, the
mechanics of the recombination and neighborhood operators are critical to the
generation of the proper temporal population distributions. Therefore, most
of the following discusses Boltzmann EAs rather than Boltzmann selection
mechanisms in isolation.

Boltzmann EAs represent parallel extensions of the inherently serial SA. In
addition, theoretical proofs of asymptotic, global convergence for SA carry over
to certain Boltzmann selection EAs (Mahfoud and Goldberg 1995).

The heart of Boltzmann selection mechanisms is the Boltzmann trial, a
competition between current solution i and alternative solution j , in which
i wins with logistic probability

1

1+ e(fi−fj )/T
(26.1)

where T is temperature and fi is the energy, cost, or objective function value
(assuming minimization) of solution i. Slight variations of the Boltzmann trial
exist, but all variations essentially accomplish the same thing when iterated (the
winner of a trial becomes solution i for the next trial): at fixed T , given a
sufficient number of Boltzmann trials, a Boltzmann distribution arises among
the winning solutions (over time). The intent of the Boltzmann trial is that at
high T , i and j win with nearly equal probabilities, making the system fluctuate
wildly from solution to solution; at low T , the better of the two solutions nearly
always wins, resulting in a relatively stable system.

195
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Several types of Boltzmann algorithm exist, each designed for slightly
different purposes. Boltzmann tournament selection (see Chapter 24 and
Goldberg 1990, Mahfoud 1993) is designed to give the population niching
capabilities (Mahfoud 1995), but is not able to significantly slow the population’s
convergence. (Convergence refers to a population’s decrease in diversity over
time, as measured by an appropriate diversity measure.) Whether any Boltzmann
EA is capable of performing effective niching remains an open question.

The Boltzmann selection method of de la Maza and Tidor (1993) scales the
fitnesses of population elements, following fitness assignment, according to the
Boltzmann distribution. It is designed to control the convergence of traditional
selection.

Parallel recombinative simulated annealing (PRSA) (Mahfoud and Goldberg
1992, 1995) allows control of EA convergence, achieves a true parallelization
of SA, and inherits SA’s convergence proofs. PRSA is the Boltzmann EA
discussed in the remainder of this section.

26.2 Simulated annealing

SA is an optimization technique, analogous to the physical process of annealing.
SA starts with a high temperature T and any initial state. A neighborhood
operator is applied to the current state i to yield state j . If fj < fi , j becomes the
current state. Otherwise j becomes the current state with probability e(fi−fj )/T .
(If j does not become the current state, i remains the current state.) The
application of the neighborhood operator and the probabilistic acceptance of the
newly generated state are repeated either for a fixed number of iterations or
until a quasi-equilibrium is reached. The entire above-described procedure is
performed repeatedly, each time starting from the current i and from a lower T .

At any given T , a sufficient number of iterations always leads to equilibrium,
at which point the temporal distribution of accepted states is stationary. (This
stationary distribution is Boltzmann.) The SA algorithm, as described above, is
called the Metropolis algorithm. What distinguishes the Metropolis algorithm
is the criterion by which the newly generated state is accepted or rejected. An
alternative criterion is that of equation (26.1). Both criteria lead to a Boltzmann
distribution.

The key to achieving good performance with SA, as well as to proving
global convergence, is that a stationary distribution must be reached at each
temperature, and cooling (lowering T ) must proceed sufficiently slowly.

26.3 Working mechanism for parallel recombinative simulated annealing

PRSA is a population-level implementation of simulated annealing. Instead of
processing one solution at a time, it processes an entire population of solutions in
parallel, using a recombination operator (typically crossover, see Chapter 33) and
a neighborhood operator (typically mutation, see Chapter 32). The combination
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of crossover and mutation produces a population-level neighborhood operator
whose action on the entire population parallels the action of SA’s neighborhood
operator on a single solution. (See figure 26.1.) It is interesting to note that
without crossover, PRSA would be equivalent to running µ independent SAs,
where µ is population size. Without mutation, PRSA’s global convergence
proofs would no longer hold.

PRSA works by pairing all population elements, at random, for crossover
each generation. After crossover and mutation, children compete against their
parents in Boltzmann trials. Winners advance to the next generation.

In the Boltzmann trial step, many competitions are possible between two
children and two parents. One possibility, double acceptance/rejection, allows
both parents to compete as a unit against both children: the sum of the
two parents’ energies should be substituted for fi in equation (26.1); the
sum of the two childrens’ energies, for fj . A second possibility, single
acceptance/rejection, holds two competitions, each time pitting one child against
one parent. There are several possible single acceptance/rejection competitions.
For instance, each parent can always compete against the child formed from
its own right end and the other parent’s left end (assuming single-point
crossover). Other possibilities and their consequences are outlined by Mahfoud
and Goldberg (1995).

26.4 Pseudocode for a common variation of parallel recombinative
simulated annealing

The pseudocode at the top of the next page describes a common variation
of PRSA that employs single acceptance/rejection competitions, a static
stopping criterion, and random—without replacement—pairing of population
elements for recombination. The cooling schedule is set by the two functions
initialize temperature() and adjust temperature(). These two functions, as well
as initialize population(), are shown without arguments, because their arguments
depend upon the type of cooling schedule and initialization chosen by the
user. The function random() simply returns a pseudorandom real number on
the interval (0, 1).

26.5 Parameters and their settings

PRSA allows the use of any recombination and neighborhood operators. It
performs minimization by default; maximization can be accomplished by
reversing the sign of all objective function values. Population size (µ) remains
constant from generation to generation. The number of generations the algorithm
runs can either be fixed, as in the pseudocode, or dynamic, determined by a user-
specified stopping or convergence criterion that is perhaps tied to the cooling
schedule.
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Input: g—number of generations to run, µ—population size
Output: P(g)—the final population

P(0) ← initialize population()

T (1) ← initialize temperature()
for t ← 1 to g do

P(t) ← shuffle(P (t − 1))

for i ← 0 to µ/2− 1 do
p1 ← a2i+1(t)

p2 ← a2i+2(t)

{c1, c2} ← recombine(p1, p2)

c′1 ← neighborhood(c1)

c′2 ← neighborhood(c2)

if random() > [1+ e[f (p1)−f (c′1)]/T (t)]−1 then a2i+1(t) ← c′1 fi
if random() > [1+ e[f (p2)−f (c′2)]/T (t)]−1 then a2i+2(t) ← c′2 fi

od
T (t + 1) ← adjust temperature()

od

PRSA requires a user to select a population size, a type of competition,
recombination and neighborhood operators, and a cooling schedule. Prior
research offers some guidelines (Mahfoud and Goldberg 1992, 1995). A good
rule of thumb for population size is to choose as large a population size as
system limitations and time constraints allow. In general, smaller populations
require longer cooling schedules. The type of competition previously employed
is single acceptance/rejection, in which each parent competes against the child
formed from its own right end and the other parent’s left end (under single-point
crossover).

Appropriate recombination and neighborhood operators are problem specific.
For example, in optimization of traditional binary encodings, one might employ
single-point crossover and mutation; in permutation problems, permutation-
based crossover and inversion would be more appropriate.

Many styles of cooling schedule exist, but their discussion is beyond the
scope of this section. Several studies contain thorough discussions of cooling
(Aarts and Korst 1989, Azencott 1992, Ingber and Rosen 1992, Romeo and
Sangiovanni-Vincentelli 1991). Perhaps the simplest type of cooling schedule
is to start at a high T , and to periodically lower T through multiplication by
a positive constant such as 0.95. At each T , a number of generations are
performed. In general, the more generations performed at each T and the higher
the multiplicative constant, the better the end result.
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26.6 Global convergence theory and proofs

The most straightforward global convergence proof for any variation of PRSA
shows that the variation is a special case of standard SA. This results in the
transfer of SA’s convergence proof to the PRSA variant. Details of PRSA’s
convergence proofs are given by Mahfoud and Goldberg (1995).

The variation of PRSA that we consider employs selection of parents with
replacement, and double acceptance/rejection. No population element may be
selected as both parents. (Self-mating is disallowed.)

Many authors have taken the viewpoint that SA is essentially an EA with
a population size of one. Our proof takes the opposite viewpoint, showing an
EA (PRSA) to be a special case of SA. To see this, concatenate all strings of
the PRSA population in a side-by-side fashion to form one superstring. Define
the fitness of this superstring to be the sum of the individual fitnesses of its
component substrings (the former population elements). Let cost be the negated
fitness of this superstring. The cost function will reach a global minimum only
when each substring is identically at a global maximum. Thus, to maximize all
elements of the former population, PRSA can search for a global minimum for
the cost function assigned to its superstring.

Consider the superstring as our structure to be optimized. Our chosen
variation of PRSA, as displayed graphically in figure 26.1, is now a special case
of SA, in which the crossover-plus-mutation neighborhood operator is applied
to selected portions of the superstring to generate new superstrings. Crossover-
plus-mutation’s net effect as a population-level neighborhood operator is to
swap two blocks of the superstring, and then probabilistically flip bits of these
swapped blocks and of two other blocks (the other halves of each parent).

(2)

�

�
i or j

i

j

A

C′

B

B′

C

A′

D

D′

(1)

Figure 26.1. The population, after application of crossover and mutation (step 1),
transitions from superstring i to superstring j . After a Boltzmann trial (step 2), either
i or j becomes the current population. Individual population elements are represented
as rectangles within the superstrings. Blocks A, B, C, and D represent portions of
individual population elements, prior to crossover and mutation. Crossover points are
shown as dashed lines. Blocks A′, B′, C′, and D′ result from applying mutation to A, B,
C, and D.

As a special case of SA, the chosen variation of PRSA inherits the
global convergence proof of SA, provided the population-level neighborhood
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operator meets certain conditions. According to Aarts and Korst (1989), two
conditions on the neighborhood generation mechanism are sufficient to guarantee
asymptotic global convergence. The first condition is that the neighborhood
operator must be able to move from any state to a globally optimal state in a finite
number of transitions. The presence of mutation satisfies this requirement. The
second condition is symmetry. It requires that the probability at any temperature
of generating state y from state x is the same as the probability of generating
state x from state y. Symmetry holds for common crossover operators such as
single-point, multipoint, and uniform crossover (Mahfoud and Goldberg 1995).
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27
Other selection methods

David B Fogel

27.1 Introduction

In addition to the methods of selection presented in other sections of this
chapter, other procedures for selecting parents of successive generations are of
interest. These include the tournament selection typically used in evolutionary
programming (Fogel 1995, p 137), soft brood selection offered within research
in genetic programming (Altenberg 1994a, b), disruptive selection (Kuo and
Hwang 1993), Boltzmann selection (de la Maza and Tidor 1993), nonlinear
ranking selection (Michalewicz 1996), competitive selection (Hillis 1992,
Angeline and Pollack 1993, Sebald and Schlenzig 1994), and the use of lifespan
(Bäck 1996).

27.2 Tournament selection

The tournament selection typically performed in evolutionary programming
allows for tuning the degree of stringency of the selection imposed. Rather
than selecting on the basis of each solution’s fitness or error in light of the
objective function at hand, selection is made on the basis of the number of wins
earned in a competition. Each solution is made to compete with some number,
q, of randomly selected solutions from the population. In each pairing, if the
first solution’s score is at least as good as the randomly selected opponent, the
first solution receives a win. Thus up to q wins can be earned. This competition
is conducted for all solutions in the population and selection then chooses the
best subset of a given size from the population based on the number of wins
each solution has earned. For q = 1, the procedure yields essentially a random
walk with very low selection pressure. For q = ∞, the procedure becomes
selection based on objective function scores (with no probabilistic selection).
For practical purposes, q ≥ 10 is often considered relatively hard selection, and
q in the range of three to five is considered soft. Soft selection allows for lower
probabilities of becoming trapped at local optima for periods of time.

201
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27.3 Soft brood selection

Soft brood selection holds a tournament (see Chapter 24) between members of
a brood of two parents. The winner of the tournament is considered to be the
offspring contributed by the mating. Soft brood selection is intended to shield
the recombination operator from the costs of producing deleterious offspring.
It culls such offspring, essentially testing for their viability before being placed
into competition with the remainder of the population. (For further details on
the effects of soft brood selection on subexpressions in tree structures, see the
article by Altenberg (1994a).)

27.4 Disruptive selection

Disruptive selection can be used to select against individuals with moderate
values (in contrast to stabilizing selection which acts against extreme values, or
directional selection which acts to increase or decrease values). Kuo and Hwang
(1993) suggested a fitness function of the form

u(x) = |f (x)− f (t)|
where f (x) is the objective value of the solution x and f (t) is the mean of all
solutions in the population at time t . Thus a solution’s fitness increases with
its distance from the mean of all current solutions. The idea is to distribute
more search effort to both the extremely good and extremely bad solutions. The
utility of this method is certainly very problem dependent.

27.5 Boltzmann selection

Boltzmann selection (as offered by de la Maza and Tidor 1993) proceeds as

Fi(U(X)) = exp(Ui(X)/T )

where X is a population of solutions, U(X) is the problem dependent objective
function, Fi(·) is the fitness function for the ith solution in X, Ui(·) is the
objective function evaluated for the ith solution in X, and T is a variable
temperature parameter. De la Maza and Tidor (1993) suggest that this method
of assigning fitness proportional selection converges faster than traditional
proportional selection. Bäck (1994), however, describes this as a ‘misleading
name for yet another scaling method for proportional selection’.

27.6 Nonlinear ranking selection

Nonlinear ranking selection (Michalewicz 1996, pp 60–1) is a variant of linear
ranking selection. Recall that for linear ranking selection, the probability of a
solution with a given rank being selected can be set as

P(rank) = q − (rank− 1)r
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where q is a user-defined parameter. For each lower rank, the probability of
being selected is reduced by a factor of r . The requirement that the sum of all
the probabilities for each ranked solution must be equal to unity implies that

q = r(popsize− 1)/2+ 1/popsize

where popsize is the number of solutions in the population. This relationship
can be made nonlinear by setting:

P(rank) = q(1− q)rank−1

where q ∈ (0, 1) and does not depend on popsize; larger values of q imply
stronger selective pressure. Bäck (1994) notes that this nonlinear ranking method
fails to sum to unity and can be made practically identical to tournament selection
under the choice of q.

27.7 Competitive selection

Competitive selection is implemented such that the fitness of a solution is
determined by its interactions with other members of the population, or other
members of a jointly evolving but separate population. Hillis (1992) used this
concept to evolve sorting networks in which a population of sorting networks
competed against a population of various permutations; the networks were
scored in light of how well they sorted the permutations and the permutations
were scored in light of how well they could defeat the sorting networks.
Angeline and Pollack (1993) used a similar idea to evolve programs to play
tic-tac-toe. Sebald and Schlenzig (1994) used evolutionary programming
on competing populations to generate suitable blood pressure controllers for
simulated patients undergoing cardiac surgery (i.e. controllers were scored on
how well they maintained the patient’s blood pressure while patients were scored
on how well they defeated the controllers). Fogel and Burgin (1969) describe
experiments in which competing evolutionary programs played a prisoner’s
dilemma game using finite-state machines, but insufficient detail is provided
to allow for replication of the results. Axelrod (1987), and others, offered
an apparently similar procedure for evolving rule sets describing alternative
behaviors in the iterated prisoner’s dilemma.

27.8 Variable lifespan

Finally, Bäck (1996) notes that the concept of a variable lifespan has been
incorporated into the (µ, λ) selection of evolution strategies by Schwefel and
Rudolph (1995) by allowing the parents to survive some number of generations.
When this number is one generation, the method is the familiar comma strategy;
at infinity, the method becomes a plus strategy.
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28
Generation gap methods

Jayshree Sarma and Kenneth De Jong

28.1 Introduction

The concept of a generation gap is linked to the notion of nonoverlapping and
overlapping populations. In a nonoverlapping model parents and offspring never
compete with one another, i.e. the entire parent population is always replaced by
the offspring population, while in an overlapping system parents and offspring
compete for survival. The term generation gap refers to the amount of overlap
between parents and offspring. The notion of a generation gap is closely related
to selection algorithms and population management issues.

A selection algorithm in an evolutionary algorithm (EA) involves two
elements: (i) a selection pool and (ii) a selection distribution over that pool.
A selection pool is required for reproduction selection as well as for deletion
selection. The key issue in both these cases is ‘what does the pool contain when
parents are selected and when survivors are selected?’.

In the selection for the reproduction phase, parents are selected to produce
offspring and the selection pool consists of the current population. How the
parents are selected for reproduction depends on the individual EA paradigm.

In the selection for the deletion phase, a decision has to be made as to
which individuals to select for deletion to make room for the new offspring.
In nonoverlapping systems the entire selection pool consisting of the current
population is selected for deletion: the parent population (µ) is always replaced
by the offspring population (λ). In overlapping models, the selection pool for
deletion consists of both parents and their offspring. Selection for deletion is
performed on this combined set and the actual selection procedure varies in each
of the EA paradigms.

Historically, both evolutionary programming and evolution strategies
had overlapping populations while the canonical genetic algorithms used
nonoverlapping populations.

205
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28.2 Historical perspective

In evolutionary programming (Fogel et al 1966), each individual produces one
offspring and the best half from the parent and offspring populations are selected
to form the new population. This is an overlapping system as the parents and
their offspring constantly compete with each other for survival.

In evolution strategies (Schwefel 1981), the (µ + λ) and the (µ, λ) models
correspond to the overlapping and nonoverlapping populations respectively. In
the (µ + λ) system parents and offspring compete for survival and the best µ

are selected. In the (µ, λ) model the number of offspring produced is generally
far greater than the parents. The offspring are then ranked according to fitness
and the best µ are selected to replace the parent population.

Genetic algorithms are based on the two reproductive plans introduced and
analyzed by Holland (1975). In the first plan, R1, at each time step a single
individual was selected probabilistically using payoff proportional selection to
produce a single offspring. To make room for this new offspring, one individual
from the current population was selected for deletion using a uniform random
distribution.

In the second plan, Rd , at each time step all individuals were
deterministically selected to produce their expected number of offspring. The
selected parents were kept in a temporary storage location. When the process of
recombination was completed, the offspring produced replaced the entire current
population. Thus in Rd , individuals were guaranteed to produce their expected
number of offspring (within probabilistic roundoff).

At that time, from a theoretical point of view, the two plans were viewed
as generally equivalent. However, because of practical considerations relating
to the overhead of recalculating selection probabilities and severe genetic
drift (allele loss) in small populations, most early researchers favored the Rd

approach.
The earliest attempt at evaluating the properties of R1 and Rd plans was

a set of empirical studies (De Jong 1975) in which a parameter G, called the
generation gap, was defined to introduce the notion of overlapping generations.
The generation gap parameter controls the fraction of the population to be
replaced in each generation. Thus, G = 1 (replacing the entire population)
corresponded to Rd and G = 1/µ (replacing a single individual) represented
R1.

These early studies (De Jong 1975) suggested that any advantages that
overlapping populations might have were offset by the negative effects of
genetic drift (allele loss). The genetic drift was caused by the high variance
in expected lifetimes and expected number of offspring, mainly because at
that time, generally, modest population sizes were used (µ ≤ 100). These
negative effects were shown to increase in severity as G was reduced. These
studies also suggested the advantages of an implicit generation overlap. That
is, using the optimal crossover rate of 0.6 and optimal mutation rate of 0.001
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(identified empirically for the test suite used) meant that approximately 40% of
the offspring were clones of their parents, even for G = 1. A later empirical
study by Grefenstette (1986) confirmed the earlier results that a larger generation
gap value improved performance.

However, early experience with classifier systems (e.g. Holland and Reitman
1978) yielded quite the opposite behavior. In classifier systems only a subset of
the population is replaced each time step. Replacing a small number of classifiers
was generally more beneficial than replacing a large number or possibly all of
them. Here the poor performance observed as the generation gap value increased
was attributed to the fact that the population as a whole represented a single
solution and thus could not tolerate large changes in its content.

In recent years, computing equipment with increased capacity is easily
available and this effectively removes the reason for preferring the Rd approach.
The desire to solve more complex problems using genetic algorithms has
prompted researchers to develop an alternative to the generational system called
the ‘steady state’ approach, in which typically parents and offspring do coexist
(see e.g. Syswerda 1989, Whitley and Kauth 1988).

28.3 Steady state and generational evolutionary algorithms

Steady state EAs are systems in which usually only one or two offspring are
produced in each generation. The selection pool for deletion can consist of the
parent population only or can be possibly augmented by the offspring produced.
The appropriate number of individuals are selected for deletion, based on some
distribution, to make room for these new offspring. Generational systems are
so named because the entire population is replaced every generation by the
offspring population: the lifetime of each individual in the population is only
one generation. This is the same as the nonoverlapping population systems,
while the steady state EA is an overlapping population system.

One can conceptually think of a steady state model in evolutionary
programming and evolution strategies. For example, from a parent population of
µ individuals, a single offspring can be formed by recombination and mutation
and can then be inserted into the population. A recent study of the steady state
evolutionary programming performed by Fogel and Fogel (1995) concluded that
the generational model of evolutionary programming may be more appropriate
for practical optimization problems. The first example of the steady state
evolutionary strategies is the (µ+1) approach introduced by Rechenberg (1973)
which had a parent population greater than one (µ > 1). All the parents were
then allowed to participate in the reproduction phase to create one offspring.
The (µ+1) model was not used as it was not feasible to selfadapt the step sizes
(Bäck et al 1991).

An early example of the steady state model of genetic algorithms is the R1

model defined by Holland (1975) in which the selection pool for deletion consists
only of the parent population and a uniform deletion strategy is used. The Rd
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Figure 28.1. The mean and variance of the growth curves of the best in an overlapping
system (population size, 50; G = 1/50).
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Figure 28.2. The mean and variance of the growth curves of the best in a nonoverlapping
system (population size, 50; G = 1).

approach is the generational genetic algorithm. Theoretically, the two systems
(overlapping systems using uniform deletion and nonoverlapping systems) are
considered to be similar in expectation for infinite populations. However, there
can be high variance in the expected lifetimes and expected number of offspring
when small finite populations are used.

This variance can be highlighted by keeping everything in the two systems
constant and changing only one parameter, viz., the number of offspring
produced. Figures 28.1 and 28.2 illustrate the average and variance for the
growth curve of the best in two systems, producing and replacing only a single
individual each generation in one and replacing the entire population each
generation in the other. A population size of 50 was used, the best occupied
10% of the initial population, and the curves are averaged over 100 independent
runs. Only payoff proportional selection, reproduction, and uniform deletion
were used to drive the systems to a state of equilibrium. Notice that in the
overlapping system (figure 28.1) the best individuals take over the population
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only about 80% of the time and the growth curves exhibit much higher variance
when compared to the nonoverlapping population (figure 28.2).

This high variance for small generation gap values causes more genetic
drift (allele loss). Hence, with smaller population sizes, the higher variance in
a steady state system makes it easier for alleles to disappear. Increasing the
population size is one way to reduce the the variance (see figure 28.3) and thus
offset the allele loss. In summary, the main difference between the generational
and steady state systems is higher genetic drift in the latter especially when
small population sizes are used with low generation gap values. (See the article
by De Jong and Sarma (1993) for more details.)
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Figure 28.3. The mean and variance of the growth curves of the best in an overlapping
system (population size, 200; G = 1/200).

So far we have assumed that there is an uniform distribution on the
selection pool used for deletion, but most researchers using a steady state
genetic algorithm generally use a distribution other than the standard uniform
distribution. Syswerda (1991) shows how the growth curves can change when
different deletion strategies, such as deleting the least fit, exponential ranking
of the members in the selection pool, and reverse fitness, are used. Peck and
Dhawan (1995) demonstrate an improvement in the ideal growth behavior of
the steady state system when uniform deletion is changed to a first-in–first-
out (FIFO) deletion strategy. An early model of a steady state (overlapping)
system is GENITOR (Whitley and Kauth 1988, Whitley 1989) which not only
uses ranking selection (Chapter 23) instead of proportional selection (Chapter
25) on the selection pool for reproduction but also uses deletion of the worst
member as the deletion strategy. The GENITOR approach exhibited significant
performance improvement over the standard generational approach.

Using a deletion scheme other than a uniform deletion changes the selection
pressure. The selection pressure induced by the different selection schemes can
vary considerably. Both these changes can alter the exploration–exploitation
balance. Two different studies have shown that improved performance in a
steady state system, like GENITOR, is due to higher growth rates and changes
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in the exploration–exploitation balance caused by using different selection and
deletion strategies and is not due to the use of an overlapping model (Goldberg
and Deb 1991, De Jong and Sarma 1993).

28.4 Elitist strategies

The cycle of birth and death of individuals is very much linked to the
management of the population. Individuals that are born have an associated
lifetime. The expected lifetime of an individual is typically one generation, but
in some EA systems it can be longer. We now explore this issue in more detail.

Elitist strategies link the lifetimes of individuals to their fitnesses. Elitist
strategies are techniques to keep good solutions in the population longer than
one generation. Though all individuals in a population can expect to have a
lifetime of one generation, individuals with higher fitness can have a longer
lifetime when elitist strategies are used.

As stated earlier, the selection pool for deletion is comprised of both the
parents and the offspring populations in the overlapping system. This combined
population is usually ranked according to fitness and then truncated to form the
new population. This method ensures that most of the current individuals with
higher fitness survive into the next generation, thus extending their lifetime. In
the (µ + λ) evolution strategies, a very strong elitist policy is in effect as the
top µ are always kept. In evolutionary programming, a stochastic tournament
is used to select the survivors, and hence the elitist policy is not quite as strong
as in the evolution strategy case. In the (µ, λ) evolution strategies there is no
elitist strategy to preserve the best parents.

Unlike evolution strategies and evolutionary programming, where there is
postselection of survivors based on fitness, in generational genetic algorithms
there is only preselection of parents for reproduction. Recombination operators
are applied to these parents to produce new offspring, which are then subject
to mutation. Since all parents are replaced each generation by their offspring,
there is no guarantee that the individuals with higher fitness will survive into
the next generation. An elitist strategy in generational genetic algorithms is
a way of ensuring that the lifetime of the very best individual is extended
beyond one generation. Thus, unlike evolutionary programming and evolution
strategies, where more than just the best individual survive, in generational
genetic algorithms generally only the best individual survives. Steady state
genetic algorithms which use deletion schemes other than uniform random
deletion have an implicit elitist policy and so automatically extend the lifetime
of the higher-fitness individuals in the population.

It should be noted that the elitist strategies were deemed necessary when
genetic algorithms are used as function optimizers and the goal is to find a
global optimal solution (De Jong 1993). Elitist strategies tend to make the
search more exploitative rather than explorative and may not work for problems
in which one is required to find multiple optimal solutions.
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A comparison of selection mechanisms

Peter J B Hancock

29.1 Introduction

Selection provides the driving force behind an evolutionary algorithm. Without
it, the search would be no better than random. This section explores the pros
and cons of a variety of different methods of performing selection. Selection
methods differ in two main ways: the way they aim to distribute reproductive
opportunities across members of the population, and the accuracy with which
they achieve their aim. The accuracy may differ because of sampling noise
inherent in some selection algorithms. There are also other differences that may
be significant, such as time complexity and suitability for parallel processing.
Crucially for some applications, they also differ in their ability to deal with
evaluation noise.

There have been a number of comparisons of different selection methods
by a mixture of analysis and simulation, usually on deliberately simplified
tasks. Goldberg and Deb (1991) considered a system with just two fitness
levels, and studied the time taken for the fitter individuals to take over the
population under the action of selection only, verifying their analysis with
simulations. Hancock (1994) extended the simulations to a wider range of
selection algorithms, and added mutation as a source of variation, to compare
effective growth rates. The effects of adding noise to the evaluation function
were also considered. Syswerda (1991) compared generational and incremental
models on a ten-level takeover problem. Thierens and Goldberg (1994) derived
analytical results for rates of growth for a bit counting problem, where the
approximately normal distribution of fitness values allowed them to include
recombination in their analysis. Bäck (1994) compared takeover times for all
the major selection methods analytically and reported an experiment on a 30-
dimensional sphere problem. Bäck (1995) compared tournament and (µ, λ)
selection more closely. Blickle and Thiele (1995a, b) undertook a detailed
analytical comparison of a number of selection methods (note that the second
paper corrects an error in the first). Other studies include those of Bäck and
Hoffmeister (1991), de la Maza and Tidor (1993) and Pál (1994).
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It would be useful to have some objective measure(s) with which to compare
selection methods. A general term is selection pressure. The meaning of
this is intuitively clear, the higher the selection pressure, the faster the rate of
convergence, but it has no strict definition. Analysis of selection methods has
concentrated on two measures: takeover time and selection intensity. Takeover
time is the number of generations required for one copy of the best string to
reproduce so as to fill the population, under the effect only of selection (Goldberg
and Deb 1991). Selection intensity is defined in terms of the average fitness
before and after selection, f̄ and f̄sel, and the fitness variance σ :

I = f̄sel − f̄

σ
.

