DETERMINATION OF LOAD CAPACITY OF TIMBER JOINTS WITH WOOD PEGS

Üliõpilane: Mari Aia

Juhendaja: Illimar Kalk

Tartu, 2016
Olen koostanud lõputöö iseseisvalt.
Kõik töö koostamisel kasutatud teiste autorite
tööd, olulised seisukohad, kirjandusallikatest ja mujalt
pärinevad andmed on viidatud.

... (töö autori allkiri ja kuupäev)

Üliõpilase kood: 105352 EAEI

Töö vastab magistritööle esitatud nõuetele

... (juhendaja allkiri ja kuupäev)

Kaitsmisele lubatud: (kuupäev)

Kaitsmiskomisjoni esimese: (allkiri)
ABSTRACT

Although timber joints with wood pegs are historical and used for centuries, there are currently no standardized test or calculation methods for them in Europe.

The objective of present thesis is to develop this test method and compare the results with other calculation methods in order to find the best suiting equations for predicting load capacity. Used test method is based on standard EVS-EN 26891:1999 „Puittarindid. Mehaaniliste kinnitusdetailidega liited. Tugevus- ja deformatsiooninäitajate määramise põhialused“ and other similar works done abroad. 24 simplified mortise and tenon joints were loaded parallel to grain to failure under compression-induced double shear. Pegs were made of ash tree and oak and were with diameters of 20 mm and 25 mm. The joint details were of spruce and with thicknesses 25-50-25 mm and 50-100-50 mm.

Test results were compared with Eurocode 5 equations for steel pegs, Eurocode 5 equations according to L. Must’s master thesis, TFEC 1-2012 equations for wood pegs, Sandberg et al equations for wood pegs and equations from L. Allikas and V. Kulbach for oak pegs. The results are in favor of using Sandberg et al equations as they gave the most accurate and low-risk predicted load capacity. More tests and further work must be done to take these equations into use.

Keywords: wood peg fasteners, dowel connections, timber construction, load capacity, test method
4.4 Arvutuslikud kandevõimed Sandberg et al järgi .. 53
4.5 Arvutuslikud kandevõimed tammenaaglite arvutusjuhiste järgi 55

5. ARUTELU .. 57

KOKKUVÕTE .. 64

KIRJANDUSE LOETELU ... 66

LISAD

Lisa 1 Naagelliide .. 69
Lisa 2 Puitdetailid .. 70
Lisa 3 Katse mõõtmistulemused .. 72
SISSEJUHATUS

USA metallnaaglitega kinnitatud liidete standardi ANSI/AWC NDS mudeli valemid vajavad kasutamiseks empiirilisi seoseid erikaalu ja puitelementide muljumiskandevõimet. Need empiirilised seosed on aga saadud metallnaaglitega tehtud katsetest. Sama diameetriga terasnaaglid on aga puitnaaglitest oluliselt jäigemad ja nii võetakse NDS mudelis arvesse ainult alusmaterjali muljumistugevus. Puitnaaglitega liidetes esineb aga olugeld, kus naaglid on ristikiudu surutud ning alusmaterjal naagli poolt muljutud. Seega on vaja leida uued arvutusreeglid, mis võtaksid arvesse metallnaaglitega liitset erinevat olukorda ning puitnaagli ja alusmaterjali koormamist.

Järjest enam hinnatakse tänapäeval traditsioonilisust ja autentsust. Vanade hoonete restaureerimine on tõusnud taas au sisse ning seda nii meil Euroopas kui ka mujal maailmas.
Käesolev töö võikski olla samm lähemale puitnaaglite kasutuselevõtut levikuga. Teemat on maailmas küll vähe uuritud, kuid näiteks USAs on viimasel paaril aastakümnnel erinevates kõrgkoolides ja teadusasutustes aina rohkem sellega seotud artikleid kirjutatud ning katsetusi tehtud. Esimesi samme on puitnaaglitega liidete kandevöime väljasetamise jaoks on astutud ka Euroopas ja Eestiski.