This captures the notion that it is harder to produce a given step in average
fitness between the population and those selected when the fitness variance is
low. However, both takeover time and selection intensity depend on the fitness
functions, and so theoretical results may not always transfer to a real problem.
There is an additional difficulty because the fitness variance itself depends on
the selection method, so different methods configured to have the same selection
intensity may actually grow at different rates.

Most of the selection schemes have a parameter that controls either the
proportion of the population that reproduces or the distribution of reproductive
opportunities, or both. One aim in what follows will be to identify some
equivalent parameter settings for different selection methods.

29.2 Simulations

A number of graphs from simulations similar to those reported by
Hancock (1994) are shown here, along with some analytical and experimental
results from elsewhere. The takeover simulation initializes a population of 100
randomly, with rectangular distribution, in the range 0–1, with the exception
that one individual is set to 1. The rate of takeover of individuals with the value
1 under the action of selection alone is plotted. Results reported are averaged
over 100 different runs. The simulation is thus similar to that used by Goldberg
and Deb (1991), but the greater range of fitness values allows investigation of
the diversity maintained by the different selection methods. Since some of them
produce exponential takeover in such conditions, a second set of simulations
makes the problem slightly more realistic by adding mutation as a source of
variation to be exploited by the selection procedures. This growth simulation
initializes the population in the range 0–0.1. During reproduction, mutation with
a Gaussian distribution, mean 0, standard deviation 0.02, is added to produce the
offspring, subject to remaining in the range 0–1. Some plots show the value of
the best member of the population after various numbers of evaluations, again
averaged over 100 different runs. Other plots show the growth of the worst
value in the population, which gives an indication of the diversity maintained in
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the population. Some selection methods are better at preserving such diversity:
other things being equal, this seems likely to improve the quality of the overall
search (Mühlenbein and Schlierkamp-Voosen 1995, Blickle and Thiele 1995b).

It should be emphasized that fast convergence on these tasks is not
necessarily good: they are deliberately simple in an effort to illustrate some
of the differences between selection methods and the reasons underlying them.
Good selection methods need to balance exploration and exploitation. Before
reporting results, we shall consider a number of more theoretical points of
similarities and differences.

29.3 Population models

There are two different points in the population cycle at which selection may
be implemented. One approach, typical of genetic algorithms (GAs), is to
choose individuals from the population for reproduction, usually in some way
proportional to their fitness. These are then acted on by the chosen genetic
operators to produce the next generation. The other approach, more typical of
evolution strategies (ESs) and evolutionary programming (EP), is to allow all
the members of the population to reproduce, and then select the better members
of the extended population to go through to the next generation. This difference,
of allowing all members to reproduce, is sometimes flagged as one of the key
differences in approach between ES/EP and GAs. In fact the two approaches
may be seen as equivalent once running, differing only in what is called the
population. If the extended population typical of the ES and EP approach is
labeled simply the population, then it may be seen that, as with the first approach,
the best individuals are selected for reproduction and used to generate the new
(extended) population. Looked at this way, it is the traditional GA approach that
allows all members of the population at least some chance of reproduction, where
the methods that use truncation selection restrict the number that are allowed
to breed. There remains, however, a difference in philosophy: the traditional
GA approach is reproduction according to fitness, while the truncation selection
typical of the ES, EP, and breeder GA is more like survival of the fittest. There
will also be a difference at startup, with ES/EP initializing µ individuals, while
an equivalent GA initializes µ+ λ.

29.4 Equivalence: expectations and reality

A number of pairs of the common selection algorithms turn out to be, in some
respects, equivalent. The equivalence, usually in expected outcome, can hide
differences due to sampling errors, or behavior in the presence of noise, that
may cause significant differences in practice. This section considers some of
these similarities and differences, in order to reduce the number that need be
considered in detail in Section 29.5.
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29.4.1 Tournament selection and ranking

Goldberg and Deb (1991) showed that simple binary tournament selection (TS)
(see Chapter 24) is equivalent to linear ranking (Section 25.2) when set to give
two offspring to the top-ranked string (βrank = 2). However, this is only in
expectation: when implemented the obvious way, picking each fresh pair of
potential parents from the population with replacement, tournament selection
suffers from sampling errors like those produced by roulette wheel sampling,
precisely because each tournament is performed separately. A way to reduce
this noise is to take a copy of the population and choose pairs for tournament
from it without replacement. When the copy population is exhausted, another
copy is made to select the second half of the new population (Goldberg et al
1989). This method ensures that each individual participates in exactly two
tournaments, and will not fight itself. It does not eliminate the problem, since,
for example, an average individual, that ought to win once, may pick better or
worse opponents both times, but it will at least stop several copies of any one
being chosen.

The selection pressure generated by tournament selection may be decreased
by making the tournaments stochastic. The equivalence, apart from sampling
errors, with linear ranking remains. Thus TS with a probability of the better
string winning of 0.75 is equivalent to linear ranking with βrank = 1.5. The
selection pressure may be increased by holding tournaments among more than
two individuals. For three, the best will expect three offspring, while an
average member can expect 0.75 (it should win one quarter of its expected
three tournaments). The assignment is therefore nonlinear and Bäck (1994)
shows that, to a first approximation, the results are equivalent to exponential
nonlinear ranking, where the probability of selection of each rank i, starting at
i = 1 for the best, is given by (s−1)(si−1)/(sµ−1), where s is typically in the
range 0.9–1 (Blickle and Thiele 1995b). (Note that the probabilities as specified
by Michalewicz (1992) do not sum to unity (Bäck 1994).) More precisely,
they differ in that TS gives the worst members of the population no chance to
reproduce. Figure 29.1 compares the expected number of offspring for each rank
in a population of 100. The difference results in a somewhat lower population
diversity for TS when run at the same growth rate.

Goldberg and Deb (1991) prefer TS to linear ranking on account of its
lower time complexity (since ranking requires a sort of the population), and
Bäck (1994) argues similarly for TS over nonlinear ranking. However, time
complexity is unlikely to be an issue in serious applications, where the evaluation
time usually dominates all other parts of the algorithm. The difference is in any
case reduced if the noise-reduced version of TS is implemented, since this
also requires shuffling the population. For global population models, therefore,
ranking, with Baker’s sampling procedure (Baker 1987), is usually preferable.
TS may be appropriate in incremental models, where only one individual is
to be evaluated at a time, and in parallel population models. It may also be
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Figure 29.1. Expected number of offspring against rank for tournament selection with
tournament size 3 and exponential rank selection with s = 0.972.

appropriate in, for instance, game playing applications, where the evaluation
itself consists of individuals playing each other.

Freisleben and Härtfelder (1993) compared a number of selection schemes
using a meta-level GA, that adjusted the parameters of the GA used to tackle
their problem. Tournament selection was chosen in preference to rank selection,
which at first sight seems odd, since the only difference is added noise. A
possible explanation lies in the nature of their task, which was learning the
weights for a neural net simulation. This is plagued with symmetry problems
(e.g. Hancock 1992). The GA has to break the symmetries and decide on
just one to make progress. It seems possible that the inaccuracies inherent in
tournament selection facilitated this symmetry breaking, with one individual
having an undue advantage, and thereby taking over the population. Noise is
not always undesirable, though there may be more controlled ways to achieve
the same result.

29.4.2 Incremental and generational models

There is apparently a large division between incremental and generational
reproduction models. However, Syswerda (1991) shows that an incremental
model where the deletion is at random produces the same expected result
as a generational model with the same rank selection for reproduction.
Again, however, this analysis overlooks sampling effects. Precisely because
incremental models generate only one or two offspring per cycle, they suffer
the roulette wheel sampling error. Figure 29.2 shows the growth rate for best
and worst in the population for the two models with the same selection pressure
(best expecting 1.2 offspring). The incremental model grows more slowly, yet
loses diversity more rapidly, an effect characteristic of this kind of sampling
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error. Incremental models also suffer in the presence of evaluation noise (see
Section 29.6).

Figure 29.2. The growth rate in the presence of mutation of the best and worst in the
population for the incremental model with random deletion and the generational model,
both with linear rank selection for reproduction, βrank = 1.2.

The very highest selection pressure possible from an evolutionary system
would arise from an incremental system, where only the best member of the
population is able to reproduce, and the worst is removed if the new string is an
improvement. Since the rest of the population would thus be redundant, this is
equivalent to a (1+1) ES, the dynamics of which are well investigated (Schwefel
1981).

29.4.3 Evolution strategy, evolutionary programming, and truncation selection

Some GA workers allow only the top few members of the population to
reproduce (Nolfi et al 1990, Mühlenbein and Schlierkamp-Voosen 1993). This
is often called truncation selection, and is equivalent to the ES (µ, λ) approach
subject only to a difference in what is called the population (see Section 29.3).

EP uses a form of tournament selection where all members of the extended
population µ + λ compete with c others, chosen at random with replacement.
Those µ that amass the most wins then reproduce by mutation to form the next
extended population. This may be seen as a rather softer form of truncation
selection, converging to the same result as a (µ + µ) ES as the size of c

increases. The value of c does not directly affect the selection pressure, only
the noise in the selection process.

The EP selection process may be softened further by making the tournaments
probabilistic. One approach is to make the probability of the better individual
winning dependent on the relative fitness of the pair: pi = fi/(fi + fj ) (Fogel
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1988). Although intuitively appealing, this has the effect of reducing selection
pressure as the population converges and can produce growth curves remarkably
similar to unscaled fitness proportional selection (FPS; Hancock 1994).

29.5 Simulation results

29.5.1 Fitness proportional selection

Simple FPS suffers from sensitivity to the distribution of fitness values in the
population, as discussed in Chapter 23. The reduction of selection pressure as
the population converges may be countered by moving baseline techniques, such
as windowing and sigma scaling. These are still vulnerable to undesirable loss
of diversity caused by a particularly fit individual, which may produce many
offspring. Rescaling techniques are able to limit the number of offspring given
to the best, but may still be affected by the overall spread of fitness values, and
particularly by the presence of very poor individuals.

Figure 29.3 compares takeover and growth rates of FPS and some of the
baseline adjustment and rescaling methods. The simple takeover rates for the
three adjusted methods are rather similar for these scale parameters, with linear
scaling just fastest. Simple FPS is so slow it does not really show on the
same graph: it reaches only 80% convergence after 40 000 evaluations on this
problem. The curves for growth in the presence of mutation are all rather
alike: the presence of the mutation maintains the range of fitness values in the
population, giving simple FPS something to work on. Note, however, that it
still starts off relatively fast and slows down towards the end: probably the
opposite of what is desirable. The three scaled versions are still similar, but
note that the order has reversed. Windowing and sigma scaling now grow more
rapidly precisely because they fail to limit the number of offspring to especially
good individuals. A fortuitous mutation is thus better exploited than in the
more controlled linear scaling, which leads to the correct result in this simple
hill-climbing task, but may not in a more complex real problem.

29.5.2 Ranking

Goldberg and Deb (1991) show that the expected growth rate for linear ranking
is proportional to the value of βrank, the number of offspring given to the best
individual. For exponential scaling, the selection pressure is proportional to
1− s. This makes available a wide range of selection pressures, defined by the
value of s, illustrated in figure 29.4. The highest takeover rate available with
linear ranking (βrank = 2) is also shown. Exponential ranking can go faster with
smaller values of s (see table 29.1). Note the logarithmic x-axis on this plot.

With exponential ranking, because of the exponential assignment curve, poor
individuals do rather better than with linear ranking, at the expense of those more
in the middle of the range. One result of this is that, for parameter settings that
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give similar takeover times, exponential ranking loses the worse values in the
population more slowly, which may help preserve diversity in practice.

29.5.3 Evolution strategies

The selection pressure generated by the ES selection methods have been
extensively analyzed, sometimes under the title of truncation selection (see
e.g. Bäck 1994). Selection pressure is dependent on the ratio of µ to λ (see

Figure 29.3. (a) The takeover rate for FPS, with windowing, sigma, and linear scaling.
(b) Growth rates in the presence of mutation.

Figure 29.4. The takeover rate for exponential rank selection for a number of values of
s, together with that for linear ranking, βrank = 2.
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table 29.1). One simulation result is shown, in figure 29.5, to make clear
the selection pressure achievable by (µ, λ) selection, and indicate its potential
susceptibility to evaluation noise, discussed further below.

Figure 29.5. The growth rate in the presence of mutation for ES (µ, λ) selection with
and without evaluation noise, for λ = 100 and µ = 1, 10, and 25.

29.5.4 Incremental models

Goldberg and Deb (1991) show that the Genitor incremental model develops
a very high growth rate, compared to that typical of GAs. This is mostly
due to the method of deletion, in which the worst member of the population
is eliminated (cf the ES truncation approach). As a consequence, the value
of βrank used in the linear ranking to select parents has little effect on the
takeover rate. Even with βrank = 1 (i.e. a random choice of parents), kill-worst
converges in around 900 evaluations (cf about 3000 for the scaled FPS variants
in figure 29.3(a)). Increasing βrank to its maximum of 2.0 only reduces this to
around 600 evaluations.

There are a number of ways to decide which of the population should be
removed (Syswerda 1991), such as killing the oldest (also known as FIFO
deletion (De Jong and Sarma 1993)); one of the n worst; by inverse rank; or
simply at random. The various deletion strategies radically affect the behavior
of the algorithm. As discussed above, random deletion resembles a generational
model. Kill oldest also produces much softer selection than kill-worst, producing
takeover rates similar to generational models with the same selection pressure
(see figure 29.6). However, the incremental model starts more quickly and ends
more slowly than the generational one.

Syswerda (1991) prefers kill-by-inverse-rank. In his simulations, this
produces results similar to kill-worst, but he is using a high inverse selection
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Figure 29.6. The takeover rates for the generational model and the kill-oldest incremental
model, both using linear ranking for selection.

Figure 29.7. Growth rates in the presence of mutation for incremental kill-by-inverse-
rank (kr) and generational linear ranking (rl) for various values of βrank.

pressure (exponential ranking with s = 0.9). A more controlled result is given
by selecting for reproduction from the top and for deletion from the bottom using
ranking with the same, more moderate value of βrank. Using linear ranking, the
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growth rate changes more rapidly than βrank. This is because an increase in βrank

has two effects: increasing the probability of picking one of the better members
of the population at each step, and increasing the number of steps for which
they are likely to remain in the population, by decreasing their probability of
deletion. Figure 29.7 compares growth rates in the presence of mutation for
kill-by-rank incremental and equivalent generational models. It may be seen
that the generational model with βrank = 1.4 and the incremental model with
βrank = 1.2 produce very similar results. Another matched pair at lower growth
rates is generational with βrank = 1.2 and incremental with βrank = 1.13 (not
shown).

One of the arguments in favor of incremental models is that they allow
good new individuals to be exploited at once, rather than having to wait a
generation. It might be thought that any such gain would be rather slight, since
although a good new member could be picked at once, it is more likely to
have to wait several iterations at normal selection pressures. There is also the
inevitable sampling noise to be overcome. De Jong and Sarma (1993) claim
that there is actually no net benefit, since adding new fit members has the
effect of increasing the average fitness, thus reducing the likelihood of them
being selected. However, this argument applies only to takeover problems:
when reproduction operators are included the incremental approach can generate
higher growth rates. Figure 29.8 compares the growth of an incremental kill-
oldest model with a generational model using the same selection scheme. The
graph also shows one of the main drawbacks of the incremental models: their
sensitivity to evaluation noise, to be discussed in the following section.

29.6 The effects of evaluation noise

Hancock (1994) extended the growth simulations to study the effects of adding
evaluation noise. A Gaussian random variable, mean zero, standard deviation
0.2, was added to each underlying true value for use in selection. The true value
was used for reproduction. It proved necessary to add this much noise—ten
times the standard deviation of the ‘signal’ mutation—to bring about significant
reduction in growth rates for the generational selection models.

The sensitivity of the different selection algorithms to evaluation noise is
largely dependent on whether they retain parents for further reproduction. Fully
generational models are relatively immune, while most incremental models and
those like the (µ + λ) ES that allow parents to compete for retention fare
much worse, because individuals receiving a fortuitously good evaluation will
be kept. The exception for incremental models is kill-oldest, which maintains the
necessary turnover. Figure 29.8 shows the comparison. Kill oldest deteriorates
only a little more than the generational model in the presence of noise, while
kill-worst, which grows much the fastest in the absence of noise, almost fails
completely.
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Figure 29.8. Growth in the presence of mutation, with and without evaluation noise, for
the generational model with linear ranking and incremental models with kill-worst and
kill-oldest, all using βrank = 1.2 for selection.

Within generational models, there are differences in noise sensitivity.
Figure 29.9 compares the growth rates for linear ranking and sigma-scaled FPS,
with and without noise. It may be seen that the scaled FPS deteriorates less.

Figure 29.9. Growth in the presence of mutation, with and without evaluation noise, for
the generational model with linear ranking, βrank = 1.8, and sigma-scaled FPS, s = 4.
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This is caused by sigma scaling’s inability to control superfit individuals. A
genuinely good individual, that happens to receive a helpful boost from the
noise, may be given many offspring by sigma scaling, but will be limited to
βrank, in this case 1.8, by ranking. As before, rapid convergence is beneficial in
this simple task, but is unlikely to be so in general.

The ES (µ, λ) method can achieve extremely high selection pressures, when
it becomes sensitive to evaluation noise in a manner similar to incremental
models (figure 29.5). In this case, the problem is that too many reproductions
are given to a few strings, whose rating may be overestimated by the noise.
Figure 29.5 shows a clear turnaround: as the selection pressure is increased,
performance in noise becomes worse.

One approach to countering the effects of noise is to perform two
or more evaluations per string, and average the results. Fitzpatrick and
Grefenstette (1988) investigated this and concluded that it is better to evaluate
only once and proceed with the next generation. A possibly more efficient
method is to reevaluate only the apparently fitter individuals. Candidates
may be chosen as for reproduction, e.g. by rank. However, experiments
with incremental kill-by-rank indicated that the extra evaluations did not pay
their way, with convergence taking only a little less than twice as many
evaluations in total (Hancock 1994). Hammel and Bäck (1994) compared the
effects of reevaluation with an equivalent increase in the population size and
showed that reevaluations lead to a better final result. Indeed, on Rastrigan’s
function, increasing the population size resulted in a deterioration of convergence
performance. Taken together, these results suggest a strategy of evaluating only
once initially, and keeping the population turning over, but then starting to
reevaluate as the population begins to converge. Hammel and Bäck suggest
an alternative possibility of incorporating reevaluation as a parameter to be
optimized by the evolutionary system itself.

29.7 Analytic comparison

Blickle and Thiele (1995b) perform an extensive analysis of several selection
schemes, deriving the dependence of selection intensity on the selection
parameters under the assumption of a normal distribution of fitness. Their
results, which reassuringly agree with the simulation results here, are shown
in an adapted form in table 29.1. They also consider selection variance,
confirming that methods such as ES selection that disallow weakest strings
from reproduction reduce the population variance more rapidly than those that
allow weak strings some chance. Of the methods considered, exponential
rank selection gives the highest fitness variance, for the reasons illustrated in
figure 29.1. Their conclusion is that exponential rank selection is therefore
probably the ‘best’ of the schemes that they consider.
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Table 29.1. Parameter settings that give equivalent selection intensities for ES (µ, λ),
TS, and linear and exponential ranking, adapted and extended from Blickle and
Thiele (1995b). Under tournament size, p refers to the probability of the better string
winning.

I ES µ/λ Tournament size βrank, Lin rank s, Exp rank, λ = 100

0.11 0.94 2, p = 0.6 1.2 0.996
0.34 0.80 2, p = 0.8 1.6 0.988
0.56 0.66 2 2.0 0.979
0.84 0.47 3 — 0.966
1.03 0.36 4 — 0.955
1.16 0.30 5 — 0.945
1.35 0.22 7 — 0.926
1.54 0.15 10 — 0.900
1.87 0.08 20 — 0.809

29.8 Conclusions

The choice of a selection mechanism cannot be made independently of
other aspects of the evolutionary algorithm. For instance, Eshelman (1991)
deliberately combines a conservative selection mechanism with an explorative
recombination operator in his CHC algorithm. Where search is largely driven by
mutation, it may be possible to use much higher selection pressures, typical of
the ES approach. If the evaluation function is noisy, then most incremental
models and others that may retain parents are likely to suffer. Certainly,
selection pressures need to be lower in the presence of noise, and, of the
incremental models, kill-oldest fares best. Without noise, incremental methods
can provide a useful increase in exploitation of good new individuals. Care
is needed in the choice of method of deletion: killing the worst provides high
growth rates with little means of control. Killing by inverse rank or killing
the oldest offers more control. Amongst generational models, the ES (µ, λ)
and exponential rank selection methods give the biggest and most controllable
range of selection pressures, with the ES method probably most suited to
mutation-driven, high-growth-rate systems, and ranking better for slower, more
explorative searches, where maintenance of diversity is important.
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30
Interactive evolution

Wolfgang Banzhaf

30.1 Introduction

The basic idea of interactive evolution (IE) is to involve a human user on-line
in the variation–selection loop of the evolutionary algorithm (EA). This is to be
seen in contrast to the conventional participation of the user prior to running
the EA by defining a suitable representation of the problem (Chapters 14–21),
the fitness criterion for evaluation of individual solutions, and corresponding
operators (Chapters 31–34) to improve fitness quality. In the latter case, the
user’s role is restricted to passive observation during the EA run.

The minimum requirement for IE is the definition of a problem
representation, together with a determination of population parameters only.
Search operators of arbitrary kind as well as selection according to arbitrary
criteria might be applied to the representation by the user. The process is much
more comparable to the creation of a piece of art, for example, a painting, than
to the automatic evolution of an optimized problem solution. In IE, the user
assumes an active role in the search process. At the minimum level, the IE
system must hold present solutions together with variants presently generated
or considered.

Usually, however, automatic means of variation (i.e. evolutionary search
operators using random events) are provided with an IE system. In the present
context we shall require the existence of automatic means of variation by
operators for mutation (Chapter 32) and recombination (Chapter 33) of solutions
which are to be defined prior to running the EA.

30.2 History

Dawkins (1986) was the first to consider an elaborate IE system. The evolution
of biomorphs, as he called them, by IE in a system that he had originally intended
to be useful for the design of treelike graphical forms has served as a prototype
for many systems developed subsequently. Starting with the contributions of
Sims (1991) and the book of Todd and Latham (1992), computer art developed
into the present major application area of IE.

228



The problem 229

IE of grammar-based structures has also been considered (Nguyen and Huang
1994, McCormack 1994). Raw image data have been used more recently for
the purpose of evolving forms (Graf and Banzhaf 1995a).

30.3 The problem

The problem IE is trying to address has been encountered in all varieties of EAs
that make use of automatic evolution: the existence of nonexplicit conditions,
that is, conditions that are not formalizable.

• The absence of a human user in steering and controlling the process of
evolution sometimes leads to unnecessary detours from the goal of global
optimization. In most of these cases, human intervention into the search
and selection process would advance the search rather quickly and allow
faster convergence onto the most promising regions of the fitness landscape,
or, sometimes, escape from a local optimum. Hence, a mobilization of
human knowledge can be achieved by allowing the user to participate in
the process.

• Many design processes require subjective judgment relying on human
intuition, aesthetical values, or taste. In such cases, the fitness criterion
cannot be formulated explicitly, but can only be applied on a comparative
case-by-case basis. Direct human participation in IE allows for machine-
supported evolution of designs that would otherwise be completely manual.

Thus, IE can be used (i) to accelerate EAs and (ii) in some areas to enable
application of EAs altogether.

30.4 The interactive evolution approach

Selection in a standard IE system, as opposed to that in an automatic evolution
system, is based on user action. It is typically the selection step that is subjugated
to human action, although in less frequent cases the variation process might also
be done by hand.

The standard algorithm for IE (following the notation in the introduction)is
presented at the top of the next page. As in an automatic evolution system,
there are parameters that are required to be fixed a priori : µ, λ, �ι, �m, �r, �s.
There are, however, also parameters subject to change, �′

m, �′
r, �

′
s, depending

on the user interaction with the IE system. Both parameter sets together
determine the actual effect of mutation, recombination, and selection operators.

A simple variation of the standard algorithm shown overleaf is to allow
for population parameters to be also the subject of user interaction with the
system. For example, some systems (Graf and Banzhaf 1995a) consider growing
populations and a variable number of variants.

A more complicated variant of the standard algorithm would add a sorting
process of variants according to a predefined fitness criterion. One step further
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Input: µ, λ, �ι, �m, �r, �s

Output: a∗, the individual last selected during the run, or
P ∗, the population last selected during the run.

1 t ← 0;
2 P(t) ← initialize(µ);
3 while (ι(P (t), �ι) = true) do
4 Input: �′

r, �
′
m

5 P ′(t) ← recombine(P(t), �r, �
′
r);

6 P ′′(t) ← mutate(P ′(t), �m, �′
m);

7 Output: P ′′(t)
8 Input: �′

s
9 P(t + 1) ← select(P ′′(t), µ, �s, �

′
s);

10 t ← t + 1;
od

is to allow this sorting process to result in a preselection in order to present
a smaller number of variants for the interactive selection step. Both methods
help the user to concentrate his or her selective action on the most promising
variants according to this predefined criterion.

This algorithm is formulated as follows:

Input: µ, λ, η, �ι, �m, �o, �r, �s

Output: a∗, the individual last selected during the run, or
P ∗, the population last selected during the run.

1 t ← 0;
2 P(t) ← initialize(µ);
3 while (ι(P (t), �ι) = true) do
4 Input: �′

r, �
′
m

5 P ′(t) ← recombine(P(t), �r, �
′
r);

6 P ′′(t) ← mutate(P ′(t), �m, �′
m);

7 F (t) ← evaluate(P ′′(t), λ);
8 P ′′′(t) ← sort(P ′′(t), �o);
9 P ′′′′(t) ← select(P ′′′(t), F (t), µ, η, �s);
10 Output: P ′′′′(t)
11 Input: �′

s
12 P(t + 1) ← select(P ′′′′(t), µ, �s, �

′
s);

13 t ← t + 1;
od

The newly added parameter �o is used here to specify the predefined order
of the result after evaluation according to the predefined criterion. As before,
the �′

x-parameters are used to specify the user interaction with the system. η

is the parameter stating how many of the automatically generated and ordered
variants are to be presented to the user. If µ+ λ = η in a (µ+ λ)-strategy, or
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λ = η in a (µ, λ)-strategy, all variants will be presented for interactive selection.
If, however, µ+ λ > η and λ > η respectively, solutions would be preselected
and we speak of a hybrid evolution system (having elements of automatic as
well as interactive evolution). Other parameters are used in the same way as in
the standard algorithm.

30.5 Difficulties

The second, more complicated version of IE requires a predefined fitness
criterion, in addition to user action. This trades one advantage of IE systems for
another: the absence of any requirement to quantify fitness for a small number
of variants to be evaluated interactively by the user.

Interactive systems have one serious difficulty, especially in connection
with the automatic means of variation that are usually provided: whereas the
generation of variants does not necessarily require human intervention, selection
of variants does call the attention of the user. Due to psychological constraints,
however, humans can normally select only from a small set of choices. IE
systems are thus constrained to present only of the order of ten choices at each
point in time from which to choose. Also in sequence, only a limited number
of generations can be practically inspected by a user before the user becomes
tired.

It is emphasized that this limitation must not mean that the generation of
variants has to be restricted to small numbers. Rather the variants have to be
properly ordered at least, for a presentation of a subset that can be handled
interactively.

30.6 Application areas

An application of IE may be roughly divided into two parts:

(i) structural evolution by discrete combination of predefined elements and
(ii) parametric evolution of genes coding for quantifiable features of the

phenotype.

All application use these parts to various degrees.
In the first part, one has to define the structure elements that might be

combined into a correct genotype. Examples are symbolic expressions coding
for appearance of points in an image plane (Sims 1991) or elementary geometric
figures such as cone and cube (Todd and Latham 1992). In the second part,
parameters have to be used to further specify features of these structural
elements. Together, this information constitutes the genotype of the future
design hopefully to be selected by a user. In a process called expression this
genotype is then transformed into an image or three-dimensional form that can
be displayed as a phenotype for the selection step.

Table 30.1 gives an overview of the presently used IE systems. The reader
is advised to consult details with the sources given in the reference list.
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Table 30.1. An overview of different IE systems.

Application Genotypic elements Phenotype Source

Lifelike structures line drawing parameters biomorphs Dawkins (1986)
Textures, images math. functions, image (x, y, z) pixel Sims (1991)

processing operations values
Animation math. functions, image (x, y, z) pixel Sims (1991)

processing operations values
Person tracking (position of) facial parts face images Caldwell and

Johnston (1991)
Images, sculptures geometric forms and 3D rendering of Todd and

visually defined grown objects Latham (1992)
graphical elements

Dynamical systems CA rules, differential system behavior Sims (1992)
equations

Images, animation rules, parameters of rendered objects McCormack
L-systems (1994)

Airplane design structural elements, airplane drawings Nguyen and
e.g. wings, body Huang (1994)

Images, design tiepoints of bitmap bitmap images Graf and
images Banzhaf (1995a)

Figure 30.1 illustrates some results with runs in different IE systems.
Within the process of genotype–phenotype mapping a (recursive)

developmental process is sometimes applied (Dawkins 1986, Todd and Latham
1992) whose results are finally displayed as the image for selection.

30.7 Further developments and perspectives

As of now, the means to generate a small group of variants from which to
choose interactively are still not very good. For example, one could imagine a
tool for categorizing variants into a number of families of similar design and
then present only one representative from each family. In this way, a large
population of variants could be used in the background which is invisible to the
user but might have beneficial effects in the course of evolution.

Another very interesting area of research is to assign a posteriori effective
fitness values to members of the population, depending on user action. An
individual which is selected more often would be assigned a higher fitness than
an individual which is not. This might result in at least a crude measure of the
nonquantifiable fitness measures that lie at the heart of IE. One might even adjust
the effect the operators have on the population, based on what is observed in
the course of evolution directed by the user. In this way, an ‘intelligent’ system
could be created, that is able to learn from actions of the user how to vary the
population in order to arrive at good designs.

Another direction of research is to look into involving the user not (only) in
the selection process, but in the variation process. Quite often, humans would
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(a) (b)

(c)

Figure 30.1. Samples of evolved objects: (a) dynamical system, cell structure (Sims
1992, c© MIT Press); (b) artwork by Mutator (Todd and Latham 1992, with permission
of the authors); (c) hybrid car model (Graf and Banzhaf 1995b, c© IEEE Press).

have intuitive ideas for improvement of solutions when observing an automatic
evolutionary process taking its steps. These ideas might be used to cut short
the search routes an automatic algorithm is following. For this purpose, a user
might be allowed to intervene in the process at appropriate interrupt times.

Finally, all sensory inputs could be used for IE. The systematic variation of
components of a chemical compound that specifies an odor, for example, could
be used to evolve a nice smelling perfume. Taste could as well be subject to
interactive evolutionary tools, as could other objects if appropriately mapped to
our senses (for instance by virtual reality tools).

With the advent of interactive media in the consumer market, production-on-
demand systems might one day include an interactive evolutionary design device
that allows the user not only to customize a product design before it goes into
production, but also to generate his or her own original design that has never
been realized before and usually will never be produced again. This would open
up the possibility of evolutionary product design by companies which track their
customers’ activities and then distribute the best designs they discover.
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Introduction to search operators

Zbigniew Michalewicz

Any evolutionary system processes a population of individuals, P(t) =
{at

1, . . . ,a
t
n} (t is the iteration number), where each individual represents a

potential solution to the problem at hand. As discussed in Chapters 14–21, many
possible representations can be used for coding individuals; these representations
may vary from binary strings to complex data structures I .

Each solution at
i is evaluated to give some measure of its fitness. Then a

new population (iteration t + 1) is formed by selecting the more-fit individuals
(the selection step of the evolutionary algorithm, see Chapters 22–30). Some
members of the new population undergo transformations by means of ‘genetic’
operators to form new solutions. There are unary transformations mi (mutation
type), which create new individuals by a (usually small) change in a single
individual (mi : I → I ), and higher-order transformations cj (crossover, or
recombination type), which create new individuals by combining parts from
several (two or more, up to the population size µ) individuals (cj : I s → I ,
2 ≤ s ≤ µ).

It seems that, for any evolutionary computation technique, the representation
of an individual in the population and the set of operators used to alter its genetic
code constitute probably the two most important components of the system,
and often determine the system’s success or failure. Thus, a representation of
object variables must be chosen along with the consideration of the evolutionary
computation operators which are to be used in the simulation. Clearly, the
reverse is also true: the operators of any evolutionary system must be chosen
carefully in accordance with the selected representation of individuals. Because
of this strong relationship between representations and operators, the latter are
discussed with respect to some (standard) representations.

In general, Chapters 31–34 provide a discussion on many operators which
have been developed since the mid-1960s. Chapter 32 deals with mutation
operators. Accordingly, several representations are considered (binary strings,
real-valued vectors, permutations, finite-state machines, parse trees, and others)
and for each representation one or more possible mutation operators are
discussed. Clearly, it is impossible to provide a complete overview of all
mutation operators, since the number of possible representations is unlimited.
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However, Chapter 32 provides a complete description of standard mutation
operators which have been developed for standard data structures.

Chapter 33 deals with recombination operators. Again, as for mutation
operators, several representations are considered (binary strings, real-valued
vectors, permutations, finite-state machines, parse trees, and others) and for
each representation several possible recombination operators are discussed.
Recombination operators exchange information between individuals and
are considered to be the main ‘driving force’ behind genetic algorithms,
while playing no role in evolutionary programming. There are many
important and interesting issues connected with recombination operators; these
include properties that recombination operators should have to be useful
(these are outlined by Radcliffe (1993)), the number of parents involved
in recombination process (Eiben et al (1994) described experiments with
multiparent recombination operators—so-called orgies), or the frequencies of
recombination operators.

Chapter 34 discusses some additional variations. These include the Baldwin
effect, gene duplication and deletion, and knowledge-augmented operators.
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32
Mutation operators

Thomas Bäck (32.1), David B Fogel (32.2, 32.4, 32.6),
Darrell Whitley (32.3) and Peter J Angeline (32.5, 32.6)

32.1 Binary strings

Thomas Bäck

The mutation operator currently used in canonical genetic algorithms to
manipulate binary vectors (also called binary strings or bitstrings, see Chapter
15) a = (a1, . . . , a�) ∈ I = {0, 1}� of fixed length � was originally introduced by
Holland (1975, pp 109–11) for general finite individual spaces I = A1×. . .×A�,
where Ai = {αi1 , . . . , αiki

}. According to his definition, the mutation operator
proceeds by:

(i) determining the positions i1, . . . , ih (ij ∈ {1, . . . , �}) to undergo mutation
by a uniform random choice, where each position has the same small
probability pm of undergoing mutation, independently of what happens
at other positions, and

(ii) forming the new vector a′ = (a1, . . . , ai1−1, a
′
i1
, ai1+1, . . . , aih−1, a

′
ih
, aih+1,

. . . , a�) where a′i ∈ Ai is drawn uniformly at random from the set of
admissible values at position i.

The original value ai at a position undergoing mutation is not excluded
from the random choice of a′i ∈ Ai ; that is, although the position is chosen for
mutation, the corresponding value might not change at all. This occurs with
probability 1/|Ai |, such that the effective (realized) mutation probability differs
from pm by a nonneglectible factor of 1/2 if a binary representation is used.

In order to avoid this problem, it is typically agreed on defining pm to be
the probability of independently inverting each of the variables ai ∈ {0, 1}, such
that the mutation operator m : {0, 1}� → {0, 1}� produces a new individual
a′ = m(a) according to

a′i =
{

ai u > pm

1− ai u ≤ pm
(32.1)
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where u ∼ U([0, 1)) denotes a uniform random variable sampled anew for each
i ∈ {1, . . . , �}.

From a computational point of view, the straightforward implementation
of equation (32.1) as a loop calling the random number generator for each
position i is extremely inefficient. Since the random variable T describing the
distances between two positions to be mutated has a geometrical distribution with
P{T = t} = pm(1 − pm)t−1 and expectation E[T ] = 1/pm, and a geometrical
random number can be generated according to

t = 1+
⌊

ln(1− u)

ln(1− pm)

⌋
(32.2)

(where u ∼ U([0, 1))), equation (32.2) provides an efficient method to generate
the offset to find the next position for mutation from the current one. If the
actual position plus the offset exceeds the vector dimension �, it ‘carries over’
to the next individual and, if all individuals of the actual population have been
processed, to the next generation.

Concerning the importance of mutation for the evolutionary search process,
both Holland (1975, p 111) and Goldberg (1989, p 14) emphasize that mutation
just serves as a ‘background operator’, supporting the crossover operator
(Section 33.1) by assuring that the full range of allele values is accessible
to the search. Consequently, quite small values of pm ∈ [0.001, 0.01]
were recommended for canonical genetic algorithms (see e.g. De Jong 1975,
Grefenstette 1986, Schaffer et al 1989) until recently, when both empirical and
theoretical investigations clearly demonstrated the benefits of emphasizing the
role of mutation as a search operator in these algorithms. More specifically,
some of the important results include:

(i) empirical findings favoring an initially large mutation rate that
exponentially decreases over time (Fogarty 1989),

(ii) the theoretical confirmation of the optimality of such an exponentially
decreasing mutation rate for simple test functions (Hesser and Männer 1991,
1992, Bäck 1996), and

(iii) the knowledge of a lower bound pm = 1/� for the optimal mutation rate
(Bremermann et al 1966, Mühlenbein 1992, Bäck 1993).

It is obvious from these results that not only for evolution strategies and
evolutionary programming, but also for canonical genetic algorithms, mutation
is an important search operator that cannot be neglected either in practical
applications or in theoretical investigations of these algorithms. Moreover, it
is also possible to release the user of a genetic algorithm from the problem
of finding an appropriate mutation rate control or fine-tuning a fixed value
by transferring the strategy parameter self-adaptation principle from evolution
strategies and evolutionary programming to genetic algorithms.
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32.2 Real-valued vectors

David B Fogel

Mutation generally refers to the creation of a new solution from one and only
one parent (otherwise the creation is referred to as a recombination (see Chapter
33). Given a real-valued representation where each element in a population is an
n-dimensional vector x ∈ Rn, there are many methods for creating new elements
(offspring) using mutation. These methods have a long history, extending back
at least to Bremermann (1962), Bremermann et al (1965), and others. A variety
of methods will be considered here.

The general form of mutation can be written as

x′ = m(x) (32.3)

where x is the parent vector, m is the mutation function, and x′ is the resulting
offspring vector. Although there have been some attempts to include mutation
operators that do not operate on the specific values of the parents but instead
simply choose x′ from a fixed probability density function (PDF) (Montana and
Davis 1989), such methods lose the inheritance from parent to offspring that
can facilitate evolutionary optimization on a variety of response surfaces. The
more common form of mutation generates an offspring vector:

x′ = x+M (32.4)

where the mutation M is a random variable. M is often zero mean such that
E(x′) = x; the expected difference between a parent and its offspring is zero.

M can take different forms. For example, M could be the uniform random
variable U(a, b)n, where a and b are the lower and upper limits respectively. In
this case, a is often set equal to −b. The result of applying this operator as M in
equation (32.4) yields an offspring within a hyperbox x+U(−b, b)n. Although
such a mutation is unbiased with respect to the position of the offspring within
the hyperbox, the method suffers from easy entrapment when the parent vector
x resides in a locally optimal well that is wider than the available step size.
Davis (1989, 1991b) offered a similar operator (known as creep) that has a
fixed probability of altering each component of x up or down by a bounded
small random amount. The only method for alleviating entrapment in such cases
relies on probabilistic selection, that is, maintaining a probability for choosing
lesser-valued solutions to become parents of the subsequent generations (see
Chapter 27). In contrast, unbounded mutation operators do not require such
selection methods to guarantee asymptotic global convergence (Fogel 1994,
Rudolph 1994).

The primary unbounded mutation PDF for real-valued vectors has been the
Gaussian (or ‘normal’) (Rechenberg 1973, Schwefel 1981, Fogel et al 1990,
Fogel and Atmar 1990, Bäck and Schwefel 1993, Fogel and Stayton 1994, and
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many others). The PDF is defined as

g(x) = [σ(2π)1/2]−1 exp[−0.5(x − µ)2/σ 2].

When µ = 0, the parameter σ offers the single control on the scaling of the
PDF. It effectively generates a typical step size for a mutation. The use of zero-
mean Gaussian mutations generates offspring that are (i) on average no different
from their parents and (ii) increasingly less likely to be increasingly different
from their parents. Saltations are not completely avoided such that any local
optimum can be escaped from in a single iteration, yet they are not so common
as to lose all inheritance from parent to offspring.

Other density functions with similar characteristics have also been
implemented. Yao and Liu (1996) proposed using Cauchy distributions to aid
in escaping from local minima (the Cauchy distribution has a fatter tail than the
Gaussian) and demonstrated that Cauchy mutations may offer some advantages
across a wide testbed of problems. Montana and Davis (1989) examined the
use of Laplace-distributed mutations but there is no evidence that the Laplace
distribution is particularly better suited than Gaussian or Cauchy mutations for
typical real-valued optimization problems.

In the simplest version of evolution strategies or evolutionary programming,
described as a (1+ 1) evolutionary algorithm, a single parent x creates a single
offspring x′ by imposing a multivariate Gaussian perturbation with mean zero
and standard deviation σ on the parent, then selects the better of the two trial
solutions as the parent for the next iteration. The same standard deviation is
applied to each component of the vector x during mutation. For some problems,
the variation of σ (i.e. the step size control parameter in each dimension) can
be computed to yield an optimal rate of convergence.

Let the convergence rate be defined as the ratio of the Euclidean distance
covered toward the optimum solution to the number of trials required to achieve
the improvement. Rechenberg (1973) calculated the convergence rates for two
functions:

f1(x) = c0 + c1x1 i ∈ {2, . . . , n} −b/2 ≤ xi ≤ b/2

f2(x) =
∑

x2
i

where x = (x1, . . . , xn)
T ∈ Rn. Function f1 is termed the corridor model

and represents a linear function with inequality constraints. Improvement is
accomplished by moving along the first axis of the search space inside a
corridor of width b. Function f2 is termed the sphere model and is a simple
n-dimensional quadratic bowl.

Rechenberg (1973) showed that the optimum rates of convergence (expected
progress toward the optimum) are

σ = (π1/2/2)(b/n)
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on the corridor model, and

σ = 1.224‖x‖/n

on the sphere model. That is, only a single step size control is needed for
optimum convergence. Given these optimum standard deviations for mutation,
the optimum probabilities of generating a successful mutation can be calculated
as

p
opt
1 = (2e)−1 ≈ 0.184

p
opt
2 = 0.270.

Noting the similarity of these two values, Rechenberg (1973) proposed the
following rule:

The ratio of successful mutations to all mutations should be 1/5. If this ratio is
greater than 1/5, increase the variance; if it is less, decrease the variance.

Schwefel (1981) suggested measuring the success probability on-line over 10n

trials (where there are n dimensions) and adjusting σ at iteration t by

σ(t) =
{

σ(t − n)δ if ps < 0.2
σ(t − n)δ if ps > 0.2
σ(t − n) if ps = 0.2

with δ = 0.85 and ps equaling the number of successes in 10n trials divided
by 10n, which yields convergence rates of geometric order for both f1 and f2

(Bäck et al 1993; see the book by Bäck (1996) for corrections to the update
rule offered by Bäck et al (1993)).

The use of a single step size control parameter covering all dimensions
simultaneously is of limited robustness. The optimization performance can be
improved by using appropriate step sizes in each dimension. This is particularly
evident when consideration is given to optimizing a vector of parameters each
of different units of dimension (e.g. temperature and pressure). Determining
appropriate settings for each of n step sizes poses a significant challenge to the
human operator; as such, methods have been proposed for self-adapting the step
sizes concurrent to the evolutionary search.

The first efforts in self-adaptation date back at least to the article by Reed et al
(1967), but the two most common implementations in use currently derive from
the work of Schwefel (1981) and Fogel et al (1991). In each case, the vector of
objective variables x is accompanied by a vector strategy parameters σ where
σi denotes the standard deviation to use when applying a zero-mean Gaussian
mutation to that component in the parent vector. The strategy parameters are
updated by slightly different methods according to Schwefel (1981) and Fogel
et al (1991).
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Schwefel (1981) offered the procedure

σ ′i = σi exp(τ0N(0, 1)+ τNi(0, 1))

x ′i = xi +N(0, σ ′i )

where the constant τ ∝ 1/[2(n1/2)]1/2, τ0 ∝ 1/(2n)1/2, N(0, 1) is a standard
Gaussian random variable sampled once for all n dimensions and Ni(0, 1) is a
standard Gaussian random variable sampled anew for each of the n dimensions.
The procedure offers a general control for all dimensions and an individualized
control for each dimension (Schwefel (1981) also offered a simplified method
for self-adapting a single step size parameter σ ). The values of σ ′ are, as shown,
log-normal perturbations of their parent’s vector σ .

Fogel et al (1991) independently offered the procedure

x ′i = xi +N(0, σi)

σ ′i = σi + χN(0, σi)

where the parents’ strategy parameters are used to create the offspring’s
objective values before being mutated themselves, and the mutation of the
strategy parameters is achieved using a Gaussian distribution scaled by χ

and the standard deviation for each dimension. This procedure also requires
incorporating a rule such that if any component σ ′i becomes negative it is reset
to an arbitrary small value ε.

Several comparisons have been conducted between these methods.
Saravanan and Fogel (1994) and Saravanan et al (1995) indicated that the
log-normal procedure offered by Schwefel (1981) generated generally superior
optimization performance (statistically significant) across a series of standard
test functions. Angeline (1996a), in contrast, found that the use of Gaussian
mutations on the strategy parameters generated better optimization performance
when the objective function was made noisy. Gehlhaar and Fogel (1996)
indicated that mutating the strategy parameters before creating the offspring
objective values appears to be more generally useful both in optimizing a set of
test functions and in molecular docking applications.

Both of the above methods for self-adaptation have been extended to
include possible correlation across the dimensions. That is, rather than use n

independent Gaussian random perturbations, a multivariate Gaussian mutation
with arbitrary covariance can be applied. Schwefel (1981) described a method
for incorporating rotation angles α such that new solutions are created by

σ ′i = σi exp(τ0N(0, 1)+ τNi(0, 1))

α′j = αj + βNj(0, 1)

x ′i = xi +N(0, σ ′i , α
′
j )

where β ≈ 0.0873 (5◦), i = 1, . . . , n and j = 1, . . . , n(n− 1)/2, although it is
not necessary to include all possible pairwise correlations in the method. Fogel
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et al (1992) offered a similar method operating directly on the components of the
covariance matrix but the method does not guarantee positive definite matrices
for n > 2, and the conventional method for implementing correlated mutation
relies on the use of rotation angles as described above.

Another type of zero-mean mutation found in the literature is the so-called
nonuniform mutation of Michalewicz (1996, pp 111–2), where

x ′i (t) =
{

xi(t)+�(t, ubi − xi(t)) if u < 0.5
xi(t)−�(t, xi(t)− lbi ) if u ≥ 0.5

where xi(t) is the ith parameter of the vector x at generation t , xi ∈ [lbi , ubi],
the lower and upper bounds, respectively, u is a random uniform U(0, 1), and
the function �(t, y) returns a value in the range [0, y] such that the probability
of �(t, y) being close to zero increases as t increases, essentially taking smaller
steps on average. Michalewicz et al (1994) used the function

�(t, y) = yu(1− t/T )b

where T is a maximal generation number and b is a system parameter chosen
by the operator to determine the degree of nonuniformity.

There have been recent attempts to use nonzero-mean mutations on real-
valued vectors. Ostermeier (1992) proposed an evolution strategy where the
Gaussian mutations applied to the objective vector x are controlled by a vector
of expectations µ as well as a vector of standard deviations σ . Ghozeil and
Fogel (1996), following earlier work by Bremermann and Rogson (1964), have
implemented a polar coordinate mutation in which new offspring are generated
by perturbing the parent in a random direction (θ ) with a specified step size (r).

32.3 Permutations

Darrell Whitley

32.3.1 Introduction

Mutation operators can be used in a number of ways. Random mutation
hillclimbing (Forrest and Mitchell 1993) is a search algorithm which applies
a mutation operator to a single string and accepts any improving moves. Some
forms of evolutionary algorithms apply mutation operators to a population of
strings without using recombination, while other algorithms may combine the
use of mutation with recombination.

Any form of mutation which is to be applied to a permutation must yield
a string which also represents a permutation. Most mutation operators for
permutations are related to operators which have also been used in neighborhood
local search strategies. Many of these operators thus can be applied in such as
way that they reach a well-defined neighborhood of adjacent states.
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32.3.2 2-opt, 3-opt, and k-opt

The most common form of mutation is 2-opt (Lin and Kernighan 1973). Given
a sequence of elements

A B C D E F G H

the 2-opt operator selects two points along the string, then reverses the segment
between the points. Note that if the permutation is viewed as a circuit as in the
traveling salesman problem (TSP), then all shifts of a sequence of N elements
are equivalent. It follows that once two cut points have been selected in this
circular string, it does not matter which segment is reversed; the effect is the
same.

The 2-opt operator can be applied to all pairs of edges in N(N −1)/2 steps.
This is analogous to one iteration of local search over all variables in a parameter
optimization problem. If a full iteration of 2-opt to all pairs of edges fails to
find an improving move, then a local optimum has been reached.

B C
A

D

E
F

G

H

Figure 32.1. A graph.

2-opt is classically associated with the Euclidean TSP. Consider the graph
in figure 32.1. If this is interpreted as a Euclidean TSP, then reversing the
segment [C D E F] or the segment [G H A B] results in a graph where none of
the edges cross and which has lower cost than the graph where the edges cross.
Let {A, B, . . . , Z} be a set of vertices and (a, b) be the edge between vertices A
and B. If vertices {B, C, F, G} in figure 32.1 are connected by the set of edges
((b, c), (b, f), (b, g), (c, f), (c, g) (f, g)), then two triangles are formed when B
is connected to F and C is connected to G. To illustrate, create a new graph
by placing a new vertex X at the point where the edges (b, f) and (c, g) cross.
In the new graph in Euclidean space, the distance represented by edge (b, c)
must be less than edges (b, x) + (x, c), assuming B, C, and X are not on a line;
likewise, the distance represented by edge (f, g) must be less than edge (f, x) +
(x, g). Thus, reversing the segment [C D E F] will always reduce the cost of
the tour due to this triangle inequality. For the TSP this leads to the general
principle that multiple applications of 2-opt will always yield a tour that has no
crossed edges.
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One can also look at reversing more than two segments at a time. The
3-opt operator cuts the permutation into three segments and then looks at all
possible ways of reordering these segments. There are 3! = 6 ways to order the
segments and each segment can be placed in a forward or reverse order. This
yields up to 23 ∗ 6 = 48 possible new reorderings of the original permutation.
For the symmetric TSP, however, all shifted arrangements of the three segments
are equal and all reversed arrangements of the three segments are equal. Thus,
the 3! orderings are all equivalent. (By analogy, note that there is only one
possible Hamiltonian circuit tour between three cities.) This leaves only 23 = 8
ways of placing each of the segments in a forward or reverse direction, each
of which yields a unique tour. Thus, for the symmetric TSP, the cost to test
one 3-opt move is eight times greater than the cost of testing one 2-opt move.
For other types of scheduling problem, such as resource allocation, reversals
and shifts of the complete permutation are not necessarily equivalent and the
cost of a 3-opt move may be up to 48 times greater than that of a 2-opt move.
Also note that there are

(
N

3

)
ways to break a permutation up into combinations

of three segments compared to
(
N

2

)
ways of breaking the permutation into two

segments. Thus, the set of all possible 3-opt moves is much larger than the set
of possible 2-opt moves. This further increases the cost of performing one pass
of 3-opt over all possible ways of partitioning a permutation into three segments
compared to a pass of 2-opt over all pairs of possible segments.

One can also use k-opt, where the permutation is broken into k segments,
but such an operator will obviously be very costly.

32.3.3 Insert, swap, and scramble operators

The TSP is sensitive to the adjacency of elements in a permutation, so that
2-opt represents a minimal change from one Hamiltonian circuit to another. For
resource scheduling applications the permutation represent a priority queue and
reversing a segment of a permutation represents a major change in access to
available resources. For example, think of the permutation as representing a
line of people waiting to buy a limited supply of tickets for different seats on
different trains. The relative order of elements in the permutation tends to be
important in this case and not the adjacency of the individual elements. In this
case, a 2-opt segment reversal impacts many customers and is far from a minor
change.

Radcliffe and Surry (1995) argue for representation-independent concepts of
mutation and related forms of hillclimbers. Concerning desirable properties of
a mutation operator, they state, ‘One nearly universal characteristic, however,
is that they ensure . . . that the entire search space remains accessible from any
population, and indeed from any individual. In most case mutation operators
can actually move from any point in the search space to any other point directly,
but the probability of making ‘‘large” moves is very much smaller than that of
making ‘‘small” moves (at least with small mutation rates)’ (p 58). They also
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suggest that a single mutation should represent a minimal change and look at
different types of mutation operator for different representations of the TSP.

For resource allocation problems, a more modest change than 2-opt is
to merely select one element and to insert it at some other position in the
permutation. Syswerda (1991) refers to a variant of this as position-based
mutation and describes it as selecting two elements and then moving the second
element before the first element. Position-based mutation appears to be less
general than the insert operator, since elements can only be moved forward in
position-based mutation.

Similarly, one can select two elements and swap the positions of the two
elements. Syswerda denotes this as order-based mutation. Note that if an
element is moved forward or backward one position, this is equivalent to a
swap of adjacent elements. One way in which swap can be used as a local
search operator is to swap all adjacent elements, or perhaps also all pairs of
elements. Finally, Syswerda also defines a scramble mutation operator that
selects a sublist of permutation elements and randomly reorders (i.e. scrambles)
the order of the subset while leaving the other elements in the permutation in
the same absolute position. Davis (1991a) also reports on a scramble sublist
mutation operator, except that the sublist is explicitly composed of contiguous
elements of a permutation. (It is unclear whether Syswerda’s scramble operator
is also meant to work on contiguous elements or not; an operator that selects
a sublist of elements over random positions of the permutation is certainly
possible.)

For a problem that involved scheduling a limited number of flight simulators,
Syswerda (1991, p 342) reported that when applied individually, the order-based
swap mutation operator yielded the best results when compared to position-
based mutation and scramble mutation. In this case the swaps were selected
randomly rather than being performed over a fixed well-defined neighborhood.
Davis (1991, p 81) on the other hand reports that the scramble sublist mutation
operator proved to be better than the swap operator on a number of applications.

In conclusion, one cannot make a priori statements about the usefulness of
a particular mutation operator without knowing something about the type of
problem that is to be solved and the representation that is being used for that
problem, but in general it is useful to distinguish between permutation problems
that are sensitive to adjacency (e.g. the TSP) versus relative order (e.g. resource
scheduling) or absolute position, which appears to be the least common.

32.4 Finite-state machines

David B Fogel

Given a finite-state machine representation (Chapter 18) where each element in
a population is defined by a 5-tuple

M = (Q, T , P, s, o)
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where Q is a finite set, the set of states, T is a finite set, the set of input
symbols, P is a finite set, the set of output symbols, s : Q× T → Q, the next
state function, and o : Q× T → P , the next output function,
there are various methods for mutating parents to create offspring. Following
directly from the definition, five obvious modes of mutation present themselves:
(i) change an output symbol, (ii) change a state transition, (iii) add a new state,
(iv) delete a state, and (v) change the start state. Each of these will be discussed
in turn.

(i) Changing an output symbol consists of determining a particular state q ∈ Q,
and then determining a particular symbol τ ∈ T . For this pair (q, τ ),
identify the associated output symbol ρ ∈ P and change it to a symbol
chosen at random over the set P . The probability mass function for
selecting a new symbol is typically uniform over the possible symbols in
P , but can be chosen to reflect nearness between symbols or other known
relationships between the symbols.