1 KIRJANDUSE ÜLEVAADE

1.1 Puitnaaglitest ja nende ajaloost

Naagliks nimetatakse silindrilist varrast või plaat, mis läbib ühendatavate elementide kokkupuutepinna ja mille eesmärgiks on takistada konstruktsioonidetailide omavahelist nihkumist. Silindriliste naaglite alla liigituvad ümarterasest valmistatud naaglid ja poldid (läbimõõt 12 – 24 mm), naelad (läbimõõt 3 – 8 mm), tammenaaglid (läbimõõt 12 – 30 mm) ja kruvitsaga (läbimõõt 3 – 10 mm) või võtmega (läbimõõt 12 – 20 mm) keeratavad puidukruvid. Plaatnaaglide tehakse tamme- või immutatud kasepuidust, harvem lehtterasest. Puitplaatnaaglite paksus on 12 – 16 mm. [6, lk 109 - 111]

Joonis 1 Keeltappi osad [8, lk 192]
Traditsioonilise puitühenduse puhul kasutatakse tihti mõnda varianti erinevat test tapliidetest (vt Joonis 1) koos naaglitega. Sarnaseid ühendusi on kasutatud ka mööbli puhul ja polegi selge, kumma juhu jaoks tappühendus koos naaglitega esimesena välja arennes. Arheoloogid on dateerinud esimesed teadaolevad sellised puitliited umbes ajajärku 200 a eKr nii Kaug-Idas kui Euroopas.

Konstruktsioonide tehnoloogia arenes käiskäes metalltööriistade kasutuselevõtut levimisega. 19. sajandil muutasid puitkonstruktsioonid: arvukate saeveskite rajamisega hakati tootma standardiseeritud suurusega väiksemat saematerjali ning raud- ja terasnaelad muutusid odavaks ja levinumaks kui puitnaaglid. [1]

1.2 Puitnaaglitega kinnitatud liidete kasutamise tavad erinevates piirkondades

Kui Ühendkuningriikides kasutatakse konstruktsioonides tammeputu, siis Ameerikas ja Aasias on levinunud okaspuidu kasutamine. Shanks’i ja Walker’i poolt 2005. aastal läbi viidud uuringud on näidanud, et Ühendkuningriikide traditsioonilise geomeetria alusel valmistatud liidetes tekib eelkõige plastne purunemine tömbele, mitte habras purunemine põhjustatuna lõikejõust tapipesa seinas või tapikeelles. Suurbritannias on levinuimad tammenaaglid läbimõõduga 19,1 mm (0,75 tolli), mida kasutatakse sõlmedes, kus ühendatavate detailide ristlõike mõõtmed jäädavad alla 200 – 250 mm (8 – 10 tolli). Sellised on enamike traditsiooniliste, aga ka kaasaegsete elamuehituse konstruktsioonide mõõtmed. Kui kasutatakse suuremaid ristlõikeid ning mõjuvad jõud on suuremad, võetakse kasutusele naaglid läbimõõduga 25,4 mm (1 toll) ja vahel ka suuremad. Naaglite suurused ja liigid on sarnased nii Ameerika, Suurbritannia kui ka Aasia praktikates, kuid kui enamasti on levinud ümmarguse ristlõike kasutamine, siis Jaapanis kasutatakse hoopis kandilisi naagleid.

Suurbritannias spetsifitseeritakse naagleid ava järgi, kuhu see tegelikkuses sobituma peaks. Naagel ise võib olla pisut väiksema diameetriga või hoopis otsast ahenev. Tapikeele pikkus on ühem tapipesa sügavusest. Sellisel juhul kindlustatakse, et tapikeel ei hakka kandma tapipesa põhjas pärast konstruktsiooni kuivamist, mahukahanemist ja tasakaaluniisikuse savutamist. Tapikeele ölgade kaugus keagus keele otsast, keele paksus ja tapipesa laius on tavaliselt umbes kaks naagli diameetrit. Naagliava kaugus tapipesa seinast on tüüpiliselt 1,5 naagli diameetrit naagli keskmest mõõdetuna. Need mõõdud on oluliselt väiksemad kui

Liite tihe kokkusobivus varieerub piirkonniti ja erinevate meistrite käekirja tõttu. Kaasajal on aga akteeritav tihe liitesobivus pesa ja keele vahel kuni 5 mm vaheni. Shanks’i ja Walker’i liitetiheiduse testid demonstreerisid, et ühendustes, kus vahe oli 6 ja 12 mm olid järiski ja tugevuselt märkimisväärselt nõrgemad kui 4 mm vahega ühendused. Ameerikas ja Jaapanis on liidetavad detailid enamasti tihealt sobituvad. [1]