(ii) Changing a state transition consists of determining a particular state q1 ∈ Q,
and then determining a particular symbol τ ∈ T . For this pair (q1, τ ),
identify the associated next state q2 and change it to a state chosen at
random over the set Q. The probability mass function for selecting a new
symbol is typically uniform over the possible states in Q.

(iii) Adding a state can only be performed when the maximum size of the
machine has not been exceeded. The operation is accomplished by
increasing the set Q by one element. This new state must be properly
defined by generating an associated output symbol ρi and next state
transition qi for all input symbols i = 1, . . . , |T |. The generation is
typically performed by selecting output symbols and next state transitions
with equal probability across their respective sets. Optionally, the new state
may also be forced to be connected to the preexisting states by redirecting
a randomly selected state transition of a randomly chosen preexisting state
to the new state.

(iv) Deleting a state can be performed when the machine has at least two states.
The operation is accomplished by decreasing the set Q by one element
chosen at random (uniformly). All state transitions from other states that
point to the deleted state must be redirected to the remaining states. This
is often performed at random, with the new states selected with equal
probability.

(v) Changing the start state can be performed when the machine has at least
two states. The operation is accomplished by selecting a state q ∈ Q to
be the new starting state. Again, the selection is typically made uniformly
over the available states.

The mutation operation can be implemented with various probabilities
assigned to each mode of mutation (Fogel and Fogel 1986), although many
of the initial experiments in evolutionary programming used equal probabilities
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(Fogel et al 1966). Further, multiple mutations can be performed (see e.g.
Fogel et al 1966), and macromutations can be defined over pairs or higher-order
combinations of these primitive operations. Recent efforts by Fogel et al (1994,
1995) and Angeline et al (1996) have incorporated the use of self-adaptation in
mutating finite-state machines.

32.5 Parse trees

Peter J Angeline

Standard genetic programming (Koza 1992), much as with traditional genetic
algorithms, discounts mutation’s role during evolution, often to an extreme (i.e.
a mutation rate of zero). In many genetic programs, no mutation operations are
used, which forces population sizes to be quite large in order to ensure access
to all the primitives in the primitive language throughout a run.

In order to avoid unnecessarily large population sizes, Angeline (1996b)
defines four distinct forms of mutation for parse trees (Chapter 19). The grow
mutation operator randomly selects a leaf from the tree and replaces it with a
randomly generated new subtree (figure 32.2). The shrink mutation operator
selects an internal node from the tree and replaces the subtree below it with
a randomly generated leaf node (figure 32.3). The switch mutation operator
selects an internal node from the parse tree and reorders its argument subtrees
(figure 32.4). Finally, the cycle mutation operator selects a random node and
replaces it with a new node of the same type (figure 32.5). If a leaf node is
selected, then it is replaced by a leaf node. If an internal node is selected, then it
is replaced by a function primitive that takes an equivalent number of arguments.
Note that the mutation operation defined by Koza (1992) is a combination of a
shrink mutation followed by a grow mutation at the same position.

Angeline (1996b) also defines a numerical terminal mutation that
manipulates numerical terminals in a parse tree using the Gaussian mutations
typically used in evolution strategies and evolutionary programming (see also
Bäck 1996, Fogel 1995). In this mutation operation, a single numerical terminal
in the parse tree is selected at random and a Gaussian random variable with a
user-defined variance is added to its value.

If the application of a mutation operation creates a parse tree that violates
the size limitation criteria for the parse tree, typically the operation is revoked
and the state of the parse tree prior to the operation is restored. In some cases,
when a series of mutations are to be performed, as in Angeline (1996b), the
complete set of mutations is executed prior to checking whether the mutated
parse tree conforms to the imposed size restrictions.

When evolving typed parse trees as in Montana (1995), mutation must also
be sensitive to the return type of the manipulated node. In order to preserve
the syntactic constraints, the return type of the node after mutation must be the
same. This is accomplished by keeping track of the return types for the various



Parse trees 249

Figure 32.2. An illustration of the grow mutation operator applied to a Boolean parse
tree. Given a parent tree to mutate, a terminal node is selected at random (highlighted)
and replaced by a randomly generated subtree to produce the child tree.

Figure 32.3. An illustration of the shrink mutation operator applied to a Boolean parse
tree. Given a parent tree to mutate, an internal function node is selected at random
(highlighted) and replaced by a randomly selected terminal to produce the child tree.

Figure 32.4. An illustration of the switch mutation operator applied to a Boolean parse
tree. Given a parent tree to mutate, an internal function node is selected, two of the
subtrees below it are selected (highlighted in the figure) and their positions switched to
produce the child tree.
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Figure 32.5. An illustration of the cycle mutation operator applied to a Boolean parse
tree. Given a parent tree to mutate, a single node, either a terminal or function, is selected
at random (highlighted in the parent) and replaced by a randomly selected node with the
same number of arguments to produce the child tree.

primitives in the language and restricting mutation to return those primitives
with the corresponding type.

32.6 Other representations

David B Fogel and Peter J Angeline

Many real-world applications suggest the use of representations that are hybrids
of the canonical representations. One common instance is the simultaneous use
of discrete and continuous object variables, with a general formulation of the
global optimization problem as follows (Bäck and Schütz 1995):

min{f (x, d)|x ∈ M, Rn ⊇ M, d ∈ N, Znd ⊇ N}.

Within evolution strategies and evolutionary programming, the common
representation is simply the real-integer vector pair (i.e. no effort is made to
encode these vectors into another representation such as binary).

The simple approach to mutating such a representation would be to embed
the integers in the real numbers and use the standard methods of mutation (e.g.
Gaussian random perturbation) found in evolution strategies and evolutionary
programming. The results could be rounded to the integers when dealing with
the elements in d. Bäck and Schütz (1995) note, however, that, for a discrete
optimization problem, the ‘optimum point obtained by rounding the results of
the continuous optimization might be different from the true discrete optimum
point even for linear objective functions with linear constraints’. Bäck and
Schütz (1995) also note the potential problems in optimizing x and d separately
(as in the work of Lohmann (1992) and Fogel (1991, 1993) among others)
because there may be interdependences between the appropriate mutations to x
and d.



Other representations 251

Bäck and Schütz (1995) approach the general problem by including a vector
of mutation strategy parameters pj ∈ (0, 1) and j = 1, 2, . . . , d, where there are
d components to the vector d. (Alternatively, fewer strategy parameters could
be used.) These strategy parameters are adapted along with the usual step size
control strategy parameters for Gaussian mutation of the real-world vector x.
The discrete strategy parameters are updated by the formula

p′j =
(

1+ (1− pj )

pj × exp[−γNj (0, 1)]

)−1

where γ is set proportional to [2(d)1/2]−1/2. Actual mutation to the parameters
in d can be accomplished using an appropriate random variable (e.g. uniform
or Poisson).

With regard to mutation in introns, because the introns are not coded into
functional behavior (i.e. they do not affect performance in terms of the objective
function), the manner in which they are mutated is irrelevant.

In the standard genetic algorithm representation, the semantics of an allele
value (how the allele is interpreted) are typically tied to its position in the
fixed-length n-ary string. For instance, in a binary string representation, each
position signifies the presence or absence of a specific feature in the genome
being decoded. The difficulty with such a representation is that with positions
in the string representation that are semantically linked, but separated by a large
number of intervening positions in the string, crossover has a high probability
of disrupting beneficial settings for these two positions. Goldberg et al (1989)
describe a representation for a genetic algorithm that embodies one approach to
addressing this problem. In their messy genetic algorithm (mGA), each allele
value is represented as a pair of values, one specifying the actual allele value
and one specifying the position the allele occupies. Messy GAs are defined to be
of variable length, and Goldberg et al (1989) describe appropriate methods for
resolving underdetermined or overdetermined genomes. In this representation it
is important to note that the semantics are literally carried along with the allele
value in the form of the allele’s string position.

Diplodic representations, representations that include multiple allele values
for each position in the genome, have been offered as mechanisms for modeling
cyclic environments. In a diplodic representation, a method for determining
which allele value for a gene will be expressed is required to adjudicate when the
allele values do not agree. Building on earlier investigations (e.g. Bagley 1967,
Hollstein 1971, Brindle 1981), Goldberg and Smith (1987) demonstrate that
an evolving dominance map allows quicker adaptation to cyclical environment
changes than either a haploid representation or a diploid representation using
a fixed dominance mapping. In the article by Goldberg and Smith (1987), a
triallelic representation from the dissertation of Hollstein (1971) is used: 1,
i, and 0. Both 1 and i map to the allele value of ‘1’, while 0 maps to the
allele value of ‘0’ with 1 dominating both i and 0 and 0 dominating i. Thus,
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the dominance of a 1 over a 0 allele value could be altered via mutation by
altering the value to an i. Ng and Wong (1995) extend the multiallele approach
to dominance computation by adding a fourth value for a recessive 0. Thus 1
dominates 0 and o while 0 dominates i and o. When both allele values for a
gene are dominant or recessive, then one of the two values is chosen randomly
to be the dominant value. Ng and Wong (1995) also suggest that the dominance
of all of the components in the genome should be reversed when the fitness
value of an individual falls by 20% or more between generations.
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Recombination

Lashon B Booker (33.1), David B Fogel (33.2, 33.4, 33.6),
Darrell Whitley (33.3), Peter J Angeline (33.5, 33.6)

and A E Eiben (33.7)

33.1 Binary strings

Lashon B Booker

33.1.1 Introduction

In biological systems (see section 5.4), crossing-over is a complex process
that occurs between pairs of chromosomes. Two chromosomes are physically
aligned, breakage occurs at one or more corresponding locations on each
chromosome, and homologous chromosome fragments are exchanged before
the breaks are repaired. This results in a recombination of genetic material
that contributes to variability in the population. In evolutionary algorithms, this
process has been abstracted into syntactic crossing-over (or crossover) operators
that exchange substrings between chromosomes represented as linear strings
of symbols. In this section we describe various approaches to implementing
these computational recombination techniques. Note that, while binary strings
(Chapter 15) are the canonical representation of chromosomes most often
associated with evolutionary algorithms, crossover operators work the same
way on all linear strings regardless of the cardinality of the symbol alphabet.
Accordingly, the discussion in this section applies to both binary and nonbinary
string representations. The obvious caveat is that the syntactic manipulations by
crossover must yield semantically valid results. When this becomes a problem—
for example, when the chromosomes represent permutations (see Chapter 17)—
then other syntactic operations must be used.

33.1.2 Principal mechanisms

The basic crossover operation, introduced by Holland (1975), is a three-step
procedure. First, two individuals are chosen at random from the population

256
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of ‘parent’ strings generated by the selection operator (see Chapters 22–30).
Second, one or more string locations are chosen as breakpoints (or crossover
points) delineating the string segments to exchange. Finally, parent string
segments are exchanged and then combined to produce two resultant ‘offspring’
individuals. The proportion of parent strings undergoing crossover during a
generation is controlled by the crossover rate, pc ∈ [0, 1], which determines
how frequently the crossover operator is invoked. Holland illustrates how to
implement this general procedure by describing the simple one-point crossover
operator. Given parent strings x and y, a crossover point is selected by randomly
choosing an integer k ∼ U(1, �− 1):

(x1 . . . xkxk+1 . . . x�)

(y1 . . . ykyk+1 . . . y�)
!⇒ (x1 . . . xkyk+1 . . . y�)

(y1 . . . ykxk+1 . . . x�).

Two new resultant strings are formed by exchanging the parent substrings to the
right of position k. Holland points out that when the overall algorithm is limited
to producing only one new individual per generation, one of the resultant strings
generated by this crossover operator must be discarded. The discarded string is
usually chosen at random.

Holland’s general procedure defines a family of operators that can be
described more formally as follows. Given a space I of individual strings,
a crossover operator is a mapping

r : I × I
m−→ I × I r(a, b) = (c, d)

where m ∈ B� and

ci =
{

ai if mi = 0
bi if mi = 1

di =
{

bi if mi = 0
ai if mi = 1.

Although this formal description characterizes crossover as a binary operator,
there are some implementations of crossover involving more than two parents
(e.g. the multiparent uniform crossover operator described by Furuya and Haftka
(1993) and the scanning crossover and diagonal crossover operators described
by Eiben et al (1995)).

The binary string m is a mask computed for each invocation of the operator
from the set of crossover points. This mask identifies which string segments
will be exchanged during the crossover operation. Note that the mask m and its
complement 1−m = (1−m1 . . . 1−m�) generate the same (unordered) set of
resultant strings. Another way to interpret the mask is as a specification of which
parent provided the symbol at each position in a resultant string. A crossover
operation can be viewed as the simultaneous occurrence of two recombination
events, each producing one of the two offspring. The pair (m, 1 −m) can be
used to designate these recombination events. Each symbol in a resultant string
is either transmitted by the first parent (denoted in the mask by zero) or the
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second parent (denoted by one). Consequently, the event generating string c
above is specified by m and the event generating d is specified by 1−m.

A simple pseudocode for implementing one of these crossover operators is:

crossover(a, b) :
sample u ∈ U(0, 1)

if (u > pc)

then return(a, b)

fi
c := a;
d := b;
m := compute mask();
for i := 1 to � do

if (mi = 1)

then
ci := bi;
di := ai;

fi
od
return(c, d);

Empirical studies have shown that the best setting for the crossover rate pc

depends on the choices made regarding other aspects of the overall algorithm,
such as the settings for other parameters such as population size and mutation
rate, and the selection operator used. Some commonly used crossover rates
are pc = 0.6 (De Jong 1975), pc ∈ [0.45, 0.95] (Grefenstette 1986), and
pc ∈ [0.75, 0.95] (Schaffer et al 1989). Techniques for adaptively modifying the
crossover rate have also proven to be useful (Booker 1987, Davis 1989, Srinivas
and Patnaik 1994, Julstrom 1995). The pseudocode shown above makes it clear
that the differences between crossover operators are most likely to be found in
the implementation of the compute mask() procedure. The following examples
of pseudocode characterize the way compute mask() is implemented for the
most commonly cited crossover operators.

One-point crossover. A single crossover point is selected. This operator can
only exchange contiguous substrings that begin or end at the endpoints of the
chromosome. This is rarely used in practice.

sample u ∈ U(1, �− 1)

m := 0;
for i := u+ 1 to � do

mi = 1;
od
return m;
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n-point crossover. This operator, first implemented by De Jong (1975),
generalizes one-point crossover by making the number of crossover points a
parameter. The value n = 2 designating two-point crossover is the choice
that minimizes disruptive effects (see the discussion of disruption in Section
33.1.3) and is frequently used in applications. There is no consensus about the
advantages and disadvantages of using values n ≥ 3. Empirical studies on this
issue (De Jong 1975, Eshelman et al 1989) are inconclusive.

sample u1, . . . , un ∈ U(1, �), u1 ≤ · · · ≤ un

if ((n mod 2) = 1)

then un+1 := �;
fi
m := 0;
for j := 1 to n step 2 do

for i := uj + 1 to uj+1 do
mi = 1;

od
od
return m;

By convention (De Jong 1975), when n is odd an additional crossover point
is assumed to occur at position �. Note that many implementations select the
crossover points without replacement—instead of with replacement as indicated
here—to guarantee that the crossover points are distinct. Analysis of disruptive
effects has shown that there are only small differences in the two approaches
(see the discussion of disruption in Section 33.1.3) and no empirical differences
in performance have been reported.

Uniform crossover. This is an operator introduced by Ackley (1987a) but most
often attributed to Syswerda (1989). (The basic idea can be traced to early
work in mathematical population genetics, see Geiringer (1944)). The number
of crossover points is not fixed in advance. Instead, the decision to insert
a breakpoint is made independently at each string position. This operator is
frequently used in applications.

m := 0;
for i := 1 to � do

sample u ∈ U(0, 1)

if (u ≤ px)

then mi = 1;
fi

od
return m



260 Recombination

The value px = 0.5 first used by Ackley remains the standard setting for
the crossover probability at each position, though it may be advantageous to
use smaller values (Spears and De Jong 1991b). When px = 0.5, every binary
string of length � is equally likely to be generated as a mask. In this case,
it is often more efficient to implement the operator by using a random integer
sampled from U(0, 2�−1) as the mask instead of constructing the mask one bit
at a time.

Punctuated crossover. Rather than computing the crossover mask directly,
Schaffer and Morishima (1987) used a binary string of ‘punctuation marks’
to indicate the location of crossover points for a multipoint crossover operation.
The extra information was appended to the chromosome so that the number
and location of crossover points could be manipulated by genetic search. The
resulting representation used by the punctuated crossover operator is a string of
length 2�, x = (x1 . . . x�x

′
1 . . . x ′�), where xi is the symbol at position i and x ′i is a

punctuation mark that is 1 if position i is a crossover point and 0 otherwise. The
set of crossover points used in a recombination event under punctuated crossover
is given by the union of the crossover points specified on each chromosome

compute mask(a, b)

j := 0;
for i := 1 to �/2 do
mi := j ;
m′

i := j

if ((a′i = 1) or (b′i = 1))
then j = 1− j ;
fi

od
return (m);

Note that the symbol and punctuation mark associated with a chromosome
position are transmitted together by the punctuated crossover operator. While
the idea behind this operator is appealing, empirical tests of punctuated crossover
were not conclusive and the operator is not widely used.

In practice, various aspects of these operators are often modified to enhance
performance. Consider, for example, the choice of retaining both resultant
strings produced by crossover (a common practice) versus discarding one of
the offspring. Holland (1975) described an implementation designed to process
only one new individual per generation and, consequently, his algorithm discards
one of the offspring generated by crossover. Some implementations retain this
feature even if they produce more than one new individual per generation.
However, empirical studies (Booker 1982) have shown that retaining both
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offspring can substantially reduce the loss of diversity in the population. Another
widespread practice is to restrict the crossover points to those locations where
the parent strings have different symbols. This so-called reduced surrogate
technique (Booker 1987) improves the ability of crossover to produce offspring
that are different from their parents.

An implementation technique called shuffle crossover was introduced by
Eshelman et al (1989). The symbols in the parent strings are ‘shuffled’ by a
permutation operator before crossover is invoked. The inverse permutation is
applied to the offspring produced by crossover to restore the original symbol
ordering. This method can be used to counteract the tendency in n-point
crossover (n ≥ 1) to disrupt sets of symbols that are widely dispersed on the
chromosome more than it disrupts symbols which are close together (see the
discussion of bias in Section 33.1.4).

The crossover mechanisms described so far are all consistent with the
simplest principle of Mendelian inheritance: the requirement that every gene
carried by an offspring is a copy of a gene inherited from one of its parents.
Radcliffe (1991) points out that this conservation of genetic material during
recombination is not a necessary restriction for artificial recombination operators.
From the standpoint of conducting a robust exploration of the opportunities
represented by the parent strings, it is reasonable to ask whether a crossover
operator can generate all possible offspring having some combination of genes
found in the parents. Given a binary string representation, the answer for one-
point and n-point crossover is no while the answer for shuffle crossover and
uniform crossover is yes. (To see this, simply consider the set of possible
resultant strings for the parents 0 and 1.) For nonbinary strings, however, the
only way to achieve this capability is to allow the offspring to have genes
that are not carried by either parent. Radcliffe used this idea as the basis for
designing the random respectful recombination operator. This operator generates
a resultant string by copying the symbols at positions where the parents are
identical, then choosing random values to fill the remaining positions. Note that
for binary strings, random respectful recombination is equivalent to uniform
crossover with px = 0.5.

33.1.3 Formal analysis

Mathematical characterizations of crossover. Several characterizations of
crossover operators have been formulated to facilitate the formal analysis
of recombination and genetic algorithms. Geiringer (1944) characterized
recombination in terms of the probability that sets of genes are transmitted
from parents to offspring during a recombination event. The behavior of a
crossover operator is then completely specified by the probability distribution
it induces over the set of all possible recombination events. Geiringer’s study
of these so-called recombination distributions includes a thorough analysis of
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recombination acting on a population of linear chromosomes in the absence of
selection.

In more detail, the recombination distribution associated with a crossover
operator is defined as follows. Let S� = {1, . . . , �} be the set of � numbers
designating the loci in strings of length �. The number of alleles allowed at
each locus can be any arbitrary integer. For notational convenience we will
identify a crossover mask m with the subset A ⊆ S� which indicates the loci
corresponding to the bit positions i where mi = 1. The set A is simply another
way to designate the recombination event specified by m. The complementary
subset A′ = S� \ A designates the recombination event specified by 1 − m.
The recombination distribution R is given by the probabilities R(A) for each
recombination event. Clearly, under Mendelian segregation, R(A) = R(A′)
since all alleles will be transmitted to one offspring or the other. It is also clear
that

∑
A⊆S�

R(A) = 1. We can therefore view recombination distributions as
probability distributions over the power set 2S� (Schnell 1961). The marginal
recombination distribution RA, describing the transmission of the loci in A, is
given by the probabilities

RA(B) =
∑
C⊆A′

R(B ∪ C) B ⊆ A.

RA(B) is the marginal probability of the recombination event in which one
parent transmits the loci in B ⊆ A and the other parent transmits the loci in
A \ B.

Other mathematical characterizations of crossover operators are useful when
the chromosomes happen to be binary strings. If the sum x ⊕ y denotes
component-wise addition in the group of integers modulo 2 and the product xy
denotes bitwise multiplication, then the strings produced by a crossover operator
with mask m are given by ma⊕(1−m)b and mb⊕(1−m)a. Liepins and Vose
(1992) use this definition to show that a binary operator is a crossover operator
if and only if the operator preserves schemata and commutes with addition and
bitwise multiplication. Furthermore, they provide two characterizations of the
set of chromosomes that can be generated by an operator given an initial pool
of parent strings. Algebraically, this set is given by the mathematical closure
of the parent strings under the crossover operator. Geometrically, the set is
determined by projections defined in terms of the crossover masks associated
with the operator. Liepins and Vose prove that these algebraic and geometric
characterizations are equivalent.

The dynamics of recombination. Geiringer used recombination distributions
to examine how recombination without selection modifies the proportions of
individuals in a population over time. Assume that each individual x ∈
{1, 2, . . . , k}� is a string of length � in a finite alphabet of k characters. We
also assume in the following that B ⊆ A ⊆ S�. Let p(t)(x) be the frequency
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of individual x in a population at generation t , and p
(t)
A (x) denote the marginal

frequency of individuals that are identical to x at the loci in A. That is,

p
(t)
A (x) =

∑
y

p(t)(y) for each y satisfying yi = xi ∀i ∈ A.

Geiringer derives the following important recurrence relations:

p(t+1)(z) =
∑

A,x,y

R(A)p(t)(x)p(t)(y) (33.1)

where




A ⊆ S� is arbitrary
yi = zi ∀i ∈ A

xi = zi ∀i ∈ A′

p(t+1)(z) =
∑

A,B,x,y

RA(B)p(t)(x)p(t)(y) (33.2)

where




B ⊆ A ⊆ S� are arbitrary subsets
xi = zi, yi = zi ∀i ∈ B

xj = zj , yj = zj ∀j ∈ A \ B

xk = yk = zk ∀k ∈ A′

p(t+1)(z) =
∑
A⊆S�

R(A)p
(t)
A (z)p

(t)
A′ (z). (33.3)

These recurrence relations are equivalent, complete characterizations of how
recombination changes the proportion of individuals from one generation to the
next. Equation (33.1) has the straightforward interpretation that alleles appear
in offspring if and only if they appear in the parents and are transmitted by
a recombination event. Each term on the right-hand side of (33.1) is the
probability of a recombination event between parents having the desired alleles at
the loci that are transmitted together. A string z is the result of a recombination
event A whenever the alleles of z at loci A come from one parent and the
alleles at loci A′ come from the other parent. The change in frequency of an
individual string is therefore given by the total probability of all these favorable
occurrences. Equation (33.2) is derived from (33.1) by collecting terms based
on marginal recombination probabilities. Equation (33.3) is derived from (33.1)
by collecting terms based on marginal frequencies of individuals.

The last equation is perhaps the most significant, since it leads directly to a
theorem characterizing the expected distribution of individuals in the limit.

Theorem (Geiringer’s theorem II). If � loci are arbitrarily linked, with the one
exception of ‘complete linkage’, the distribution of transmitted alleles ‘converges
toward independence’. The limit distribution is given by

lim
t→∞p(t)(z) =

�∏
i=1

p(0)(zi)
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which is the product of the � marginal distributions of alleles from the initial
population.

This theorem tells us that, in the limit, random mating and recombination
without selection lead to chromosome frequencies corresponding to the simple
product of initial allele frequencies. A population in this state is said to be
in linkage equilibrium or Robbins’ equilibrium (Robbins 1918). This result
holds for all recombination operators that allow any two loci to be separated by
recombination.

Note that Holland (1975) sketched a proof of a similar result for schema
frequencies and one-point crossover. Geiringer’s theorem applied to schemata
gives us a much more general result. Together with the recurrence equations,
this work paints a picture of ‘search pressure’ from recombination acting to
reduce departures from linkage equilibrium for all schemata.

Subsequent work has carefully analyzed the dynamics of this convergence
to linkage equilibrium (Christiansen 1989). It has been proven, for example,
that the convergence rate for any particular schema is given by the probability
of the recombination event specified by the schema’s defining loci. In this
view, an important difference between crossover operators is the rate at which,
undisturbed by selective pressures, they drive schemata to their equilibrium
proportions. These results from mathematical population genetics have only
recently been applied to evolutionary algorithms (Booker 1993, Altenberg 1995).

Disruption analysis. Many formal studies of crossover operators focus
specifically on the way recombination disrupts and constructs schemata.
Holland’s (1975) original analysis of genetic algorithms derived a bound for
the disruptive effects of one-point crossover. This bound was based on the
probability �(ξ)/(� − 1) that a single crossover point will fall within the
defining length �(ξ) of a schema ξ . Bridges and Goldberg (1987) subsequently
provided an exact expression for the probability of disruption for one-point
crossover. Spears and De Jong (1991a) generalized these results to provide
exact expressions for the disruptive effects of n-point and uniform crossover.

Recombination distributions provide a convenient framework for analyzing
these disruptive effects (Booker 1993). The first step in this analysis is to
derive the marginal distributions for one-point, n-point, and uniform crossover.
Analyses using recombination distributions can be simplified for binary strings
if we represent individual strings using index sets (Christiansen 1989). Each
binary string x can be represented uniquely by the subset A ⊆ S� using the
convention that A designates the loci where xi = 1 and A′ designates the loci
where xi = 0. In this notation S� represents the string 1, ∅ represents the string
0, and A′ represents the binary complement of the string represented by A. Index
sets can greatly simplify expressions involving individual strings. Consider, for
example, the marginal frequency pA(x) of individuals that are identical to x at
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the loci in A. The index set expression

pA(B) =
∑
C⊆A′

p(B ∪ C) B ⊆ A

makes it clear that pA(B) involves strings having the allele values given by B

at the loci designated by A. Note that p∅(B) = 1 and pS�
(B) = p(B).

With this notation we can also succinctly relate recombination distributions
and schemata. If A designates the defining loci of a schema ξ and B ⊆ A

specifies the alleles at those loci, then the frequency of ξ is given by pA(B) and
the marginal distribution RA describes the transmission of the defining loci of
ξ . In what follows we will assume, without loss of generality, that the elements
of the index set A for a schema ξ are in increasing order so that the kth element
A(k) is the locus of the kth defining position of ξ . This means, in particular,
that the outermost defining loci of ξ are given by the elements A(1) and A(O(ξ))

where O(ξ) is the order of ξ . It will be convenient to define the following
property relating the order of a schema to its defining length δ(ξ).

Definition. The kth component of defining length for schema ξ , δk(ξ), is the
distance between the kth and k + 1st defining loci, 1 ≤ k < O(ξ), with the
convention that δ0(ξ) ≡ �− δ(ξ).

Note that the defining length of a schema is equal to the sum of its defining
length components:

δ(ξ) =
O(ξ)−1∑

k=1

δk(ξ) = A(O(ξ)) − A(1).

Given these preliminaries, we can proceed to describe the recombination
distributions for specific crossover operators.

One-point crossover. Assume exactly one crossover point in a string of
length �, chosen between loci i and i + 1 with probability 1/(� − 1) for
i = 1, 2, . . . , � − 1. The only recombination events with nonzero probability
are Sx = [1, x] and S ′x = [x+ 1, �− 1] for x = 1, 2, . . . , �− 1. The probability
of each event is

R1(Sx) = R1(S ′x) =
1

2(�− 1)

since each parent is equally likely to transmit the indicated loci. The marginal
distribution R1

A for an arbitrary index set A can be expressed solely in terms
of these recombination events. We will refer to these events as the primary
recombination events.

Now for any arbitrary event B ⊆ A there are two cases to consider:

(i) B = ∅. This corresponds to the primary recombination events Sx, x < A(1)

and S ′x, x ≥ A(O(ξ)). There are �− 1− δ(ξ) such events.
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(ii) B = ∅. These situations involve the primary events Sx, A(1) ≤ x <

A(O(ξ)). The events B having nonzero probability are given by Bi =
{A(1), . . . , A(i)}, 1 ≤ i < O(ξ). For each i, there are δi(ξ) corresponding
primary events.

The complete marginal distribution is therefore given by

R1
A(B) =




�− 1− δ(ξ)

2(�− 1)
if B = ∅ or B = A

δi(ξ)

2(�− 1)
if B = Bi, 1 ≤ i < O(ξ)

0 otherwise.

Note that if we restrict our attention to disruptive events, we obtain the
familiar result

1− (R1
A(∅)+R1

A(A)) = 1− 2

(
�− 1− δ(ξ)

2(�− 1)

)
= 1−

(
1− δ(ξ)

�− 1

)
= δ(ξ)

�− 1
.

n-point crossover. The generalization to n crossover points in a string of
length � uses the standard convention (De Jong 1975) that when the number of
crossover points is odd, a final crossover point is defined at position zero. We
also assume that all the crossover points are distinct, which corresponds to the
way multipoint crossover is often implemented. Given these assumptions, there
are 2

(
�

n

)
nonzero recombination events if n is even or n = �, and 2

(
�−1
n

)
such

events if n is odd. Since the n points are randomly selected, these events are
equally likely to occur.

We derive an expression for the marginal distributions in the same way as we
proceeded for one-point crossover. First we identify the relevant recombination
events, then we count them up and multiply by the probability of a single
event. Identification of the appropriate recombination events begins with the
observation (De Jong 1975) that crossover does not disrupt a schema whenever
an even number of crossover points (including zero) fall between successive
defining positions. We can use this to identify the configurations of crossover
points that transmit all the loci in B ⊆ A and none of the loci in A \ B. Given
any two consecutive elements of A, there should be an even number of crossover
points between them if they both belong to B or A \B. Otherwise there should
be an odd number of crossover points between them. This can be formalized
as a predicate XA that tests these conditions for a marginal distribution RA

XA(B, n, i) =




1 if n is even and {A(i), A(i−1)} ∩ B = ∅ or {A(i), A(i−1)}
1 if n is odd and {A(i), A(i−1)} ∩ B = ∅ or {A(i), A(i−1)}

where 2 ≤ i ≤ O(ξ)

0 otherwise.
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The recombination events can be counted by simply enumerating all possible
configurations of crossover points and discarding those not associated with
the marginal distribution. The following function NA computes this count
recursively (as suggested by the disruption analysis of Spears and De Jong
(1991a)):

NA(B, n, i) =




n∑
j=0

(
δi−1(ξ)

j

)
XA(B, j, i)NA(B, n− j, i − 1)

2 < i ≤ O(ξ)

(
δ1(ξ)

n

)
XA(B, n, 2) i = 2.

Putting all the pieces together, we can now give an expression for the
complete marginal distribution.

Rn
A(B) =




n∑
j=0

(
δ0(ξ)

j

)
NA(B, n− j, O(ξ))

2

(
�

n

) if n is even or n = �

n∑
j=0

(
δ0(ξ)− 1

j

)
NA(B, n− j, O(ξ))

2

(
�− 1

n

) otherwise.

Uniform crossover. The marginal distribution Ru(p)

A for parametrized uniform
crossover with parameter p is easily derived from previous analyses (Spears and
De Jong 1991b). It is given by

Ru(p)

A (B) = p|B|(1− p)|A\B|.

Figure 33.1 shows how the marginal probability of transmission for second-
order schemata—2 Rn

A(A) and 2 Ru(0.5)
A , |A| = 2—varies as a function of

defining length. The shape of the curves depends on whether n is odd or
even. Since the curves indicate the probability of transmitting schemata, the
area above each curve can be interpreted as a measure of potential schema
disruption. This interpretation makes it clear that two-point crossover is the best
choice for minimizing disruption. Spears and De Jong (1991a) have shown that
this property of two-point crossover remains valid for higher-order schemata.

Note that these curves are not identical to the family of curves for
nondisruptive crossovers given by Spears and De Jong. The difference is
that Spears and De Jong assume crossover points are selected randomly with
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Figure 33.1. Transmission probabilities for second-order schemata. The inset shows the
behavior of these curves in the vicinity of the point L/2.

replacement. This means that their measure P2,even is a polynomial function of
the defining length having degree n, with n identical solutions to the equation
P2,even = 1/2 at the point �/2. The function Rn

A(A), on the other hand, has
n distinct solutions to the equation 2 Rn

A(A) = 1/2 as shown in the upper
right-hand corner of figure 33.1. This property stems from our assumption that
crossover points are distinct and hence selected without replacement.

Finally, regarding the construction of schema, Holland (1989) has analyzed
the expected waiting time to construct a new schema that falls in the intersection
of two schemas already established in a population. He gives examples showing
that the waiting time for one-point crossover to construct the new schema can
be several orders of magnitude shorter than the waiting time for mutation.
Thierens and Goldberg (1993) also examine this property of recombination
by analyzing so-called mixing events—recombination events in which building
blocks from the parents are juxtaposed or ‘mixed’ to produce an offspring having
more building blocks than either parent. Using the techniques of dimensional
analysis they show that, given only simple selection and uniform crossover,
effective mixing requires a population size that grows exponentially with the
number and length of the building blocks involved. This indicates that additional
mechanisms may be needed to achieve effective mixing in genetic algorithms.

33.1.4 Crossover bias

In order to effectively use any inductive search operator, it is important to
understand whatever tendencies the operator may have to prefer one search
outcome over another. Any such tendency is called an inductive bias. Random
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search is the only search technique that has no bias. It has long been recognized
that an appropriate inductive bias is necessary in order for inductive search to
proceed efficiently and effectively (Mitchell 1980). Two types of bias have
been attributed to crossover operators in genetic search: distributional bias and
positional bias (Eshelman et al 1989).

Distributional bias refers to the number of symbols transmitted during a
recombination event and the extent to which some quantities might be more
likely to occur than others. This bias is significant because it is correlated with
the potential number of schemata from each parent that can be recombined by
the crossover operator. An operator has distributional bias if the probability
distribution for the number of symbols transmitted from a parent is not uniform.
Both one-point and two-point crossover are free of distributional bias. The
n-point (n > 2) crossover operators have a distributional bias that is well
approximated by a binomial distribution with mean �/2 for large n. Uniform
crossover has a strong distributional bias, with the expected number of symbols
transmitted given by a binomial distribution with expected value px�. More
recently, Eshelman and Schaffer (1993) have emphasized the expected value of
the number of symbols transmitted rather than the distribution of those numbers.
The bias defined by this criterion, though clearly similar to distributional bias,
is referred to as recombinative bias.

Positional bias characterizes how much the probability that a set of symbols
will be transmitted intact during a recombination event depends on the relative
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Figure 33.2. One view of the crossover bias ‘landscape’ generated using quantitative
measures derived from recombination distributions.
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positions of those symbols on the chromosome. This bias is important because
it indicates which schemata are likely to be inherited by offspring from their
parents. It is also indicative of the extent to which these schemata will appear
in new contexts that can help distinguish the genuine instances of co-adaptation
from spurious linkage effects. Holland’s (1975) analysis of one-point crossover
pointed out that the shorter the defining length of a schema, the more likely it is
to be transmitted intact during the crossover operation. Consequently, one-point
crossover has a strong positional bias. Analyses of n-point crossover (Spears
and De Jong 1991a) lead to a similar conclusion for those operators, though the
amount of positional bias varies with n (Booker 1993). Uniform crossover has
no positional bias, which is one of the primary reasons it is widely used. Note
that shuffle crossover was designed to remove the positional bias from one-point
and n-point crossover. Eshelman and Schaffer (1993) have revised their view
of positional bias, generalizing the notion to something they now call schema
bias. An operator has no schema bias if schemata of the same order are equally
likely to be disrupted regardless of their defining length.

Recombination distributions can be used to derive quantitative measures of
crossover bias (Booker 1993). The overall bias ‘landscape’ for various crossover
operators based on these measures is summarized in figure 33.2.

33.2 Real-valued vectors

David B Fogel

Recombination acts on two or more elements in a population to generate at
least one offspring. When the elements are real-valued vectors (Chapter 16),
recombination can be implemented in a variety of forms. Many of these forms
derive from efforts within the evolution strategies community because of their
long involvement with continuous optimization problems. The simpler versions,
however, have been popularized within research in genetic algorithms.

For two parent real-valued vectors x1 and x2, each of dimension n, one-point
crossover is performed by selecting a random crossover point k and exchanging
the elements occurring after point k in x1 with those that occur after point k in
x2 (see figures 33.3 and 33.4). This operator can be extended to a two-point
crossover in which two crossover points k1 and k2 are selected at random and the
segment in between these points is exchanged between parents (see figure 33.5).
Extensions to greater multiple-point crossover operators follow naturally.

The one-point and two-point operators attempt to recombine vector
segments. Alternatively, individual elements can be recombined without regard
to longer segments in which they reside by using a uniform recombination
operator. Given two parents x1 and x2, one or more offspring are created
by randomly selecting each next element from either parent (see figure 33.6).
Typically, each parent has an equal chance of contributing the next element. This
procedure was offered early on by Reed et al (1967) and was reintroduced within
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Parents
x1 = x1,1x1,2 . . . x1,kx1,k+1 . . . x1,d

x2 = x2,1x2,2 . . . x2,kx2,k+1 . . . x2,d

Offspring
x′1 = x1,1x1,2 . . . x1,kx2,k+1 . . . x2,d

x′2 = x2,1x2,2 . . . x2,kx1,k+1 . . . x1,d

Figure 33.3. For one-point crossover, two parents are chosen and a crossover point k

is selected, typically uniformly across the components. Two offspring are created by
interchanging the segments of the parents that occur from the crossover point to the ends
of the string.

Figure 33.4. A two-dimensional illustration of the potential offspring under a one-point
crossover operator applied to real-valued parents.

the genetic algorithm community by Syswerda (1989). A similar procedure is
also used within evolution strategies and termed ‘discrete recombination’ (see
below, and also see the uniform scan operator of Eiben et al (1994), which is
applied to multiple parents).

In contrast to the crossover type recombination operators that exchange
information between parents, intermediate recombination operators attempt to
average or blend components across multiple parents. A canonical version acts
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Parents
x1 = x1,1x1,2 . . . x1,k1x1,k1+1 . . . x1,k2x1,k2+1 . . . x1,d

x2 = x2,1x2,2 . . . x2,k1x2,k1+1 . . . x2,k2x2,k2+1 . . . x2,d

Offspring
x′1 = x1,1x1,2 . . . x2,k1x2,k1+1 . . . x2,k2x1,k2+1 . . . x2,d

x′2 = x2,1x2,2 . . . x1,k1x1,k1+1 . . . x1,k2x2,k2+1 . . . x2,d

Figure 33.5. For two-point crossover, two parents are chosen and two crossover points,
k1 and k2, are selected, typically uniformly across the components. Two offspring are
created by interchanging the segments defined by the points k1 and k2.

Parents
x1 = x1,1x1,2 . . . x1,d

x2 = x2,1x2,2 . . . x2,d

Offspring
x′1 = x1,1x2,2 . . . x1,d

x′2 = x1,1x1,2 . . . x2,d

Figure 33.6. For uniform crossover, each element of an offspring (here two offspring
are depicted) is selected from either parent. The example shows that the first element in
both offspring were selected from the first parent. In some applications such duplication
is not allowed. Typically each parent has an equal chance of contributing each element
to an offspring.

Figure 33.7. A geometrical interpretation of intermediate recombination applied to two
parents in a single dimension.

on two parents x1 and x2, and creates an offspring x′ as the weighted average:

x ′i = αx1i + (1− α)x2i

where α is a number in [0, 1] and i = 1, . . . , n (figure 33.7). If α = 0.5, then
the operation is a simple average at each component. Note that this operator
can be extended to act on more than two parents (i.e. a multirecombination) by
the operation

x ′i = α1x1i + α2x2i + . . .+ αkxki
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subject to ∑
αi = 1 i = 1, . . . , k

where there are k individuals involved in the multirecombination. This general
procedure is also known as arithmetic crossover (Michalewicz 1996, p 112) and
has been described in various other terms in the literature.

In a more generalized manner, recombination operators can take the
following forms (Bäck et al 1993, Fogel 1995, pp 146–7):

x ′i =




xS,i (33.4)
xS,i or xT,i (33.5)
xS,i + u(xT,i − xS,i ) (33.6)
xSj ,i or xTj ,i (33.7)
xSj ,i + ui(xTj ,i − xSj ,i ) (33.8)

where S and T denote two arbitrary parents, u is a uniform random variable
over [0, 1], and i and j index the components of a vector and the vector itself,
respectively. The versions are no recombination (33.4), discrete recombination
(or uniform crossover) (33.5), intermediate recombination (33.6), and (33.7)
and (33.8) are the global versions of (33.5) and (33.6), respectively, extended
to include more than two parents (up to as many as the entire population size).

There are several other variations of crossover operators that have been
applied to real-valued vectors.

(i) The heuristic crossover of Wright (1994) takes the form

x′ = u(x2 − x1)+ x2

where u is a uniform random variable over [0, 1] and x1 and x2 are the
two parent vectors subject to the condition that x2 is not worse than x1.
Michalewicz (1996, p 129) noted that this operator uses values of the
objective function to determine a direction to search.

(ii) The simplex crossover of Renders and Bersini (1994) selects k > 2 parents
(say the set J ), determines the best and worst individuals within the selected
group (say x1 and x2, respectively), computes the centroid of the group
without x2 (say c) and computes the reflected vector x′ (the offspring)
obtained from the vector x2 as

x′ = c+ (c− x2).

(iii) The geometrical crossover of Michalewicz et al (1996) takes two parents
x1 and x2 and produces a single offspring x′ as

x′ = [(x11x21)
0.5, . . . , (x1nx2n)

0.5].

This operator can be generalized to a multiparent version:

x′ = [(xα1

11 xα2

21 . . . xαk

k1 ), . . . , (xα1

1nxα2

2n . . . xαk

kn)].
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(iv) The fitness-based scan of Eiben et al (1994) takes multiple parents and
generates an offspring where each component is selected from one of the
parents with a probability corresponding to the parent’s relative fitness. If
a parent has fitness f (i), then the likelihood of selecting each individual
component from that parent is f (i)/

∑
f (j), where j = 1, . . . , k and there

are k parents involved in the operator.
(v) The diagonal multiparent crossover of Eiben et al (1994) operates much

like n-point crossover, except that in creating k offspring from k parents,
c ≥ 1 crossover points are chosen and the first offspring is constructed to
contain the first segment from parent 1, the second segment from parent 2,
and so forth. Subsequent offspring are similarly constructed from a rotation
of segments from the parents.

33.3 Permutations

Darrell Whitley

33.3.1 Introduction

An obvious attribute of permutation problems (see Chapter 17) is that simple
crossover operators fail to generate offspring that are permutations. Consider the
following example of simple one-point crossover, when one parent is denoted
with capital letters and the other with lower-case letters:

String 1: A B C D E F G H I
\/
/\
String 2: h d a e i c f b g

Offspring 1: A B C e i c f b g
Offspring 2: h d a D E F G H I.

Neither of the two offspring represents a legal permutation. Offspring 1
duplicates elements B and C while omitting elements H and D. Offspring 2
has just the opposite problem: it duplicates H and D while omitting B and C.

Davis (1985) and Goldberg and Lingle (1985) defined some of the first
operators for permutation problems. One variant of Davis’s order crossover
operator can be described as follows.

Davis’s order crossover. Pick two permutations for recombination. Denote the
first parent as the cut string and the other the filler string. Select two crossover
points. Copy the sublist of permutation elements between the crossover points
from the cut string directly to the offspring, placing them in the same absolute
position. This will be referred to as the crossover section. Next, starting at the
second crossover point, find the next element in the filler string that does not
appear in the offspring. Starting at the second crossover point, place the element
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from the filler string into the next available slot in the offspring. Continue
moving the next unused element from the filler string to the offspring. When
the end of the filler string (or the offspring) is reached, wrap around to the
beginning of the string. When done in this way, Davis’s order crossover has
the property that Radcliffe (1994) describes as pure recombination: when two
identical parents are recombined the offspring will also be identical with the
parents. If one does not start copying elements from the filler string starting at
the second crossover point, the recombination may not be pure.

The following is an example of Davis’s order crossover, where dots
represent the crossover points. The underscore symbol in the crossover section
corresponds to empty slots in the offspring.

Parent 1: A B . C D E F . G H I
Crossover-section: _ _ C D E F _ _ _

Parent 2: h d . a e i c . f b g
Available elements in order: b g h a i

Offspring: a i C D E F b g h.

Note that the elements in the crossover section preserve relative order,
absolute position, and adjacency from parent 1. The elements that are copied
from the filler string preserve only the relative order information from the second
parent.

Partially mapped crossover (PMX). Goldberg and Lingle (1985) introduced the
partially mapped crossover operator (PMX). PMX shares the following attributes
with Davis’s order crossover. One parent string is designated as parent 1, the
other as parent 2. Two crossover sites are selected and all of the elements in
parent 1 between the crossover sites are directly copied to the offspring. This
means that PMX also defines a crossover section in the same manner as order
crossover.

Parent 1: A B . C D E . F G
Crossover-section: _ _ C D E _ _

Parent 2: c f . e b a . d g.

The difference between the two operators is in how PMX copies elements
from parent 2 into the open slots in the offspring after a crossover section has
been defined. Denote the parents as P1 and P2 and the offspring as OS; let
P1i denote the ith element of permutation P1. The following description of
selecting elements from P2 to place in the offspring is based on the article by
Whitley and Yoo (1995).

For those elements between the crossover points in parent 2, if element P2i

has already been copied to the offspring, take no action. In the example given
here, element e in parent 2 requires no processing. We will consider the rest of
the elements by considering the positions in which they appear in the crossover
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section. If the next element at position P2i in parent 2 has not already been
copied to the offspring, then find P1i = P2j ; if position j has not been filled
in the offspring then assign OSj = P2i . In the example given here, the next
element in the crossover section of parent 2 is b which is in the same position as
D in parent 1. Element D is located in parent 2 with index 6 and the offspring at
OS6 has not been filled. Copy b to the offspring in the corresponding position.
This yields

Offspring: _ _ C D E b _.

A problem occurs when we try to place element A in the offspring. Element
A in parent 2 maps to element E in parent 1; E falls in position 3 in parent
2, but position 3 has already been filled in the offspring. The position in the
offspring is filled by C, so we now find element C in parent 2. The position
is unoccupied in the offspring, so element A is placed in the offspring at the
position occupied by C in parent 2. This yields

Offspring: a _ C D E b _.

All of the elements in parent 1 and parent 2 that fall within the crossover
section have now been placed in the offspring. The remaining elements can be
placed by directly copying their positions from parent 2. This yields

Offspring: a f C D E b g.

33.3.2 Order and position crossover

Syswerda’s (1991) order crossover-2 and position crossover are different from
either PMX or Davis’s order crossover in that there is no contiguous block
which is directly passed to the offspring. Instead several elements are randomly
selected by absolute position.

Order crossover-2. This operator starts by selecting K random positions in
parent 2, where the parents are of length L. The corresponding elements from
parent 2 are then located in parent 1 and reordered so that they appear in the
same relative order as they appear in parent 2. Elements in parent 1 that do not
correspond to selected elements in parent 2 are passed directly to the offspring.
For example,

Parent 1: A B C D E F G
Parent 2: C F E B A D G
Selected Elements: * * *.

The selected elements in parent 2 are F, B, and A. Thus, the relevant elements
are reordered in parent 1.

Reorder A B _ _ _ F _ from parent 1 which yields f b _ _ _ a _.

All other elements are copied directly from parent 1.

(f b _ _ _ a _) combined with (_ _ C D E _ G) yields f b C D E a G.
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Position crossover. Syswerda defines a second operator called position
crossover. Using the same example that was used to illustrate Syswerda’s order
crossover-2, first pick L − K elements from parent 1 which are to be directly
copied to the offspring. These elements are copied by position. This yields

_ _ C D E _ G.

Next scan parent 2 from left to right and place place each element which
does not yet appear in the offspring in the next available position. This yields
the following progression:

# # C D E # G => f # C D E # G
=> f b C D E # G
=> f b C D E a G.

Obviously, in this case the two operators generate exactly the same offspring.
Jim Van Zant first pointed out the similarity of these two operators in the
electronic newsgroup The Genetic Algorithm Digest. Whitley and Yoo (1995)
show the two operators to be identical using the following argument.

Assume there is one way to produce a target string S by recombining two
parents. Given a pair of strings which can be recombined to produce string S, the
probability of selecting the K key positions using order crossover-2 required to

generate a specific string S is
(
L

K

)−1
, while for position crossover the probability

of picking the L−K key elements that will produce exactly the same effect is(
L

L−K

)−1
. Since

(
L

K

) = ( L

L−K

)
the probabilities are identical.

Now assume there are R unique ways to recombine two strings to generate a
target string S. The probabilities for each unique recombination event are equal
as shown by the argument in the preceding paragraph. Thus the sum of the
probabilities for the various ways of ways of generating S are equivalent for
order crossover-2 and position crossover. Since the probabilities of generating
any string S are identical, the operators are identical in expectation.

This also means that in practice there is no difference between using order
crossover-2 and position crossover as long as the parameters of the operators
are adjusted to reflect their complementary nature. If position crossover is used
so that X % of the positions are initially copied to the offspring, then order
crossover is identical if (100 − X )% positions are selected as relative order
positions.

33.3.3 Uniform crossover

Davis’ uniform crossover (Davis 1991, p 80) is identical to position crossover
and order crossover-2, except that two offspring are generated. A bitstring
is used to denote the selection of positions. Offspring 1 copies the elements
directly from parent 1 in those positions in the bitstring marked by a ‘1’ bit.
Offspring 2 copies the elements from parent 2 in those positions marked by ‘0’
bits. Both offspring then copy the remaining elements from the other parent in
relative order.
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33.3.4 Edge recombination

Edge recombination was introduced as a specialized operator for the traveling
salesman problem (TSP). The motivation behind this operator is that it should
preserve the adjacency between permutation elements, since the cost of a tour in
a TSP is directly related to the set of adjacency relationships (i.e. the distances
between cities) that exists between permutation elements. The original edge
recombination operator has gone through three revisions and enhancements over
the years. First, the basic idea behind edge recombination is introduced.

Since adjacency information directly translates into cost, the adjacency
information from two parent strings is extracted and stored in an adjacency
list called the edge table. The edge table really just combines the two
tours into a single graph. Recombination occurs by building an offspring
using the adjacency information stored in the edge table; in other words,
it tries to find a new Hamiltonian circuit in the graph created by merging
the two parent strings. Finding a Hamiltonian circuit in an arbitrary graph
is itself a nondeterministic-polynomial-time (NP) complete problem and edge
recombination must sometimes add edges not contained in the edge table in
order to generate a legal tour. The various enhancements to edge recombination
attempt to reduce the number of ‘foreign edges’ (edges not found in the edge
table) that must be introduced into an offspring during recombination in order
to maintain a feasible tour.

In the original edge recombination operator, no information was maintained
about common edges that were shared by both parents. As a result the operator
sometimes failed to place an edge in the offspring that appeared in both parents,
resulting in a kind of ‘mutation by omission’ (Whitley et al 1991). To solve this
problem, information about shared edges was added to the edge table. Edges
shared by the two parents are marked with a + symbol. The algorithm can be
described as follows.

Consider the following tours as parents to be recombined:

Parent 1: g d m h b j f i a k e c
Parent 2: c e k a g b h i j f m d.

An edge list is constructed for each city in the tour. The edge list for some city
a is composed of all of the cities in the two parents that are adjacent to city a.
If some city is adjacent to a in both parents, this entry is flagged (using a plus
sign). Figure 33.8 shows the edge table which is the collective set of edge lists
for all cities.

The algorithm for edge recombination is as follows.

(i) Pick a random city as the initial current city. Remove all references to this
city from the edge table.

(ii) Look at the adjacency list of the current city. If there is a common edge
(flagged by +), go to that city next. (Unless the initial city is the current
city, there can be only one common edge; if two common edges existed,
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city edge list city edge list
a +k, g, i g a, b, c, d
b +h, g, j h +b, i, m
c +e, d, g i h, j, a, f
d +m, g, c j +f, i, b
e +k, -c k +e, +a
f +j, m, i m +d, f, h

Figure 33.8. An edge table.

one was used to reach the current city.) Otherwise from the cities on the
current adjacency list pick the next city to be the one whose own adjacency
list is shortest. Ties are broken randomly. Once a city is visited, references
to the city are removed from the adjacency list of other cities and it is no
longer reachable from other cities.

(iii) Repeat step 2 until the tour is complete or a city has been reached that has
no entries in its adjacency list. If not all cities have been visited, randomly
pick a new city to start a new partial tour.

Using the edge table in figure 33.8, city a is randomly chosen as the first
city in the tour. City k is chosen as the second city in the tour since the edge
(a, k) occurs in both parent tours. City e is chosen from the edge list of city k
as the next city in the tour since this is the only city remaining in k’s edge list.
This procedure is repeated until the partial tour contains the sequence [a k e c].

At this point there is no deterministic choice for the fifth city in the
tour. City c has edges to cities d and g, which both have two unused edges
remaining. Therefore city d is randomly chosen to continue the tour. The
normal deterministic construction of the tour then continues until position 7. At
position 7 another random choice is made between cities f and h. City h is
selected and the normal deterministic construction continues until we arrive at
the following partial tour: [a k e c d m h b g].

In this situation, a failure occurs since there are no edges remaining in the
edge list for city g. When a potential failure occurs during edge-3 recombination,
we attempt to continue construction at a previously unexplored terminal point
in the tour.

A terminal is a city which occurs at either end of a partial tour, where all
edges in the partial tour are inherited from the parents. The terminal is said to
be live if that city still has entries in its edge list; otherwise it is said to be a dead
terminal. Because city a was randomly chosen to start the tour in the previous
example, it serves as a new terminal in the event of a failure. Conceptually this
is the same as inverting the partial tour to build from the other end.

When a failure occurs, there is at most one live terminal in reserve at the
opposite end of the current partial tour. In fact, it is not guaranteed to be live,
since the construction of the partial tour could isolate this terminal city. Once
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both terminals of the current partial tour are found to be dead, a new partial
tour must be initiated. Note that no local information is employed.

We now continue construction of the partial tour [a k e c d m h b g]. The
tour segment is reversed (i.e. [g b h m d c e k a]). Then city i is added to the
tour after city a. The tour is then constructed in the normal fashion. In this
case, there are no further failures. The final offspring tour is [g b h m d c e k
a i f j]. The offspring produced has a single foreign edge ([j–g].)

When a failure occurs at both ends of the subtour, edge-3 recombination
starts a new partial tour. However, there is one other possibility, which has
been described as part of the edge-4 operator (Dzubera and Whitley 1994) but
which has not been widely tested.

Assume that the first partial tour has been constructed such that both ends
of the construction lack a live terminal by which to continue. Since only one
partial tour has been constructed and since initially every city has at least two
edges in the edge table, there must be edges internal to the current partial tour
that represent possible edges to the terminal cities of the partial tour. The edge-4
operator attempts to exploit this fact by inverting part of the partial tour so that a
terminal city is reconnected to an edge which is both internal to the partial tour
and which appeared in the original edge list of the terminal city. This will cause
a previously visited city in the partial tour to move to a terminal position. If this
newly created terminal has cities remaining in its (old) edge list, the offspring
construction can continue. If it does not, one can look for other internal edges
that will allow an inversion. Details on the edge-4 recombination operator are
given by Dzubera and Whitley (1994).