Eestis avaldatud kirjandusest leiab, et ühendatavat esse elementidesse puuritakse augud, mille läbimõõt on võrdne naagli läbimõõduga. Saetud materjalis ei tohi naaglid asuda laua või prussi teljel, sest säsipuidus arenevad kuivamisel kergesti praod. Enamasti asetatakse naaglid kahe pikiritta [6, lk 111] [11, lk 97], palkides on lubatud kasutada ka ühte pikirida [11, lk 97]. Tammenaaglid töötavad sarnaselt terasnäaglitega, kuid sobivad hästi kasutamiseks just tingimustes, kus terasnaaglid võivad korrodeeruda. Suuremate diameetrite töttu tuleb tammenaaglite puhul arvestada ka suurema ühendatava elemendi ristlööike nõrgestusega. Naaglite puidu niiskus ei tohi olla väiksem kui konstruktsioonis kasutatava puidu oma, sest naagli niiskumisel see paisub ja võib esile kutsuda konstruktsiooni pragunemist. [6, lk 122]

1.3 Erinevad naaglitüübid

Suurbritannias on traditsioonilises ehituses enimkasutatavad kaks naaglitüüpi: lõhestatud ahenev naagel (ingl cleft tapered peg) ja läbi rönga lukatud tüübel (ingl die driven dowel). Mõlemat tüüpi tehakse lõhestatud sirgekiulisest tamme lülipuidust. Lõhestusprotsess on otsustava tähtsusega kvaliteedikontrolliks traditsioonilise lõhestatud aheneva naagli puhul, sest puidu vead takistaksid puidu lõhestamist. Valmis lõhestatud naaglimaterjal vestetakse siis liimestriga kaheksakandiliseks nii, et kiud jääksid terveks. Läbi rönga lukatud tüübleid valmistatakse ajades puitu läbi teritatud rönga. Nii saadakse prismaatiline ringikujulise
ristlõikega ja jätkuvate puitkiududega naagel. Selliseid kasutatakse liidetes, kus tapikeelde ja –põske naaglite jaoks tehtavate aukude nihe on null või väga väike. Mõlemaid naaglitüüpe kasutatakse öhkuivatatult ligikaudu 12% puidu niiskussisalduse juures.

Kolmas võimalus naaglite valmistamiseks on treipingil tislerikvaliteetsest kuivatikuivast Ameerika valgest tammest naaglite treimine. Treitud naaglitel on lühike terav tipp, vars on konstantse soovitud diameetriga, lõpp aga on tüüupiliselt umbes 50 mm pikkuses 2 – 3 mm suurema diameetriga. Seega moodustub naagli viimasest osast justkui kork, mis ava tihedalt sulgeb. Kuigi selliseid naagleid valmistatakse ka Suurbritannias, on sarnased kinnitid eriti levinud Ameerikas. Kvaliteedikontrolli viakse treitud naaglite jaoks läbi nende hoolika valmistamisega ning konstruktsioonide ühendamise ajal ehitajate poolt. Üldiselt peetakse treitud naagleid puidutöödust ja ehitajate poolt lõhestatud naaglite valmistamiseks vulgarn. Tavaliselt ei jälgita naagli kiudude suunda liites, kuid on läbi viidud katseid, mis viitavad, et radiaalselt koormatud naaglid on jäägemad. [1]

1.4 Tööpõhimõtted

Naagel töötab lõikele ja paindele ning ühenduse kandesõime oleneb esmajoones puidu muljumistugevusest ja naagli paindetugevusest. Kui naaglite omavaheline kaugus on aga liiga väike, võib määravaks saada hoopis puidu nihketugevus. [6]

Naageliühenduse kandevõime piirolukord saabub ühel järgnevatest juhtudest:

1. ühendatav element puruneb tõmbele naagliga nõrgestatud ristlõikes;
2. ühendatav element puruneb lõikele (nihkele);
3. muljumispinged naagli ja puidu vahel saavutavad puidu muljumistugevuse;
4. paindepinged naaglis saavutavad voolavuspiiri ja naaglis tekib plastne liigid. [7]