If one is using just a recombination operator and a mutation operator,
then edge recombination works very well as an operator for the TSP, at least
compared to other recombination operators, but if one is hybridizing such that
tours are being produced by recombination, then improved using 2-opt, then
both the empirical and the theoretical evidence suggests that Mühlenbein’s MPX
operator may be more effective (Dzubera and Whitley 1994).

33.3.5 Maximal preservative crossover

Mühlenbein (1991, p 331) offers the following pseudocode for the maximal
preservative crossover (MPX) operator. (Numbering of the pseudocode has
been added for clarity.)

PROC crossover(receiver, donor, offspring)

(i) Choose position 0 <= i < nodes and length blow <= k <= bup randomly.
(ii) Extract the string of edges from position i to position j = (i + k) MOD

nodes from the mate (donor). This is the crossover string.
(iii) Copy the crossover string to the offspring.
(iv) Add successively further edges until the offspring represents a valid tour.

This is done in the following way.
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(a) IF an edge from the receiver parent starting at the last city in the
offspring is possible (does not violate a valid tour)

(b) THEN add this edge from the receiver
(c) ELSE IF an edge from the donor starting at the last city in the

offspring is possible
(d) THEN add this edge from the donor
(e) ELSE add that city from the receiver which comes next in the string;

this adds a new edge, which we will mark as an implicit mutation.

The following example illustrates the MPX operator.

Receiver: G D M H B J F I A K E C
Donor: c e k a g b h i j f m d
Initial segment: _ _ k a g _ _ _ _ _ _ _.

Note that G is connected to D in the receiver, and that element D through
element I can be taken from the receiver without duplicating any of the elements
already in the offspring. This produces the partial tour

_ _ k a g D M H B J F I.

At this point, there is no edge in either parent that is connected to I and
has that not been used. Here MPX skips cities in the receiver until it finds one
which has not been used. In this case, it reaches E. This causes E and C to be
added to the tour to yield

E C k a g D M H B J F I.

Note that MPX does not transmit adjacency information from parents to
offspring as effectively as the various edge recombination operators, since it
uses less lookahead to avoid a break in the tour construction. At the same time,
when it must introduce a new edge that does not appear in either parent, it skips
to a nearby city in the tour rather than picking a random edge. Assuming that
the tour is partially optimized (for example, if the tour has been improved via
2-opt) then a city nearby in the tour should also be a city nearby in Euclidean
space. This, coupled with the fact that an initial segment is copied from one of
the parents, appears to give MPX an advantage when when combined with an
operator such as 2-opt. Gorges-Schleuter (1989) implemented a variant of MPX
that has some notable features that are somewhat like Davis’s order crossover
operator. A full description of Gorges-Schleuter’s MPX is given by Dzubera
and Whitley (1994).

33.3.6 Cycle crossover

The operators discussed so far are aimed at preserving adjacency information
(such as edge recombination) or relative order information (such as Davis’s
uniform order-based crossover). Operators may also emphasize position. Cycle
crossover partitions two parents into a set of cycles: a cycle is a subset of
elements which is located on a corresponding subset of positions on both the
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two parent strings. Consider the following example from Oliver et al (1987)
where the permutation elements correspond to the alphabetic characters with
numbers to indicate position:

Parent 1: h k c e f d b l a i g j
Parent 2: a b c d e f g h i j k l
Positions: 1 2 3 4 5 6 7 8 9 10 11 12.

To find a cycle, pick a position from either parent. Starting with position 1,
elements (h, a) belong to cycle 1. The elements (h, a) also appear in positions
8 and 9. Thus the cycle is expanded to include positions (1, 8, 9) and the new
elements i and l are added to the corresponding subset. Elements i and l appear
in positions 10 and 12, which also causes j to be added to the subset of elements
in the cycle. Note that adding j adds no new elements, so the cycle terminates.
Cycle 1 includes elements (h, a, i, l, j) in positions (1, 8, 9, 10, 12).

Note that element (c) in position 3 forms a unary cycle of one element.
Aside from the unary cycle at element c (denoted U), Oliver et al note that
there are three cycles between this set of parents:

Parent 1: h k c e f d b l a i g j
Parent 2: a b c d e f g h i j k l
Cycle Label: 1 2 U 3 3 3 2 1 1 1 2 1.

Recombination can occur by picking some cycles from one parent and
the remaining cycles from the alternate parent. Note that all elements in the
offspring occupy the same positions as in one of the two parents. However, few
applications seem to be position sensitive and cycle crossover is less effective at
preserving adjacency information (as in the TSP) or relative order information
(as in resource scheduling) compared to other operators.

33.3.7 Merge crossover

Blanton and Wainwright (1993) construct permutation recombination operators
for multiple vehicle routing with time and capacity constraints. The following
example of the merge crossover operator MX1 uses a global precedence vector.
Given any two elements in the permutation, the global precedence vector
indicates which element has higher priority for processing. Elements which
appear earlier in the vector have higher precedence. In vehicle routing each
customer has a time window in which they must be served, which can be
translated into a global precedence vector: for example, customer X should be
served before customer Y because the time window for X closes before the time
window for Y. The following example illustrates the operator:

Parent 1: C F G B A H D I E J
Parent 2: E B G J D I C A F H
Precedence: A B C D E F G H I J.

A single offspring is constructed. In this case, starting at position 1, we
compare C and E from the two parents; since C has higher precedence, it is
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placed in the offspring. Because C has already been allocated a position in the
offspring, the C which appears later in parent 2 is exchanged with the E in the
initial position of parent 2. This yields

Parent 1: C F G B A H D I E J
Parent 2: C B G J D I <E> A F H
Precedence: A B C D E F G H I J

where the moved E element is bracketed: <E>. Going to position 2, B has
higher precedence than F, so B is kept in position 2. Also, elements F and B
are exchanged in parent 1, which yields

Parent 1: C B G <F> A H D I E J
Parent 2: C B G J D I <E> A F H
Precedence: A B C D E F G H I J.

Note that one need not actually build a separate offspring, since both parents
are in effect transformed into copies of the same offspring. The resulting
offspring in the above example is

Offspring: C B G F A H D E I J.

The MX-2 operator is similar, except that when an element is added to the
offspring it is deleted from both parents instead of being swapped. Thus, the
process works as follows:

Parent 1: C F G B A H D I E J
Parent 2: E B G J D I C A F H
Precedence: A B C D E F G H I J.

C is added to the offspring and deleted from both parents

Parent 1: _ F G B A H D I E J
Parent 2: E B G J D I _ A F H
Offspring: C.

Instead of now moving to the second element of each permutation, the first
remaining elements in the parents are compared: in this case, E and F are the
first elements and E is chosen and deleted. The parents are now represented as
follows:

Parent 1: _ F G B A H D I _ J
Parent 2: _ B G J D I _ A F H
Offspring: C E.

Element B is chosen to fill position 3 in the offspring, and the construction
continues to produce the offspring

Offspring: C E B F G A H D I J.

Note that, over time, this class of operator will produce offspring that are
closer to the precedence vector—even if no selection is applied.
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33.3.8 Some other operators

Other interesting operators have been introduced over the years for permutation
problems. Fox and McMahon (1991) introduced an intersection operator that
extracts features common to both parents. Eshelman (1991) used a similar
strategy to build a recombination operator that extracts all common subtours
for the TSP, and assigns all other elements using local search (2-opt) over an
otherwise random assignment. Fox and McMahon also constructed a union
operator. In this case, each permutation is converted into a binary matrix
representation and the offspring is the logical-or of the matrices representing
the parents.

Radcliffe and Surry (1995) have also introduced new operators for the TSP,
largely by looking at different representations and then defining appropriate
operators with respect to the representations. These representations include the
permutation representation, the undirected edge representation, the directed edge
representation, and the corner representation.

33.4 Finite-state machines

David B Fogel

Recombination can be applied to logical structures such as finite-state machines.
There have been a variety of proposals to accomplish this in the literature. Recall
that a finite-state machine (Chapter 18) is a 5-tuple:

M = (Q, T , P, s, o)

where Q is a finite set, the set of states, T is a finite set, the set of input
symbols, P is a finite set, the set of output symbols, s : Q × T → Q, the
next state function, and o : Q× T → P , the next output function. Perhaps the
earliest proposal to recombine finite-state machines in simulated evolution can
be found in the work of Fogel (1964) and Fogel et al (1966, pp 21–3). The
following extended quotation (Fogel et al 1966, p 21) may be insightful:

The recombination of individuals of opposite sex appears to benefit
natural evolution. By analogy, why not retain worthwhile traits that
have survived separate evolution by combining the best surviving
machines through some genetic rule; mutating the product to yield
offspring? Note that there is no need to restrict this mating to the
best two surviving ‘individuals’. In fact, the most obvious genetic
rule, majority logic, only becomes meaningful with the combination
of more than two machines.

Fogel et al (1966) suggested drawing a single state diagram which expresses
the majority logic of an array of finite-state machines. Each state of the majority
logic machine is the composite of a state from each of the original machines.
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Figure 33.9. Three parent machines (top) are joined by a majority logic operator to
form another machine (bottom). The initial state of each machine is indicated by a short
arrow pointing to that state. Each state in the majority logic machine is a combination
of the states of the three parent machines with the output symbol being chosen as the
majority decision of two of the three parent machines. For example, the state BDF in
the majority logic machine is determined by examining the states B, D, and F in each
of the individual machines. For an input symbol of 0, all three states respond with a
0, therefore this symbol is chosen for the output to an input of 0 in state BDF. For an
input symbol of 1, two of the three states respond with a 0, thus, this being the majority
decision, this symbol is chosen for the output to an input of 1 in state BDF. Note that
several states of the majority logic machine are isolated from the start state and could
never be expressed.

Thus the majority machine may have a number of states as great as the product
of the number of states in the original machines. Each transition of the majority
machine is described by that input symbol which caused the respective transition
in the original machines, and by that output symbol which results from the
majority element logic being applied to the output symbols from each of the
original machines (figure 33.9). If there are only two parents to recombine in
this manner, the majority logic machine reduces to the better of the two parents.

Zhou and Grefenstette (1986) used recombination on finite-state automata
applied to binary sequence induction problems. The finite-state automata were
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defined in terms of a 5-tuple:

(Q, S, δ, q0, F )

where Q is a finite set of states, S is a finite input alphabet, q0 ∈ Q is the initial
state, δ is the transition function mapping the Cartesian product of Q and S into
Q, and F is the set of final states, a subset of Q. The chosen representation
was

(X1, Y1, F1), (X2, Y2, F2), . . . , (X8, Y8, F8)

where each (Xi, Yi, Fi) represented the state i, Xi and Yi corresponded to the
destination state of the zero and one arrows from state i, respectively, and Fi

was a three-bit code where the first two bits were used to indicate whether or
not there existed an arrow from state i, and the third bit showed whether the
state i was a final state. The maximum number of states was set to eight. The
details of how recombination was implemented on this representation are not
obvious from the article by Zhou and Grefenstette (1986) but it is reasonable to
infer that a simple one-point crossover operator was applied.

Fogel and Fogel (1986) used recombination in a similar manner on finite-
state machines by exchanging single states between machines (i.e. output symbol
and next-state transitions for each input symbol for a particular state). Birgmeier
(1996) also used a similar method implemented as uniform crossover between
two machines by state. One offspring was produced from two parents by
choosing each row in the transition table from either parent (with specific
procedures for handling parents with differing numbers of states). Birgmeier
(1996) also offered a new joining operator where the offspring’s size is the sum
of the two parents’ number of states. Both the output and transition matrices
from the two parents are juxtaposed in the offspring and some of the entries
are randomly reset to point to a state in the other half, thus joining the new
machines into one.

33.5 Crossover: parse trees

Peter J Angeline

From an evolutionary computation view, crossover, in its most basic form, is an
operator that exchanges representational material between two parent structures
to produce offspring. Occasionally, it is important to introduce additional
constraints on the crossover operation to ensure that the created children observe
certain necessary constraints of the representation or problem environment.

Parse tree representations (Chapter 19), as typically used in genetic
programming (Koza 1992), require that the crossover operation produce
offspring that are also valid parse trees. In order to remain a valid parse tree,
the structure must have only terminals at the leaf positions of the tree and only
function nodes at each of its internal positions. In addition, each function node
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of the parse tree must have the correct number of subtrees below it, one for
each argument that the function requires.

Often in genetic programming, a simplification is made so that all functions
and terminals in the primitive language return the same data type. This is
referred to as the closure principle (Koza 1992). The effect is to reduce the
number of syntactic constraints on the programs so that the complexity of the
crossover operation is minimized.

The recursive structure of parse tree representations makes the definition of
crossover for tree representations that adhere to the above caveats surprisingly
simple. Cramer (1985) initially defined the now standard subtree crossover
for parse trees shown in figure 33.10. First, a random subtree is selected
and removed from one of the parents. Note that this leaves a hole in the
parent such that there exists a function that has a null value for one of its
parameters. Next, a random subtree is extracted from the second parent and
inserted at the point in the first parent where its subtree was removed. Now
the hole in the first parent is again filled. The process is completed by
inserting the subtree extracted from the first parent into the position in the
second parent where its subtree was removed. As long as only complete
subtrees are swapped between parents and the closure principle holds, this simple
crossover operation is guaranteed to produce syntactically valid offspring every
execution.

Typically, when evolving parse tree representations, a user-defined limit on
the maximum size of any tree in the population is provided. Subtree crossover
will often increase the size of a given parent such that, over a number of
generations, individuals in an unrestricted population may grow to swamp the
available computational resources. Given a user-defined restriction on subtree
size, expressed as a limit according to either the depth of a tree or the number of
nodes it contains, crossover must enforce this limit. When a crossover operation
is executed that creates one or more offspring that violate the size limitation, the
crossover operation is invalidated and the offspring are restored to their original
forms. What happens next is a matter of choice. Some systems will reject both
children and revert back to selecting two new parents. Other systems attempt
crossover repeatedly either until both offspring fall within the size limit or until
a specified number of attempts is reached. Given the nature of the crossover
operation, the likelihood of performing a valid crossover operation in a small
number of attempts, say five, is fairly good.

Koza (1992) popularized the use of subtree crossover for manipulating
parse tree representations in genetic programming. The subtree swapping
crossover of Koza (1992) shares much with the subtree crossover defined
by Cramer (1985) with a few minor differences. The foremost difference is
a bias introduced by Koza (1992) to limit the probability that a leaf node
is selected as the subtree from a parent during crossover. The reasoning
for this bias according to Koza (1992) is that, in most trees, the number
of leaf nodes will be roughly equivalent to the number of nonleaf nodes.
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Figure 33.10. An illustration of the crossover operator for parse trees. A subtree is
selected at random from each parent, extracted, and exchanged to create two offspring
trees.

Consequently, the number of subtrees of depth one will be approximately
the number of subtrees of depth greater than one. Merely swapping a leaf
between parents to produce children half of the time will not tend to greatly
advance the evolutionary process, so, during crossover in a genetic program,
the probability that a leaf node is selected is controlled by a bias term called
the leaf frequency. Typically, the leaf frequency is set at about 10%, meaning
that 10% of the time when a subtree is selected a leaf node will be chosen
in a parent while the rest of the time only nonleaf nodes will be chosen.
Koza (1992) offers no empirical validation of this bias term or its assumed
value.

Often it is important to violate the closure principle and allow multiple
types in the parse tree representation in order to more effectively solve a given
problem. This implies that there are some functions such that they cannot be
used as arguments to certain other functions. Crossover in such typed parse
trees, as described by Montana (1995), proceeds much as in subtree crossover
with one caveat to compensate for the additional constraint of multiple return
types. First, a random node is selected in the first parent’s parse tree. The return
type of the root of the subtree is determined and the selection of crossover points
in the second parent is restricted to only those subtrees that have identical return
types. This ensures that the syntactic constraints in both parents are upheld.
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When evolving genetic programs using automatically defined functions
(ADFs), Koza (1994) uses a slightly modified version of subtree crossover.
When crossing two genetic programs with ADFs, if the crossover position in
the first tree is selected to be within a particular subroutine then only crossover
points in the corresponding subroutine in the second parent are considered.
This is similar to the typed crossover of Montana (1995) except that, rather
than restricting the crossover positions in the second parent based on the type
of subtree extracted from the first, it restricts the selection using the functional
origin of the initially selected subtree.

33.6 Other representations

Peter J Angeline and David B Fogel

The use of recombination on the alternative mixed-integer representations, and
those using introns, does not generally vary from the standard usage. All of
the available options of discrete and intermediate recombination apply to the
mixed-integer format offered by Bäck and Schütz (1995). Introns are used
with the belief that they will enhance the chances for crossover to recombine
building blocks. Moreover, Wu and Lindsay (1995) suggest that the addition of
introns can have an equivalent effect of varying crossover probabilities across
a chromosome, and state ‘the advantages of the noncoding segment method
including the fact that the genetic algorithm does not need to be modified to
handle variable crossover probabilities and that crossover location calculations
are much simpler’.

33.7 Multiparent recombination

A E Eiben

33.7.1 Introduction

To make the following survey unambiguous we have to start with setting some
conventions on terminology. The term population will be used for a multiset
of individuals that undergoes selection and reproduction. This terminology
is maintained in genetic algorithms, evolutionary programming, and genetic
programming, but in evolution strategies all µ individuals in a (µ, λ) or (µ+λ)

strategy are called parents. We, however, use the term parents only for those
individuals that are selected to undergo recombination. In other words, parents
are those individuals that are actually used as inputs for a recombination
operator; the arity of a recombination operator is the number of parents it uses.
The next notion is that of a donor, being a parent that actually contributes to (at
least one of) the alleles of the child(ren) created by the recombination operator.
This contribution can be for instance the delivery of an allele, as in uniform
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crossover in canonical genetic algorithms (GAs), or the participation in an
averaging operation, as in intermediate recombination in evolutionary strategies
(ESs). As an illustration consider a steady-state GA where 100 individuals
form the population and two of them are chosen as parents to undergo uniform
crossover to create one single offspring. If, by pure chance, the offspring only
inherits alleles from parent 1, then parent 1 is a donor, and parent 2 is not.

33.7.2 Miscellaneous operators

We begin this survey with papers where the multiparent aspect has an incidental
character. By an incidental character we mean that the operator is defined and
used in a specific application and has, for instance, a certain fixed arity, or,
even if the definition is general and would allow comparison between different
number of parents, this aspect is not given attention.

The recombination mechanism of Kaufman (1967) is applied for evolving
models for a given process, where a model is an array of a number of blocks,
and models may differ in the numbers of blocks they contain. Recombination of
four models to create one new model is defined as follows. The size of the child
(the number of blocks) is equal to the size of each of its parents with probability
0.25. The ith block of the child is chosen with equal probability from those
parents that have at least i blocks. Let us note that there is an exception to this
latter rule of choosing one of the parents’ blocks, but that exception has a very
problem-specific reason; therefore we rather present the general idea here.

In an extensive study on bit vector function optimization, stochastic iterated
genetic hill climbing (SIGH) is studied and compared with other techniques, such
as GAs, iterated hill climbing, and simulated annealing ?(Ackley 1987b). SIGH
applies a sophisticated probabilistic voting mechanism with time-dependent
probability distributions (cooling), where m ‘voters’ (m being the size of the
population) determine the values of a new bitstring. SIGH is shown to be better
than a GA with one-point and uniform crossover on four out of the six test
functions and the overall conclusion is that it is ‘competitive in speed with a
variety of existing algorithms’.

In the introductory paper on the parallel GA ASPARAGOS (Mühlenbein
1989), p-sexual voting recombination is applied for the quadratic assignment
problem. Let us remark that the name p-sexual is somewhat misleading, as
there are no different genders and no restriction on having one representative of
each gender for recombination. The voting recombination produces one child
of p parents based on a threshold value v. It determines the ith allele of the
child by comparing the ith alleles of the selected parent individuals. If the same
allele is found more often than the threshold v, this allele is included in the
child; other bits are filled in randomly. In the experiments the values p = 7
and v = 5 are used and it ‘worked surprisingly well’, but comparison between
this scheme and ordinary two-parent recombination was not performed.
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An interesting attempt to combine GAs with the simplex method resulted in
the ternary simplex crossover (Bersini and Seront 1992). If x1, x2, x3 are the
three parents sorted in decreasing order of fitness, then the simplex crossover
generates one child x by the following two rules.

(i) If x1
i = x2

i then xi = x1
i ;

(ii) if x1
i = x2

i then xi = x3
i with probability p and xi = 1−x3

i with probability

1− p.

Using the value p = 0.8, the simplex GA performed better than the standard
GA on the DeJong functions. The authors remark that applying a modified
crossover on more than three parents ‘is worth to try’.

The problem of placing actuators on space structures is addressed by Furuya
and Haftka (1993). The authors compare different crossovers: among others
they use uniform crossover with two as well as with three parents in a GA
using integer representation. Based on the experimental results they conclude
that the use of three parents did not improve the performance. This might be
related to another conclusion, indicating that for this problem mutation is an
efficient operator and crossover might not be important. Uniform crossover
with an arbitrary number of parents is also used by Aizawa (1994) as part of a
special schema sampling procedure in a GA, but the multiparent feature is only
a side-effect and is not investigated.

A so-called triadic crossover is introduced and tested by Pál (1994) for a
multimodal spin–lattice problem. The triadic crossover is defined in terms of
two parents and one extra individual, chosen randomly from the population. The
operator creates one child; it takes the bits in positions where the first parent
and the third individual have identical bits from this parent and the rest of the
bits from the other parent. Clearly, the result is identical to the outcome of
a voting crossover on these three individuals as parents. Although the paper
is primarily concerned with different selection schemes, a comparison between
triadic, one-point, and uniform crossover is made, where triadic crossover turned
out to deliver the best results.

33.7.3 Operators with undefined arity

In the introduction to this section we defined the arity of a recombination
operator as the number of parents it uses. In some cases this number depends
on the outcomes of random drawings; the operator is called without knowing
in advance how many parents will be applied. In this section we treat three
mechanisms of this kind.

Global recombination in ESs allows the use of more than two recombinants
(Bäck 1996, Schwefel 1995). In ES there are two basic types of recombination,
intermediate and discrete recombination, both having a standard two-parent
variant and a global variant. Given a population of µ individuals global
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recombination creates one offspring x by the following mechanism.

xi =
{

x
Si

i or x
Ti

i global discrete recombination

x
Si

i + χi(x
Ti

i − x
Si

i ) global intermediate recombination

where the two parents xSi , xTi (Si, Ti ∈ {1, . . . , µ}) are redrawn for each i

anew and so is the contraction factor χi . The above definition applies to the
object variables as well as the strategy parameter part; that is, for the mutation
stepsizes (σ ) and the rotation angles (α). Observe that the multiparent character
of global recombination is the consequence of redrawing the parents xSi , xTi for
each coordinate i. Therefore, probably more than two individuals contribute
to the offspring x, but their number is not defined in advance. It is clear
that investigations on the effects of different numbers of parents on algorithm
performance could not be performed in the traditional ES framework. The option
of using multiple parents can be turned on or off, that is, global recombination
can be used or not, but the arity of the recombination operator is not tunable.
Experimental studies on global versus two-parent recombination are possible,
but so far there are almost no experimental results available on this subject.
Schwefel (1995) notes that ‘appreciable acceleration’ is obtained by changing to
a bisexual from an asexual scheme (i.e., adding recombination using two parents
to the mutation-only algorithm), but only a ‘slight further increase’ is obtained
when changing from bisexual to multisexual recombination (i.e., using global
recombination instead of the two-parent variant). Recall the remark on the name
p-sexual voting. The terms bisexual and multisexual are not appropriate either
for the same reason: individuals have no gender or sex, and recombination can
be applied to any combination of individuals.

Gene-pool recombination (GPR) was introduced by Mühlenbein and Voigt
(1996) as a multiparent recombination mechanism for discrete domains. It is
defined as a generalization of two-parent recombination (TPR). Applying GPR
is preceded by selecting a gene pool consisting of would-be parents. Applying
GPR the two parent alleles of an offspring are randomly chosen for each locus
with replacement from the gene pool and the offspring allele is computed ‘using
any of the standard recombination schemes for TPR’. Theoretical analysis on
infinite populations shows that GPR is mathematically more tractable than TPR.
If n stands for the number of variables (loci), then the evolution with proportional
selection and GPR is fully described by n equations, while TPR needs 2n

equations for the genotypic frequencies. In practice GPR converges about 25%
faster than TPR for Onemax. The authors conclude that GPR separates the
identification and the search of promising areas of the search space better;
besides it searches more reasonably than does TPR. Voigt and Mühlenbein
(1995) extend GPR to continuous domains by combining it with uniform fuzzy
two-parent recombination (UFTPR) from Voigt et al (1995). The resulting
uniform fuzzy gene-pool recombination (UFGPR) outperforms UFTPR on the
spherical function in terms of realized heritability, giving it a higher convergence
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speed. The convergence of UFGPR is shown to be about 25% faster than that
of UFTPR.

A very particular mechanism is the linkage evolving genetic operator
(LEGO) as defined by Smith and Fogarty (1996). The mechanism is designed
to detect and propagate blocks of corresponding genes of potentially varying
length during the evolution. Punctuation marks in the chromosomes denote
the beginning and the end of each block and more chromosomes with the
appropriately positioned punctuation marks are considered as donors of a whole
block during the creation of a child. Although the multiparent feature is only a
side-effect, LEGO is a mechanism where more than two parents can contribute
to an offspring.

33.7.4 Operators with tunable arity

Unary reproduction operators, such as mutation, are often called asexual, based
on the biological analogies. Sexual reproduction traditionally amounts to
two-parent recombination in evolutionary computation (EC), but the operators
discussed in the previous section show that the sexual character of recombination
can be intensified, in the sense that more than two parents can be recombined.
Nevertheless, this intensification is not graded: the multiparent option can be
turned on or off, but the extent of sexuality (the number of parents) cannot be
tuned. In this section we consider recombination operators that make sexuality
a graded, rather than a Boolean, feature by having an arity that can vary. In
other words, the operators we survey here are called with a certain number of
parents as input, and this number can be modified by the user.

An early paper mentioning multiparent recombination is that of Bremermann
et al (1966) on solving linear equations. It presents the definition of three
different multiparent recombination mechanisms, called m-tuple mating. Given
m binary parent vectors x1, . . . , xm, the majority mating mechanism creates one
offspring vector x by choosing

xi =
{

0 if half or more of the parents have x
j

i = 0
1 otherwise.

Another mating mechanism for m binary parent vectors is called mating by
crossing over. Describing it in contemporary terms, the mechanism works by
selecting m− 1 crossover points (identical in each parent) and then composing
one child by selecting exactly one segment from each parent. The third
operator is called mating by averaging and it is defined for vectors of continuous
variables. Quite naturally, the child x of parents x1, . . . , xm is defined by

xi =
m∑

j=1

λjx
j

i
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where
∑m

j=1 λj = 1. Unfortunately, only very little is reported on the
performance of these operators. It is remarked that using majority mating and
mating by crossing over the results were somewhat inconclusive; no definite
benefit was obtained. Using mating by averaging, however, led to ‘spectacular
effects’ within a linear programming scheme, but these effects are not specified.

Scanning crossover has been introduced as a generalization and extension of
uniform crossover in GAs creating one child from r parents (Eiben 1991, Eiben
et al 1994). The name is based on the following general procedure scanning
parents and thus building the child from left to right. Let x1, . . . , xr be the
selected parents of length L and let x denote the child.

procedure scanning:

begin

INITIALIZE position markers as i1 = . . . = ir := 1;

% mark 1st position in each parent

for i = 1 to i = L

CHOOSE j ∈ {1, . . . , r};
xi := x

j

ij
; % ith allele of x is the ij th allele of xj

UPDATE position markers i1, . . . , ir ;

end

The above procedure provides a general framework for a certain style of
multiparent recombination, where the precise execution, hence the exact
definition of the operator, depends on the mechanisms of CHOOSE and
UPDATE. In the simplest case the UPDATE operation can shift the markers
one position to the right; that is, ij := ij + 1, j ∈ {1, . . . , r}, can be used. This
is appropriate for bitstrings, integer, and floating-point representation. Scanning
can also be easily adapted to order-based representation, where each individual
is a permutation, if the UPDATE operation shifts to the first allele which is not
in the child yet:

ij := min{k | k ≥ ij , x
j

k ∈ {x1, . . . , xij }} j ∈ {1, . . . , r}.
Observe that, because of the term k ≥ ij above, a marker can remain at the
same position after an UPDATE, and will only be shifted if the allele standing
at that position is included in the child. This guarantees that each offspring will
be a permutation.

Depending on the mechanism of choosing a parent (and thereby an allele)
there are three different versions of scanning. The choice can be deterministic,
choosing a parent containing the allele with the highest number of occurrences
and breaking ties randomly (occurrence-based scanning). Alternatively it can
be random, either unbiased, following a uniform distribution thus giving each
parent an equal chance to deliver its allele (uniform scanning), or biased by the
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fitness of the parents, where the chance of being chosen is fitness proportional
(fitness-based scanning). Uniform scanning for r = 2 is the same as uniform
crossover, although creating only one child, and it also coincides with discrete
recombination in evolution strategies. The occurrence-based version is very
much like the voting or majority mating mechanism discussed before, but
without the threshold v or with v = �m/2� respectively. The effect of the
number of parents in scanning crossover has been studied in several papers. An
overview of these studies is given in the next subsection.

Diagonal crossover has been introduced as a generalization of one-point
crossover in GAs (Eiben et al 1994). In its original form diagonal crossover
creates r children from r parents by selecting r−1 crossover points in the parents
and composing the children by taking the resulting r chromosome segments from
the parents ‘along the diagonals’. Later on, a one-child version was introduced
(van Kemenade et al 1995). Figure 33.11 illustrates both variants. It is easy to
see that for r = 2 diagonal crossover coincides with one-point crossover, and in
some sense it also generalizes traditional two-parent n-point crossover. To be
precise, if we define (r, s) segmentation crossover as working on r parents with
s crossover points, diagonal crossover becomes its (r, r − 1) version, its (2, n)

variant coincides with n-point crossover, and one-point crossover is an instance
of both schemes for (r, s) = (2, 1) as parameters. The effect of operator arity
for diagonal crossovers will be also discussed in the next subsection.

A recombination mechanism with tunable arity in ES is proposed by
Schwefel and Rudolph (1995). The (µ, κ, λ, ρ) ES provides the possibility
of freely adjusting the number of parents (called ancestors by the authors).
The parameter ρ stands for the number of parents and global recombination is
redefined for any given set {x1, . . . , xρ} of parents as

xi =
{

x
j

i ρary discrete recombination
(1/ρ)

∑ρ

k=1 xk
i ρ/ρ intermediate recombination

where j ∈ {1, . . . , ρ} is uniform randomly chosen for each i independently.
Let us note that, in the original paper, the above operators are called uniform
crossover and global intermediate recombination respectively. We introduce
the names ρary discrete recombination and ρ/ρ intermediate recombination
respectively here for the sake of a consequent terminology. (A reason for
using the term ρ/ρ intermediate recombination instead of ρary intermediate
recombination is given below, in the paragraph discussing a paper by Eiben and
Bäck (1997).) Observe that ρary discrete recombination coincides with uniform
scanning crossover, while ρ/ρ intermediate recombination is a special case of
mating by averaging. At this time there are no experimental results available
on the effect of ρ within this framework.

Related work in ESs also uses ρ as the number of parents as an independent
parameter for recombination (Beyer 1995). For purposes of a theoretical analysis
it is assumed that all parents are different, uniform randomly chosen from the
population of µ individuals. Beyer defines the ρ/ρ intermediate recombination
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parent 1
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One child

Figure 33.11. Diagonal crossover (top) and its one-child version (bottom) for three
parents.

and ρary discrete recombinations similarly to Schwefel and Rudolph (1995)
and denotes them as intermediate (µ/ρI) recombination and dominant (µ/ρD)

recombination, respectively. The (µ/ρ, λ) evolution strategy is studied on the
spherical function for the special case of ρ = µ. By this latter assumption it is
not possible to draw conclusions on the effect of ρ, but the analysis shows that
the optimal progress rate ϕ̂∗ of the (µ/µ, λ) ES is a factor of µ higher than
that of the (µ, λ) ES, for both recombination mechanisms. Beyer hypothesizes
that recombination has a statistical error correction effect, called genetic repair,
and this effect can be improved by using more than two parents for creating
offspring (Beyer 1996).
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Another generalization of global intermediate recombination in evolution
strategies is proposed by Eiben and Bäck (1997). The new operator is
applied after selecting ρ parent individuals from the population of µ, and the
resampling of two donors xSi and xTi for each i takes only these ρ individuals
into consideration. Note that this operator is also ρary, just like the ρ/ρ

intermediate recombination as defined above, but utilizes only two donors for
each allele of the offspring. To express this difference, this operator is called
ρ/2 intermediate recombination and the operator of Beyer (1995) and Schwefel
and Rudolph (1995) is called ρ/ρ intermediate recombination. Observe, that
the ρ/2 intermediate recombination is a true generalization of the original
intermediate recombination: the case of ρ = 2 coincides with local intermediate
recombination, while for ρ = µ, it is equal to global intermediate recombination.

While intermediate recombination is based on taking the arithmetical average
of the real-valued alleles of the parents, the geometrical average is computed by
the geometrical crossover. Michalewicz et al (1996) present the definition for
any (k ≥ 2) number of parents, where the offspring of the parents {x1, . . . , xk}
is defined as

xk+1 = 〈(x1
1)

α1
(x2

1)
α2

. . . (xk
1 )

αk
, . . . , (x1

n)
α1

(x2
n)

α2
. . . (xk

n)
αk 〉

where n is the chromosome length and α1 + . . . + αk = 1. The experimental
part of the paper is, however, based on the two-parent version, hence there are
no results on the effect of using more than two parents with this operator.

The same holds for the so-called sphere crossover (Schoenauer and
Michalewicz 1997); the authors give the general definition for k parents, but
the experiments are restricted to the two-parent version. In the general case the
offspring of parents {x1, . . . , xk} is defined as

xk+1 =
〈[

α1(x
1
1)

2 + . . .+ αk(x
k
1 )

2
]1/2

, . . . ,
[
α1(x

1
n)

2 + . . .+ αk(x
k
n)

2
]1/2
〉
.

33.7.5 The effects of higher operator arities

In recent years quite a few papers have studied the effect of operator arity on EA
performance, some even in combination with varying selective pressure. Here
we give a brief summary of these results, sorted by articles.

The performance of scanning crossover for different numbers of parents is
studied by Eiben et al (1994) in a generational GA with proportional selection.
Bit-coded GAs for function optimization (DeJong functions F1–4 and a function
from Michalewicz) as well as order-based GAs for graph coloring and the TSP
are tested with different mechanisms to CHOOSE. In the bit-coded case more
parents perform better than two; for the TSP and graph coloring two parents
are advisable. Comparing different biases in choosing the child allele, on four
out of the five numerical problems fitness-based scanning outperforms the other
two and occurrence-based scanning is the worst operator.
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Eiben et al (1995) investigate diagonal crossover, compared to the classical
two-parent n-point crossover and uniform scanning in a steady-state GA with
linear-ranked biased selection (b = 1.2) and worst-fitness deletion. The test suite
consists of two two-dimensional problems (F2 and a function from Michalewicz)
and four scalable functions (after Ackley, Griewangk, Rastrigin, and Schwefel).
The performance of diagonal crossover and n-point crossover shows a significant
correspondence with r and n, respectively. The best performance is always
obtained with high values, between 10 and 15, where 15 was the maximum
tested. Besides, diagonal crossover is always better than n-point crossover using
the same number of crossover points (r = n − 1), thus representing the same
level of disruptiveness. For scanning the relation between r and performance is
less clear, although the best performance is achieved for more than two parents
on five out of the six test functions.

The interaction between selection pressure and the parameters r for diagonal
crossover and n for n-point crossover is investigated by van Kemenade et al
(1995). A steady-state GA with tournament selection (tournament size between
one and six) combined with random deletion and worst-fitness deletion was
applied to the Griewangk and the Schwefel functions. The disruptiveness of
both operators increases in parallel as the values for r and n are raised, but
the experiments show that diagonal crossover consistently outperforms n-point
crossover. The best option proves to be low selection pressure and high r in
diagonal crossover combined with worst-fitness deletion.

Motivated by the difficulties of characterizing the shapes of numerical
objective functions, the effects of operator arity are studied on fitness landscapes
with controllable ruggedness by Eiben and Schippers (1996). The NK
landscapes of Kauffman (1993), where the level of epistasis, hence the
ruggedness of the landscape, can be tuned by the parameter K , are used for this
purpose. The multiple-child and the one-child version of diagonal crossover and
uniform scanning are tested within a steady-state GA with linear-ranked biased
selection (b = 1.2) and worst-fitness deletion for N = 100 and different values
of K . Two kinds of epistatic interaction, nearest-neighbor interaction (NNI) and
random-neighbor interaction (RNI), are considered. Similarly to earlier findings
(Eiben et al 1995), the tests show that the performance of uniform scanning
cannot be related to the number of parents. The two versions of diagonal
crossover behave identically, and for both operators there is a consequent
improvement when increasing r . However, as the epistasis (ruggedness of
the landscape) grows from K = 1 to K = 5 the advantage of more parents
becomes smaller. On landscapes with significantly high epistasis (K = 25)
the relationship between operator arity and algorithm performance seems to
diminish. We illustrate these observations with a figure showing the error
(deviation of the best individual from the optimum) at termination for the case
of NNI in figure 33.12. The final conclusions of this investigation can be very
well related to works of Schaffer and Eshelman (1991), Eshelman and Schaffer
(1993) and Hordijk and Manderick (1995) on the usefulness of (two-parent)
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Figure 33.12. Illustration of the effect of the number of parents (horizontal axis) on the
error at termination (vertical axis) on NK landscapes with NNI, N = 100, K = 1 (top),
K = 25 (bottom).

recombination. It seems that if and when crossover is useful, that is, on mildly
epistatic problems, then multiparent crossover can be more useful than the two-
parent variants.

The results of an extensive study of diagonal crossover for numerical
optimization in GAs are reported by Eiben and van Kemenade (1997). Diagonal
crossover is compared to its one-offspring version and n-point crossover on a test
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suite consisting of eight functions, monitoring the speed, that is, the total number
of evaluations, the accuracy, that is, the median of the best objective function
value found (all functions have an optimum of zero), and the success rate, that
is, the percentage of runs where the global optimum is found. In most cases an
increase of performance can be achieved by increasing the disruptivity of the
crossover operator (using higher values of n for n-point crossover), and even
more improvement is achieved if the disruptivity of the crossover operator and
the number of parents is increased (using more parents for diagonal crossover).
This study gives a strong indication that for diagonal crossover an advantageous
multiparent effect does exist, that is, (i) using this operator with more than two
parents increases GA performance and (ii) this improvement is not only the
consequence of the increased number of crossover points.

A recent investigation of Eiben and Bäck (1997) addresses the working of
multiparent recombination operators in continuous search spaces, in particular
within ESs. This study compares ρ/2 intermediate recombination, ρary discrete
recombination, which is identical to uniform scanning crossover, and diagonal
crossover with one child. Experiments are performed on unimodal landscapes
(sphere model and Schwefel’s double sum), multimodal functions with regularly
arranged optima and a superimposed unimodal topology (Ackley, Griewangk,
and Rastrigin functions) and on the Fletcher–Powell and the Langermann
functions that have an irregular, random arrangement of local optima. On
the Fletcher–Powell function multiparent recombination does not increase
evolutionary algorithm (EA) performance; besides for the unimodal double sum
increasing operator arity decreases performance. Other conclusions seem to
depend on the operator in question; the greatest consequent improvement on
raising the number of parents is obtained for diagonal crossover.

33.7.6 Conclusions

The idea of applying more than two parents for recombination in an evolutionary
problem solver occurred as early as the 1960s (Bremermann et al 1966). Several
authors have designed and applied recombination operators with higher arities
for a specific task, or used an existing operator with an arity higher than two
(Kaufman 1967, Mühlenbein 1989, Bersini and Seront 1992, Furuya and Haftka
1993, Aizawa 1994, Pál 1994). Nevertheless, investigations explicitly devoted
to the effect of operator arity on EA performance are still scarce; the study of the
phenomenon of multiparent recombination has just begun. What would such a
study mean? Similarly to the question of whether binary reproduction operators
(crossover with two parents) have advantages over unary ones (using mutation
only), it can be investigated whether or not using more than two parents is
advantageous. In the case of operators with tunable arity this question can be
refined and the relationship between operator arity and algorithm performance
can be studied. It is, of course, questionable whether multiparent recombination
can be considered as one single phenomenon showing one behavioral pattern.
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The survey presented here discloses that there are (at least) three different types
of multiparent mechanism with tunable arity:

(i) operators based on allele frequencies among the parents, such as majority
mating, voting recombination, ρary discrete recombination, or scanning
crossover;

(ii) operators based on segmenting and recombining the parents, such as mating
by crossing over, diagonal crossover, or (r, s) segmentation crossover;

(iii) operators based on numerical operations, in particular averaging of
(real-valued) alleles, such as mating by averaging, ρ/ρ intermediate
recombination, ρ/2 intermediate recombination, and geometrical and
spherical crossover.

A priori it cannot be expected that these different schemes show the same
response to raising operator arities. There are also experimental results
supporting differentiation among various multiparent mechanisms. For instance,
there seems to be no clear relationship between the number of parents and
the performance of uniform scanning crossover, while the opposite is true for
diagonal crossover (Eiben and Schippers 1996).

Another aspect multiparent studies have to take into consideration is the
expected different behavior on different types of fitness landscape. As no
single technique would work on every problem, multiparent mechanisms will
have their limitations too. Some studies indicate that on irregular landscapes,
such as NK landscapes with relatively high K values (Eiben and Schippers
1996), or the Fletcher–Powell function (Eiben and Bäck 1997), they do not
work. On the other hand, on the same Fletcher–Powell function Eiben and van
Kemenade (1997) observed an advantage of increasing the number of parents for
diagonal crossover in a GA framework using bit coding of variables, although
they also found indications that this can be an artifact, caused simply by the
increased disruptiveness of the operator for higher arities. Investigations on
multiparent effects related to fitness landscape characteristics smoothly fit into
the tradition of studying the (dis)advantages of two-parent crossovers under
different circumstances (Schaffer and Eshelman 1991, Eshelman and Schaffer
1993, Spears 1993, Hordijk and Manderick 1995).

Let us also touch on the issue of practical difficulties when using multiparent
recombination operators. Introducing operator arity as a new parameter implies
an obligation of setting its value. Since so far there are no reliable heuristics for
setting this parameter, finding good values may require numerous tests, prior
to ‘real’ application of the EA. A solution may be based on previous work on
adapting (Davis 1989) or self-adapting (Spears 1995) the frequency of applying
different operators. Alternatively, a number of competing subpopulations could
be used in the spirit of Schlierkamp-Voosen and Mühlenbein (1996). According
to the latter approach each different arity is used within one subpopulation
and subpopulations with greater progress, that is, with more powerful operators,
become larger. A first assessment of this technique can be found in an article by
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Eiben et al (1998a). Another recent result indicates the advantage of using more
parents in the context of constraint satisfaction problems (Eiben et al 1998b).

Concluding this survey we can note the following. Even though there are
no biological analogies of recombination mechanisms where more than two
parent genotypes are mixed in one single recombination act, formally there is
no necessity to restrict the arity of reproduction mechanisms to one (mutation)
or two (crossover) in computer simulations. Studying the phenomenon of
multiparent recombination has just begun, but there is already substantial
evidence that applying more than two parents can increase the performance
of EAs. Considering multiparent recombination mechanisms is thus a sound
design heuristic for practitioners and a challenge for theoretical analysis.
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Eiben A and Bäck T 1997 An empirical investigation of multi-parent recombination
operators in evolution strategies Evolutionary Comput. 5 347–65
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Russell W Anderson (34.1), David B Fogel (34.2) and
Martin Schütz (34.3)

34.1 The Baldwin effect

Russell W Anderson†

34.1.1 Interactions between learning and evolution

In the course of an evolutionary optimization, solutions are often generated
with low phenotypic fitness even though the corresponding genotype may be
close to an optimum. Without additional information about the local fitness
landscape, such genetic near misses would be overlooked under strong selection.
Presumably, one could rank near misses by performing a local search and scoring
them according to distance from the nearest optimum. Such evaluations are
essentially the goal of hybrid algorithms (Chapters 11–13, Balakrishnan and
Honavar 1995), which combine global search using evolutionary algorithms
and local search using individual learning algorithms. Hybrid algorithms can
exploit learning either actively (via Lamarckian inheritance) or passively (via
the Baldwin effect).

Under Lamarckian algorithms, performance gains from individual learning
are mapped back into the genotype used for the production of the next
generation. This is analogous to Lamarckian inheritance in evolutionary
theory—whereby characters acquired during a parent’s lifetime are passed on to
their offspring. Lamarckian inheritance is rejected as a biological mechanism
under the modern synthesis, since it is difficult to envision a process by
which acquired information can be transferred into the gametes. Nevertheless,
the practical utility of Lamarckian algorithms has been demonstrated in some
evolutionary optimization applications (Ackley and Littman 1994, Paechter et
al 1995). Of course, these algorithms are limited to problems where a reverse
mapping from the learned phenotype to genotype is possible.

† This work was supported by the Public Health Foundation and the Kett Foundation. The author
wishes to thank David Fogel and Peter Turney for encouragement and comments.
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However, even under purely Darwinian selection, individual learning
influences evolutionary processes, but the underlying mechanisms are subtle.
The ‘Baldwin effect’ is one such mechanism, whereby learning facilitates the
assimilation of new genetic innovations (Baldwin 1896, Morgan 1896, Osborn
1896, Waddington 1942, Hinton and Nowlan 1987, Maynard Smith 1987,
Anderson 1995a, Turney et al 1996). Learning allows an individual to complete
and exploit partial genetic programs and thereby survive. In other words,
learning guides evolution by assigning ‘partial credit’ for genetic near misses.
Individuals with useful genetic variations are thus maintained by learning, and
the corresponding genes increase in frequency in the subsequent generation. As
genetic components necessary for a complex structure accumulate in the gene
pool, functions that previously required supplemental learning are replaced by
genetically determined systems.

Empirical studies can quantify the benefits of incorporating individual
learning into evolutionary algorithms (Belew 1989, French and Messinger 1994,
Nolfi et al 1994, Whitley et al 1994, Cecconi et al 1995). However, a theoretical
treatment of the effects of learning on evolution can strengthen our intuition for
when and how to implement such approaches. This section presents an overview
of the principles underlying the Baldwin effect, beginning with a brief history of
the elucidation and development in evolutionary biology. Computational models
of the Baldwin effect are reviewed and critiqued. The Baldwin effect is then
analyzed using standard quantitative genetics. Given reasonable assumptions of
the effects of learning on fitness and its associated costs, this theoretical approach
builds and strengthens conventional intuition about the effects of individual
learning on evolution. Finally, issues concerning problem formulation, learning
algorithms, and algorithmic design are discussed.

34.1.2 The Baldwin effect in evolutionary biology

Complex biological structures require the coordinated expression of several
genes in order to function properly. Determining how such structures arise
through evolution is problematic because it is often difficult to envision the
evolutionary advantage offered by intermediate forms. Without additional
developmental mechanisms, individuals with incomplete genetic programs
would gain no evolutionary advantage over those devoid of any genetic
components.

Baldwin (1896), Osborn (1896), and Morgan (1896) proposed how
individual learning can facilitate the evolution of complex genetic structures
by protecting partial genetic innovations, or ‘ontogenetic variations’: ‘[learning]
supplements such partial co-ordinations, makes them functional, and so keeps the
creature alive’ (Baldwin 1896). Baldwin further proposed how this individual
advantage of learning guides the process of evolution: ‘the variations which
were utilized for ontogenetic adaptation in the earlier generation, being thus
kept in existence, are utilized more widely in the subsequent generation’
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(Baldwin 1896). Over evolutionary time, abilities that were previously
maintained by adaptive systems can be replaced by genetically determined
systems (i.e. instincts). Waddington proposed an analogous interaction between
developmental processes and evolution, whereby developmental adaptations
‘guide’ or ‘canalize’ evolutionary change (Waddington 1942, Hinton and
Nowlan 1987). Formal mathematical or analytical models quantifying the
Baldwin effect did not appear in the literature until fairly recently.

The model of Hinton and Nowlan. The first quantitative model demonstrating
the Baldwin effect was constructed by Hinton and Nowlan (1987). They used a
computer simulation to study the effects of individual learning on the evolution
of a population of neural networks. They considered an extremely difficult
problem, where a network conferred a fitness advantage only if it was fully
functioning (all connections wired correctly). Each network was given 20
possible connections, specified by 20 genes.

Briefly consider the difficulty of finding this solution using a pure genetic
algorithm. Under a binary genetic coding scheme (allelic values of either
‘correct’ or ‘incorrect’), the probability of randomly generating a functional
net is 220. Note that a net with 19 out of 20 correct connections is no better off
than one with no correct connections. The corresponding fitness landscape has a
singularity at the correct solution with no useful gradient information, analogous
to a putting green (figure 34.1). Finding this solution by a pure genetic algorithm,
then, is the evolutionary equivalent of a ‘hole in one’. Of course, given a large
enough random population, an evolutionary algorithm could theoretically find
this solution in one generation.

Hinton and Nowlan modeled a modified version of this problem, where
genes were allowed three alternative forms (alleles): present (1), absent (0), or
‘plastic’ (?). Connections specified by plastic alleles could be varied by random
trials during the individual’s life span. This allowed an individual to complete
and exploit a partially hard-wired network. Hence, genetic near misses (e.g.
19 out of 20 correct genes) could quickly learn the remaining connection(s)
and differentially survive. The presence of plastic alleles, therefore, softened
the fitness landscape (figure 34.1). Hinton and Nowlan described the effect
of learning ability in their simulation as follows: ‘[learning] alters the shape
of the search space in which evolution operates and thereby provides good
evolutionary paths towards sets of co-adapted alleles’. The second aspect of the
Baldwin effect (genetic assimilation) was manifested in the mutation of plastic
alleles into genetically fixed alleles.

Issues raised with computational models. Hinton and Nowlan’s paper is
regarded as a landmark contribution to understanding the interactions between
learning and evolution (Mitchell and Belew 1995) and has inspired a
proliferation of modeling studies (Fontanari and Meir 1990, Ackley and Littman
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Figure 34.1. Schematic representation of the fitness landscape in the model of Hinton
and Nowlan. A two-dimensional representation of genome space in the problem
considered by Hinton and Nowlan (1987). The horizontal axis represents all possible
gene combinations, and the vertical axis represents relative fitness. Without learning, only
one combination of alleles correctly completes the network; hence only one genotype has
higher fitness, and no gradient exists. The presence of plastic alleles radically alters this
fitness landscape. Assume a correct mutation occurs in one of the 20 genes. The advent
of a new correct gene only partially solves the problem. Learning allows individuals
close (in Hamming space) to complete the solution. Thus, these individuals will be
slightly more fit than individuals with no correct genes. Useful genes will thereby be
increased in subsequent generations. Over time, a large number of correct genes will
accumulate in the gene pool, leading to a completely genetically determined structure.

1991, 1994, Whitley and Gruau 1993, Whitley et al 1994, Balakrishnan and
Honavar 1995, Turney 1995, 1996, Turney et al 1996). Considering the rather
specific assumptions of their model, it is useful to contemplate which aspects
of their results are general properties. Among the issues raised by this and
subsequent studies are the degree of biological realism, the nature of the fitness
landscape, the computational cost of learning, and the role of learning in static
fitness landscapes.

First, the model’s assumption of plastic alleles that can mutate into
permanent alleles seems biologically spurious. However, the Baldwin effect
can be manifested in the evolution of a biological structure regardless of
the genetic basis of that structure or the mechanisms underlying the learning
process (Anderson 1995a). The Baldwin effect is simply a consequence of
individual learning on genetic evolution. Subsequent studies have demonstrated
the Baldwin effect using a variety of learning algorithms. Turney (1995, 1996)
has observed a Baldwin effect in a class of hybrid algorithms, combining a
genetic algorithm (GENESIS) and an inductive learning algorithm, where the
Baldwin effect was manifested in shifting biases in the inductive learner. French
and Messinger (1994) investigated the Baldwin effect under various forms of
phenotypic plasticity. Cecconi et al (1995) observed the Baldwin effect in a



312 Other operators

GA+NN hybrid (a hybrid of a genetic algorithm and a neural network), as
did Nolfi et al (1994) and Whitley and Gruau (1993). Unemi et al (1994)
demonstrated the Baldwin effect in a GA+RL hybrid (GA and reinforcement
learning; in particular, they studied Q-learning). Whitley et al (1994) studied
the Baldwin effect with a hybrid of a GA and a simple hill climbing algorithm.
Finally, it is interesting to note that genetic mechanisms closely analogous
to the plastic alleles of Hinton and Nowlan may be in effect in evolutionary
interactions between natural and adaptive antibodies (Anderson 1995b, 1996a).
Nevertheless, it is difficult to see how this particular model could be generalized
to learning in neural systems.

Second, the model of Hinton and Nowlan assumed an extremely rugged
fitness landscape. The assumption of an ‘all-or-nothing’ fitness landscape has
apparently led some to assert that a nonlinear selection function is necessary for
a Baldwin effect to occur (Hightower et al 1996). This claim is not supported
by rigorous analysis. Learning can alter the shape of any fitness landscape
and therefore can affect evolutionary trajectories. For example, consider linear
directional selection. If learning only serves to change the slope of the selection
function, it will by definition affect its severity.

Third, the observation that ‘learning facilitates evolution,’ has often been
interpreted as ‘learning accelerates evolution’. Although several empirical
studies have demonstrated increased convergence rates for hybrid algorithms
(Parisi et al 1991, Turney 1995, Ackley and Littman 1991, 1994, Balakrishnan
and Honavar 1995), this more general claim is untenable under many conditions.
Intuitively, learning can slow genetic change by protecting otherwise less
optimal genotypes from selection. Furthermore, individual adaptive abilities can
represent an enormous investment of resources (consider the cerebral cortex in
man!). Since individual learning accrues a computational or biological cost, the
costs and benefits of learning must be weighed before drawing such conclusions.

Fourth, most current hybrid algorithm applications operate on a fixed
problem, or static fitness landscape. An exception is a study by Unemi et
al (1994), which involves a simulated robot in a maze. They show that the
ability to learn is initially beneficial, but it will eventually be selected out of the
gene pool, unless the maze changes dynamically with each new individual trial.
Ultimately, learning has no selective advantage in fixed environments, since,
presumably, once the optimal genotype is found, exploration away from this
optimum only reduces fitness (Stephens 1993, Via 1993, Anderson 1995a). The
studies by Hinton and Nowlan (1987) and Fontanari and Meir (1990) corroborate
this thesis: their simulations showed that as individuals arose with allelic
combinations close to the optimum, the plastic alleles (representing the ability
to learn) were selected out of the gene pool. In other words, the computational
advantage of individual learning decreases over the course of an evolutionary
optimization. Under these conditions, individual learning can only be maintained
in a population subject to changing environmental conditions. A similar case
has been made for phenotypic plasticity in general (West-Eberhard 1989, Stearns
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1989, Scheiner 1993, Via 1993) as well as for sexual versus asexual reproduction
(Maynard-Smith 1978).

34.1.3 Quantitative genetics models

In order to make some of these issues more explicit, it is useful to study
the Baldwin effect under the general assumptions of quantitative genetics.
A quantitative genetics methodology for modeling the effects of learning on
evolution was developed by Anderson (1995a), and the primary results of this
analysis are reviewed in this section. The limitations of this theoretical approach
are well known. For example, quantitative genetics assumes infinite population
sizes. Also, complete analysis is often limited to a single quantitative character.
Nevertheless, such analyses can provide a baseline intuition regarding the effects
of learning and evolution.

All essential elements of an evolutionary process subject to the Baldwin
effect are readily incorporated into a quantitative genetics model. These
elements include (i) a function for the generation of new genotypes through
mutation and/or recombination, (ii) a mapping from genotype to phenotype, (iii)
a model of the effects of learning on phenotype, and (iv) a selection function.
In this section, this methodology is demonstrated for a simple, first-order model,
where only the phenomenological effects of learning on selection are considered.
More advanced models are discussed, which incorporate a model of the learning
process, along with its associated costs and benefits. These analyses illustrate
several underappreciated points: (i) learning generally slows genetic change, (ii)
learning offers no long-term selective advantage in fixed environments, and (iii)
the effects of learning are somewhat independent of the mechanisms underlying
the learning process.