1.5 Purunemisviisid

Joonis 3 Puinaaglitega liidete võimalikud purunemisviisid Sandberg et al järgi

Purunemisviisi I_m (vt Joonis 3a) puhul puruneb keskmise element vastu naaglit. [1]

Kandevõime valem standardi ANSI/AWD NDS-2005 järgi on kujul:

$$Z_{I_m} = \frac{D \cdot l_m \cdot F_{em}}{R_d}, \text{kus } R_d = 4,0 \cdot K \theta.$$

Valemites (1) – (21) kasutatud tähistused on välja toodud järgnevalt:

- **Z** on ühe kahelõikelise naagli kandevõime [lb];
- **D** on kinniti diameeter [in];
- **l_m** on keskmise elemendi paksus [in];
- **l_s** on ühe äärmise elemendi paksus [in];
- **F_{em}** on keskmise elemendi norm-muljumistugevus [psi];
- **F_{es}** on äärmiste elementide norm-muljumistugevus [in];
- **F_{yb}** on kinniti voolavustugevus [psi];
Fed on naagli kandevõime [psi];

R_d on teisendustegur, mis viib Load and Resistance Factor Design süsteemis tehtud arvutused üle Allowable Stress Design süsteemi;

K_θ on tegur, mis leitakse järgmiselt:

\[K_\theta = 1 + \frac{\theta}{360}, \]

cus \(\theta \) on maksimaalne nurk \((0^\circ \leq \theta \leq 90^\circ)\) mõjuvate jõudude ja puidu kiudude vahel;

k_3 on abisuurus, mis leitakse valemiga:

\[k_3 = -1 + \sqrt{\frac{2(1+R_e)}{R_e} + \frac{2F_{yb}(2+R_e)D^2}{3F_{em}t_s^2}}, \]

cus \(R_e \) on tapikeele ja –pesa norm-muljumistugevuste suhe, mis arvutatakse järgmiselt:

\[R_e = \frac{F_{em}}{F_{es}}, \]

F_yv on naagli lõikekandevõime [psi]:

\[F_{yv} = 4850 \cdot G_p \cdot G_\ell^{0.75}, \]

cus \(G_\ell \) on tapipesa ja –keele materjali erikaal 0 % niiskuse juures;

G_p on puitnaagli erikaal 0 % niiskuse juures;

F_{v,Rk} on naagli normkandevõime ühe kinnituselemendi ühe nihkepinna kohta [N];

\(t_1 \) on äärmise puitelemendi vähim paksus või süvistussügavus liites [mm];

\(t_2 \) on keskmise puitelemendi paksus liites [mm];

f_{h,i,k} on norm-muljumistugevus puitelemendis [N/mm^2];

M_{y,Rk} on voolavuspiirile vastava paindemomendi normväärts [Nmm];
\(\beta \) on elementide muljumistugevuste suhe, mida arvutatakse valemiga:

\[
\beta = \frac{f_{h,2,k}}{f_{h,1,k}}. \tag{6}
\]

\(F_{ax,Rk} \) on kinnituselemendi teljesuunaline väljatõmbe normkandevöime [N]. [4]

Sandberg et al uurimuses on antud purunemisviisi kohta järgmine valem:

\[
Z_{l_m} = Dl_mF_{em}. \tag{7}
\]

Church ja Tew leidsid oma 1997. aastal tehtud uurimuses 25,4 mm valgest tammest naaglite muljumistugevused. Võrreldes väärtusi sama diameetriga terasnaglette omadega, leidub, et ristiküudu muljumistugevus on puitnaagli puhul väiksem terasnaglist. Eeldades, et keskmine ja äärmised detailid on samast materjalist, juhtub selline purunemine, kui keskmine element on kitsam kui külgmiste elementide paksuste summa ja naagli läbimõõt on võrdlemisi suur. [1]

Purunemisviis \(I_m \) vastab Eurokoodeksis purunemisviisile (g). Normkandevöime valem ühe kinnituselemendi nihkepina kohta Eurokoodeksi järgi on järgmine [4]:

\[
F_{v,Rk} = f_{h,1,k} \cdot t_1 \cdot d. \tag{8}
\]