Learning as a phenotypic variance. For a first-order model, consider an
individual whose genotype is a real-valued quantitative character subject to
normal (Gaussian) selection:

ws(g) ∼ N(ge, Vs) (34.1)

where ws(g) represents selection as a function of genotype, ge represents the
optimal genotype, and Vs(t) is variance of selection as a function of time. A
direct mapping from genotype to phenotype is implicitly assumed.

What effect does learning have on this selection function? Learning allows
an individual to modify its phenotype in response to its environment. Consider
an individual whose genotype (gi) is a given distance (|gi − ge|) from the
environmental optimum (ge). Regardless of the mechanisms underlying the
learning process, the net effect of learning is to reduce the fitness penalty
associated with this genetic distance. Because of its ability to learn, an
individual with genotype gi has a probability of modifying its phenotype to
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the environmental value ge which is a function of the distance between these
two values. A simple way to model this effect is to specify a phenotypic
variance due to learning (Vl). This is equivalent to increasing the variance of
selection. Thus, learning increases the width of the selection function such that
Vs is replaced by Vs

∗ = Vs + Vl.

Fixed selection, constant learning. Consider a population subject to selection
with a fixed environmental optimum. For simplicity, let ge = 0. Assume
an initial Gaussian distribution of genotypes, fp(g) = N(m(t), Vp(t)), where
m(t) and Vp(t) are the population mean and variance at time t . Each round of
selection changes the distribution of genotypes according to

f ∗p (g) ∼ fp(g)ws(g) (34.2)

∼ exp
{− 1

2 [(g −m(t))2/Vp(t)+ g2/V ∗
s ]
}⇒ N(m, Vp) ∗N(0, Vs) (34.3)

∼ exp
{
− 1

2 [(g −m∗(t))2/V ∗
p (t)]

}
⇒ N(m∗(t), V ∗

p (t)). (34.4)

The population mean and variance after selection (m∗,Vp
∗) can now be

expressed in the form of dynamic equations:

m∗(t) = m(t)V ∗
s

Vp(t)+ V ∗
s

= m(t)− m(t)Vp(t)

Vp(t)+ V ∗
s

(34.5)

V ∗
p (t) = Vp(t)V

∗
s

Vp(t)+ V ∗
s

= Vp(t)−
V 2

p (t)

Vp(t)+ V ∗
s

. (34.6)

Lastly, mutations are introduced in the production of the next generation of
trials. To model this process, assume a Gaussian mutation function with mean
zero and variance Vµ. A convolution of the population distribution with the
mutation distribution has the effect of increasing the population variance:

f ∗∗p (g) =
∫ +∞

−∞
f ∗p (s)fm(g − s) ds = N(m∗(t), V ∗∗

p (t)) (34.7)

where

V ∗∗
p (t) = Vp(t)−

V 2
p (t)

Vp(t)+ V ∗
s

+ Vµ. (34.8)

Hence, in a fixed environment the population mean m(t) will converge on
the optimal genotype (Bulmer 1985), while a mutation–selection equilibrium
variance occurs at

V ∗∗
peq =

Vµ + (V 2
µ + 4VµV ∗

s )1/2

2
. (34.9)

Inspection of equations (34.5), (34.6), and (34.8) illustrates two important points.
First, learning slows the convergence of both m∗(t) and V ∗

p (t). Second, once
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convergence in the mean is complete, the utility of learning is lost, and learning
only reduces fitness.

In a more elaborate version of this model, called the critical learning period
model (Anderson 1995a), a second gene is introduced to regulate the fraction of
an individual’s life span devoted to learning (duration of the learning period).
Specification of a critical learning period implicitly assigns cost associated with
learning (the percent of life span not devoted to reproduction). Individuals are
then selected for the optimal combination of genotype and learning investment.
It is easily demonstrated that under these assumptions, learning ability is selected
out of a population subject to fixed selection.

Constant-velocity environments. Next, consider a simple case of changing
selection—a constantly moving optimum, ge(t) = δt , where δ is defined as
the environmental velocity. Let the difference between the population mean
and the environmental optimum be defined as φ = m(t)− ge(t). The dynamic
equation for φ is

φ∗(t) = φ(t)− φ(t)Vp(t)

Vp(t)+ V ∗
s

+ δ. (34.10)

At equilibrium, φ∗(t) = φ(t), hence

φeq = Vp + V ∗
s

Vp
δ (34.11)

where the equilibrium is expressed as a distance from the optimum. A similar
result can be found in the article by Charlesworth (1993), in his analysis of
the evolution of sex in a variable environment. The equilibrium population
variance remains the same as in the case of a fixed environment. Substituting
(34.9) yields

φeq = δ

2

[
(1+ (1+ 4V ∗

s /Vµ)1/2
]
. (34.12)

Thus in an environment where the optimal phenotype is changing at constant
rate, the population mean genotype converges on a constant ‘phase lag’ (φeq).

Learning actually increases the phase lag by protecting suboptimal genotypes
from selection. But this model assumes w̄s = 1, so that only the relative
magnitude of selection is accounted for. Strong selection without learning might
actually lead to extinction in rapidly changing selection. Phenotypic variability
(due to learning) has the effect of ‘shielding’ these marginal genotypes from
selection (Wright 1931).

As environmental conditions change, so will the selective advantage of
learning. The relations derived in this analysis show which equilibria will be
reached for an assumed phenotypic variability, but the model does not yield
information on what would represent the optimal investment in learning. Hence,
a complete model of the benefits of the Baldwin effect must incorporate the costs
associated with learning. The best way to estimate these costs is to develop a
model of the underlying learning process.
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Models of learning. A reasonable question to ask is how sensitive are the
effects of learning to the mechanisms underlying the learning process. The
most direct (and exhaustive) method for investigating this question would be
to construct a computer simulation to compare the effects of two learning
processes in an evolutionary program. However, estimates of comparative
performance can also be obtained using quantitative genetics models according
to the following methodology. First, one must develop a model of the learning
process. Next the effects of the learning process must be mapped onto the
selection function. A simple approximation is to construct a probabilistic or
phenomenological model of the effect of learning on phenotype.

Under the critical learning period model (Anderson 1995a), learning consists
of a series of independent trials conducted over a fraction of the individual’s
life span, or learning period. This simple model incorporates two important
considerations: the sequential nature of learning and a model of the cost
associated with learning. Despite the more complicated assumptions, the
dynamical response of this model to various forms of selection (fixed, random
variation, and constant velocity) were qualitatively comparable to those derived
for the simple additive variance model analyzed here. Longer learning periods
increase the investment in (and cost of) learning: consequently, the amount
of learning investment generally only increased with increased environmental
variability.

Other models of the learning process can be incorporated using the
methodology outlined above. For example, under the critical learning period
model, individuals were not allowed to benefit from successive trials within
the learning period, nor were they allowed to begin exploitation of successful
trials until after the learning period. Removing these two restrictions yields
a sequential trial-and-error learning rule. Such a learning rule is a more
appropriate model of the learning process in some systems, such as affinity
maturation in the antibody immune system (Milstein 1990) or skill acquisition in
neural systems (Bremermann and Anderson 1991, Anderson 1996b). For these
initial models, including such details of individual learning was unwarranted,
but any model of learning can be mapped onto a fitness function, although
mapping a sequential trial-and-error learning rule onto a survival probability
may be analytically more difficult. Often it turns out that this mapping masks
the details of the underlying process (Anderson 1995a). This suggests that the
effects of individual learning on evolution will be qualitatively the same.

34.1.4 Conclusions

Baldwin’s essential insight was that if an organism has the ability to learn,
it can exploit genes that only partially determine a structure—increasing the
frequencies of useful genes in subsequent generations. The Baldwin effect has
also been demonstrated to be operative in hybrid evolutionary algorithms. These
empirical investigations can be used to quantify the benefits of incorporating
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individual learning into an evolutionary algorithm. Computation time is the
obvious performance criterion; however, such comparisons are often limited
to the particular application. Alternatively, phenomenological models can be
used to generate reasonable estimates of performance expectations, deferring
the arduous task of creating detailed computer simulations.

The introduction of individual learning can radically alter fitness landscapes.
This is especially true if the learning algorithm operates on phenotypes according
to a fundamentally different process. Clearly, if the learning algorithm is
identical to the genetic algorithm, no computational savings are likely to be
manifest.

Under certain conditions, learning slows genetic change by protecting
suboptimal genotypes from selection. Thus, the benefits of individual
learning will probably be accrued early in optimization, when the population
is far from equilibrium, and learning will eventually impede algorithmic
convergence. Accordingly, for optimizations on fixed fitness landscapes,
a ‘variable-learning-investment’ strategy—where the computational resources
applied toward learning are subject to change—should be considered (Saravanan
et al 1995, Anderson 1995a).

34.2 Knowledge-augmented operators

David B Fogel

Evolutionary computation methods are broadly useful because they are general
search procedures. The canonical forms of the evolutionary algorithms do not
take advantage of knowledge concerning the problem at hand. For example, in
the canonical genetic algorithm (Holland 1975), a one-point crossover operator
is suggested with a crossover point to be chosen randomly across the parents’
chromosomes. However it is generally accepted that the effectiveness of a
particular search operator depends on at least three interrelated factors: (i) the
chosen representation, (ii) the selection criterion, and (iii) the objective function
to be minimized or maximized, subject to the given constraints if applicable.
There is no single best search operator for all problems.

Rather than rely on simple operators that may generate unacceptably
inefficient performance on a particular problem at hand, the search operators
can be tailored for individual applications. For example, in evolution strategies
and evolutionary programming, when searching for the minimum of a quadratic
surface, Rechenberg (1973) showed that the best choice for the standard
deviation σ when using a zero mean Gaussian mutation operator was

σ = 1.224f (x)1/2/n

where f (x) is the quadratic function evaluated at the parent vector x, and n

is the dimensionality of the function. This choice of σ incorporates knowledge
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about the function being searched in order to provide the greatest expected rate
of convergence. In this particular case, however, knowledge that the function is
a quadratic surface indicates the use of search algorithms that can take greater
advantage of the available gradient information (e.g. Newton–Gauss).

There are other instances where incorporating domain-specific knowledge
into a search operator can improve the performance of an evolutionary algorithm.
In the traveling salesman problem, under the objective function of minimizing
the Euclidean distance of the circuit of cities, and a representation of simply an
ordered listing of cities to be visited, Fogel (1988) offered a mutation operator
which selected a city at random and placed it in the list at another randomly
chosen position. This operator was not based on any knowledge about the
nature of the problem. In contrast, Fogel (1993) offered an operator that instead
inverted a segment of the listing (i.e. like a 2-opt of Lin and Kernighan (1976)).
The inversion operator in the traveling salesman problem is a knowledge-
augmented operator because it was devised to take advantage of the Euclidean
geometry present in the problem. In the case of a traveling salesman’s tour, if
the tour crosses over itself it is always possible to improve the tour by undoing
the crossover (i.e. the diagonals of a quadrangle are always longer in sum than
any two opposite sides). When the two cities just before and after the crossing
point are selected and the listing of cities in between reversed, the crossing is
removed and the tour is improved. Note that this use of inversion is appropriate
in light of the traveling salesman problem, and no broader generality of its
effectiveness as an operator is suggested, or can be defended.

Domain knowledge can also be applied in the use of recombination. For
example, again when considering the traveling salesman problem, Grefenstette et
al (1985) suggested a heuristic crossover operator that could perform a degree
of local search. The operator constructed an offspring from two parents by
(i) picking a random city as the starting point, (ii) comparing the two edges
leaving the starting cities in the parents and choosing the shorter edge, then (iii)
continuing to extend the partial tour by choosing the shorter of the two edges
in the parents which extend the tour. If a cycle were introduced, a random
edge would be selected. Grefenstette et al (1985) noted that offspring were
on average about 10% better than the better parent when implementing this
operator.

In many real-world applications, the physics governing the problem suggests
settings for search parameters. For example, in the problem of docking
small molecules into protein binding sites, the intermolecular potential can be
precalculated on a grid. Gehlhaar et al (1995) used a grid of 0.2 Å, with each
grid point containing the summed interaction energy between an atom at that
point and all protein atoms within 6 Å. This suggests that under Gaussian
perturbations following an evolutionary programming or evolution strategy
approach, a standard deviation of several ångströms would be inappropriate
(i.e. too large).

Whenever evolutionary algorithms are applied to specific problems with the
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intention of generating the best available optimization performance, knowledge
about the domain of application should be considered in the design of the search
operators (and the representation, selection procedures, and indeed the objective
function itself).

34.3 Gene duplication and deletion

Martin Schütz

34.3.1 Historical review

The idea of using operators such as gene duplication and deletion in the context
of evolutionary algorithms (EAs) is as old as the algorithms themselves.

Fogel et al (1966) seemed to be one of the first experimenting with variable-
length genotypes. In their work they evolved finite-state machines of a varying
number of states, therefore making use of operators such as addition and
deletion. Typically, the ‘add a state’ operator was performed randomly, rather
than a strict duplication. They also suggested a ‘majority logic’ operator that
essentially created a machine in which each state was the composite of a state
from each of the original machines; that is, this operator duplicated the majority
logic vote at each state of multiple finite-state machines. Concerning engineering
problems Schwefel (1968) was one of the first using gene duplication and
deletion for solving the task of determining the internal shape of a two-phase jet
nozzle with maximum thrust under constant starting conditions. Holland (1975,
p 111) proposed the concepts of gene duplication and gene deletion in order to
raise the computational power of EAs.

34.3.2 Basic motivations for the use of gene duplication and deletion

From these first attempts concerning variable-length genotypes until now many
researchers have made use of gene duplication and deletion. Four different
motivations may be classified.

(i) Engineering applications. Many difficult optimization tasks arise from
engineering applications in which variable-dimensional mixed-integer problems
have to be solved. Often these problems are of dynamic nature: the optimum
is time dependent. Additionally, in order to obtain a reasonable model of
the system under consideration, a large number of constraints has to be
respected during the optimization. Solving the given task frequently assumes
the integration of expert (engineer) knowledge into the problem solving strategy:
into particular genetic operators in the case of EAs. Many such constrained,
variable-dimensional, mixed-integer, time-varying engineering problems and
their solutions can be found in the handbook by Davis (1991) and in the
proceedings of several conferences, such as the International Conference on
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Evolutionary Computation (ICEC), Conference on Genetic Algorithms and
Their Applications (ICGA), Conference on Evolutionary Programming (EP) and
Parallel Problem Solving from Nature (PPSN).

(ii) Raising the computational power of EAs. As Goldberg et al (1989, p 493;
see also Goldberg et al 1990) state, ‘nature has formed its genotypes by
progressing from simple to more complex life forms’, thereby using variable-
length genotypes. He states that genetic algorithms (GAs) using variable-length
genotypes, thus being able to use duplication and deletion operators,

solve problems by combining relatively short, well-tested building
blocks to form longer, more complex strings that increasingly cover
all features of a problem. . . . Specifically, and more positively, we
assert that allowing more messy strings and operators permits genetic
algorithms to form and exploit tighter, higher performance building
blocks than is possible with random, fixed codings and relatively slow
reordering operators such as inversion.

Transferring this idea to EAs in general hopefully leads to more efficient EAs.

(iii) Extradimensional bypass. One additional motivation underpinning the
usefulness of variable-dimensional genotype lengths is given by the
extradimensional bypass thesis of Conrad (1993) (given more formally
by Conrad and Ebeling (1992)), which states (maximization):

As the number of dimensions increases the chance of our sitting on
top of an isolated peak decreases, assuming that the space has random
topographic features. The peaks will be transformed to saddlepoints.
The rate of evolution will then depend on how long it takes to discover
an uphill running pathway that requires a series of short steps and not
on how long it takes to make a long jump from one peak to another.

For example, imagine an alpinist walking in a two-dimensional environment
standing in front of a crater whose top he would like to reach. Even if he
cannot see the highest peak, climbing the crater and walking on the border of
the crater (extradimensional bypass) will lead him to the top. Walking in a one-
dimensional space would complicate the task. This time the surface consists of
two separated peaks (cut through the crater). If the alpinist climbs the first peak
(eventually the higher one) he sees the highest peak but since one dimension
is lost the desired path along the borderline of the crater does not exist. This
time the alpinist has to descend into the valley in order to solve his task. As
one can recognize, introducing extra dimensions during the course of evolution
may overcome the problem of becoming stuck in a local optimum or, to put it
in other words, decrease the necessity of jumping from one basin of attraction
to another.
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(iv) Artificial intelligence. Another important field in which variable-
dimensional techniques have also been used is the domain of artificial
intelligence (AI), especially machine learning (ML) and artificial life (AL).
Whereas in the field of ML (subordinated fields are, for example, genetic
programming, classifier systems, and artificial neural networks) solving a
possibly variable-dimensional optimization problem (depending on the actual
subordinated field in mind) is one main objective, this aim plays a minor
role in the AL field. AL research concentrates on computer simulations of
simple hypothetical life forms and selforganizing properties emerging from
local interactions within a large number of basic agents (life forms). A second
objective of AL is the question of how to make the agents’ behavior adaptive,
thus often leading to agents equipped with internal rules or strategies determining
their behavior. In order to learn/evolve such rule sets, learning strategies such
as EAs are used. Since the number of necessary rules is not known a priori,
a variable-dimensional problem instance arises. Despite the rule learning task,
the modeling of the simple life forms itself makes use of variable-dimensional
genotypes.

34.3.3 Formal description of gene duplication and deletion

From the preceding motivations one can see that solving variable-dimensional
optimization problems with constraints forms one main task forcing the use of
gene duplication and deletion. This sort of optimization (minimization) problem
may be formalized as follows.

Definition 34.3.1 (variable-dimensional minimization problem with constraints).

Given f : D ⊆ X = ∪∞i=1G
i → R, minimize f (x) subject to

gi(x) ≥ 0 ∀i ∈ {1, . . . , m}
hj (x) = 0 ∀j ∈ {1, . . . , l}
x = (x1, . . . , xnx

) ∈ D ⊆ X n ∈ N arbitrary but not fixed,

f, gi, hj : X → R. �

gi are called inequality constraints and hj equality constraints. The main
difference concerning a non-variable-dimensional optimization (minimization)
problem is the fact that the dimension of the objective vector x may vary; that
is, it is not fixed. As a consequence the parameter space X has to be formulated
as the union of all parameter spaces Gi of fixed sizes i. In the context of EAs the
gene space G ought not to be a vector space as usual in classical optimization
(most often a Banach space, e.g. Rn), thereby omitting all the comfortable
properties Banach spaces have with respect to analysis. Instead, G might be
B, N, Z, Q, C, R or any other complex space (not in the strict mathematical
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sense) representable by a complex data structure. The use of G is necessary
because most duplication and deletion operators directly work on semantical
entities represented by G. Davidor (1991a), for example, uses binary encoded
vectors of triples (three angles) for representing a robot trajectory, thus G takes
the form G = Bl × Bl × Bl .

Until now we have presented motivations for the use of variable-length
genotypes in the field of EAs. Unfortunately, nature gives no real hint at
why using a variable-length genotype should be advantageous. A high degree
of genepool diversity and a high flexibility to a changing environment may
be one main benefit of non-fixed gene lengths, thus raising the evolutional
power/adaptability of a population. One interesting fact nature offers is that
gene duplication most often leads to viable individuals, whereas gene deletion
does not (Futuyma 1986, p 78). (A brief and sufficient introduction into the
concepts of neo-Darwinism, i.e. the synthetic theory of evolution, is given by
Bäck (1996) and therefore omitted here. The more interested reader is referred
to the book by Futuyma (1986).)

Although nature offers a variety of schemes one central idea of how these
operators may be formalized can be extracted from nature as well as from several
approaches in the context of EAs. Whereas the general working mechanism of
both operators is very simple, the different achievements concerning distinct
applications may vary. In order not to focus on a special construction a
more abstract view of both operators is presented here (sufficing in the present
context).

Imagine a genotype x = (x1, . . . , xn) ∈ X consisting of genes xi ∈ G, i ∈
1, . . . , n (n corresponds to the actual genotype length) from a gene space G.
The deletion operator del may than be formalized as a function transforming a
given individual a = (x, s) ∈ I by deleting a gene xi . If I = X × As is the
individual space, where As is the strategy parameter space, which depends on
the application and the EA, del has the form

del : I → I, with del(a) = del(x1, . . . , xi−1, xi, xi+1, . . . , xn, s)

= (x1, . . . , xi−1, xi+1, . . . , xn, s) = a′.

In most cases an application-dependent probability pdel ∈ (0, 1) is responsible
for the decision of whether deletion should be applied or not. The position i

fixing the gene which has to be deleted is usually uniformly chosen from the
set {1, . . . , n}. Since deletion and duplication produce genotypes of different
length it is important to notice that the dimension n varies from individual to
individual. Returning to our example (Davidor 1991a), deletions occur only
after a recombination (pc = 1.0) and typically have a probability of 0.05. A
deleted gene xi has the form xi ∈ Bl ×Bl ×Bl , where each bit vector of length
l codes for an angle.

Similar to deletion, the duplication operator is simple. Generally, instead
of deletion, a gene is added to the genotype, such that the operator may be
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formalized as follows:

dup : I → I, with dup(a) = dup(x1, . . . , xi, . . . , xn, s)

= (x1, . . . , xi, x
′
i , . . . , xn, s) = a′.

Analogously to deletion a duplication probability pdup ∈ (0, 1) is used and the
index i is usually uniformly chosen. Concerning the policy for introducing the
new gene x ′i several policies may be distinguished, such as:

• Duplication. The gene x ′i is a duplicate of xi , such that a′ has the form
a′ = (x1, . . . , xi, xi, . . . , xn, s).

• Related. The initialization of the new gene x ′i is context dependent: x ′i is
generated with help the of the actual values of xi and xi+1.

• Addition. x ′i is initialized at random.

For example, Davidor (1991a) performs a duplication with a probability of
0.06 only when a recombination takes place. Whereas the duplication and
addition policy is intuitive the related policy may be further divided into two
strategies. First, ‘the added arm-configuration is such that either its end-effector
is positioned at the mid distance between the two adjacent end-effector positions,
or its links have a mid metric value between the corresponding link positions
in the adjacent arm-configurations’.

Finally, both operators have to adapt the length of the parameter vector
s ∈ As. Because this process depends on the form of As details are omitted
here.

34.3.4 Problems arising when using variable-length genotypes

Despite the fact that variable-length genotypes may enhance the computational
power of EAs (see motivations (ii) and (iii)), the introduction of this new concept
borrowed from nature leads to several problems.

• The role of positions in a variable-length genotype is destroyed:
the assignment of corresponding genes xi on different ‘homologous’
chromosomes is not possible. In order to construct genetic operators which
are able to generate interpretable individuals, thus being able to respect
semantical blocks on the genotype, the ‘assignment problem’ has to be
solved.

• In particular recombination is faced with the problem of finding the locus
of corresponding genes.

• Whereas some authors introduced gene duplication and gene deletion
operators ‘in order to improve the stability of the strings’ length’ (Davidor
1991a, p 84) others waive these operators; that is, they believe that variable-
dimensional recombination suffices for the stabilization of string lengths
(see e.g. Harp and Samad 1991).
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34.3.5 Solutions

The evolution program approach of Michalewicz (1992), i.e. combining
the concept of evolutionary computation with problem-specific chromosome
structures and genetic operators, may be seen as one main concept used to
overcome the problems mentioned above. Although this concept is useful in
practice, it prevents the conception of a more general and formalized view
of variable-length EAs because there no longer exists ‘the EA’ using ‘the
representation’ and ‘the set of operators’. Instead, for each application problem
a specialized EA exists. According to Lohmann (1992) and Kost (1993),
for example, the formulation of operators such as gene duplication and
deletion, used in their framework of structural evolution, is strongly application
dependent, thus inhibiting a more formal, general concept of these operators.
Davidor (1991a, b) expressed the need for revised and new genetic operators
for his variable-length robot trajectory optimization problem. In contrast to
the evolution program approach, Schütz (1994) formulated an application-
independent, variable-dimensional mixed-integer evolution strategy (ES), thus
following the course of constructing a more general sort of ES. This offered
Schütz the possibility to be more formal than other researchers. Unfortunately,
this approach is restricted to a class of problems which can easily be mapped
onto the mixed-integer representation he used.

Because most work concerning variable-length genotypes uses the evolution
program approach, a formal analysis of gene duplication and deletion is rarely
found in the literature and is therefore omitted here. As a consequence,
theoretical knowledge about the behavior of gene duplication and deletion is
nearly unknown. Harvey (1993), for example, points out ‘that gene-duplication,
followed by mutation of one of the copies, is potentially a powerful method for
evolutionary progress’. Most statements concerning nonstandard operators such
as duplication and deletion have the same quality as Harvey’s: they are far from
being provable.

Because of the lack of theoretical knowledge we proceed by discussing
some solutions used to circumvent the problems which arise when introducing
variable-length genotypes. In the first place, we question how other researchers
have solved the problem of noncomparable loci, i.e. the problem of respecting
the semantics of loci. Mostly this ‘gene assignment’ problem is solved by
explicitly marking semantical entities on the genotype. The form of the tagging
varies from application to application and is carried out with the help of different
representations.

• Davidor (1991a, b) used a binary encoded non-fixed-length vector of arm
configurations, i.e. a vector of triples (three angles), for representing a robot
trajectory, thus defining semantical blocks.

• The path of a mobile robot may be a variable-dimensional list of path nodes
(triples consisting of the two Cartesian coordinates and a flag indicating
whether a node is feasible or not).
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• Harp and Samad (1991) implemented the tagging with the help of a special
and more complex data structure representing the structure and actual
weights of any feedforward net consisting of a variable number of hidden
layers and a variable number of units.

• Goldberg et al (1989, 1990) extended the usual string representation of
GAs by using a list of ordered pairs, with the first component of each tuple
representing the position in the string and the second one denoting the
actual bit value. Using genotypes of fixed length a variable dimension
in the resulting messy GA was achieved by allowing strings not to
contain full gene complement (underspecification) and redundant or even
contradictionary genes (overspecification).

• Koza (1992, 1994) used rooted point-labeled trees with ordered branches
(LISP expressions), thus having a genotype representing semantics very
well.

Lohmann (1992) circumvented the ‘assignment problem’ using so-called
structural evolution. The basic idea of structural evolution is the separation
of structural and nonstructural parameters, thus leading to a ‘two-level’ ES:
a multipopulation ES using isolation. While on the level of each population
a parameter optimization, concerning a fixed structure, is carried out, on
the population level several isolated structures compete with each other. In
this way Lohmann was able to handle structural optimization problems with
variable dimension: the dimension of the structural parameter space does
not have to be constant. Since each ES itself worked on a fixed number
of nonstructural parameters (here a vector of reals) no problem occurred on
this level. On the structural level (population level) special genetic operators
and a special selection criterion were formulated. The criticism concerning
structural evolution definitively lies in the basic assumption that structural
and nonstructural parameters can always be separated. Surely, many mixed-
integer variable-dimensional problems are not separable. Secondly, on the
structural level the well-known semantical problem exists, but was not discussed.
Schütz (1994) totally omitted a discussion concerning semantical problems
arising from variable-length genotypes.

If the genotype is sufficiently prepared, problems (especially) concerning
recombination disappear, because the genetic operators may directly use the
tagging in order to construct interpretable individuals. Another important idea
when designing recombination operators for variable-length genotypes is pointed
out by Davidor (1991a). He suggests a matching of parameters according to
their genotypic character instead of to their genotypic position. Essentially, this
leads to a matching on the phenotypic, instead of the genotypic level. Generally,
Davidor points out:

In a complex string structure where the number, size and position of
the parameters has no rigid structure, it is important that the crossover
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occurs between sites that control the same, or at least the most similar,
function in the phenotypic space.

In case of the (two-point) segregation crossover used in his robot trajectory
optimization problem, crossing sites were specified according to the proximity
of the end effector positions.

34.3.6 Conclusions

One may remark that many ideas concerning the use of gene duplication and
deletion exist. Unfortunately, most thoughts have been extremely application
oriented, that is, not formulated generally enough. Probably the construction of
a formal frame will be very complicated in the face of the diversity of problems
and solutions.
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