Purunemisviis \(I_s \) (vt Joonis 3b) tähendab, et liites annavad järgi külgmiste elementide naagliga kontaktis olevad puidukiud. [1] Kandevöime valem on USA standardite põhjal järgnev [4]:

\[
Z_{l_s} = \frac{2D \cdot l_sF_{es}}{R_d}, \text{kus } R_d = 4.0 \cdot K_{\theta} \tag{9}
\]

Sandberg et al uuringu põhjal on valem kuju järgmine:

\[
Z_{l_s} = 2Dl_sF_{es}. \tag{10}
\]

Samast materjalist elementide puhul juhtub selline purunemine siis, kui keskmine detail on paksem kui äärmiste detailide paksuste summa ning naagli diameeter on võrdlemisi suur. [1] Eurokoodeksis on purunemisviisid tähistatud (h) ja vastav kandevöime valem on järgmine [4]:
\[F_{v,Rk} = 0.5 f_{h,2,k} \cdot t_2 \cdot d. \] (11)

Purunemisviisi III (vt Joonis 3c) kirjeldatase juhul, kui kinnitis tekkib üks plastne liigend lõikepinna kohta koos kandevõime kaoga külgmiste detailide puidukiududes. [1] ANSI/AWC NDS-2005 järgi leitakse kandevõime antud purunemisviisi jaoks järgeva valemiga [4]:

\[Z_{III} = \frac{2k_3D_1sF_{em}}{(2+R_e)R_d}, \text{ kus } R_d = 3.2 \cdot K_\theta \] (12)

Sandberg et al järgi leitakse purunemisviisile vastav kandevõime järgmiste valemite abil:

\[Z_{III} = \frac{2DL_sF_{em}F_{es}}{2F_{es}+F_{em}} \left(\sqrt{Q} - 1 \right), \text{ kus } \]
\[Q = \frac{2(F_{es} + F_{em}) + 2F_{yb}(2F_{es} + F_{em})D^2}{3F_{em}F_{es}l_2^2} \] (13)

Selline liite kandevõime kadu toimub juhul, kui keskmise detaili paksuse suhe äärmistesse on võrdlemisi suur ja kinniti enda diameeter väike. [1] Eurokoodeksis märgitakse kolmandat purunemisviisi tähisega (j). Kandevõime valem on kujul:

\[F_{v,Rk} = 1.05 \frac{f_{h,1,k}t_1d}{2+\beta} \left[\sqrt{2\beta(1+\beta) + \frac{4\beta(2+\beta)M_{yy,Rk}}{f_{h,1,k}d}} - \beta \right] + \frac{F_{ax,Rk}}{4}. \] (15)

Siin ja edaspidi on liige \(F_{ax,Rk} \) köieefekt, mille mõju piiratakse naagelliite korral 0%. Seega pole antud lõputöös vajadust köieefekti käsitleda. [4]

\[Z_{IV} = \frac{2D^2}{R_d} \sqrt{\frac{2F_{em}F_{yb}}{3(1+R_e)}}, \text{ kus } R_d = 3.2 \cdot K_\theta \] (16)

Sandberg et al järgi saab kandevõime antud purunemisviisi jaoks leida järgnevalt:

\[Z_{IV} = 2D^2 \sqrt{\frac{2F_{yb}F_{em}F_{es}}{3(F_{es}+F_{em})}}. \] (17)
Purunemisviis IV võib tekkida, kui nii keskmise elemendi paksuse suhe äärmiste paksusesse kui ka kinniti diameeter on mõlemad võrdlemisi väikesed. Purunemisviisidele III. ja IV omame plastsete liigendite tekkimine naaglis ei pruugi täielikult kehtida puitnaaglite kohta, kuid sellist käitumist on liidete katsetamisel täheldatud. Naagli tugevus ei oleneks kinniti voolavustugevuse parameetrist \(F_{yb} \) nagu terase puhul, vaid naagli purunemistugevuse moodulist. [1] Eurokoodeksis vastab purunemisviis IV tähisele (k). Kandevõime valem on aga järgmine [4]:

\[
F_{v,Rk} = 1,15 \sqrt{\frac{2\beta}{1+\beta}} \sqrt{2M_{y,Rk} \cdot f_{h,1,k} \cdot d + \frac{F_{ax,Rk}}{4}},
\]

(18)

Joonis 4 Kolme liigendi moodustumine purunemisel

Joonis 5 Nelja liigendi moodustumine purunemisel

Shanks’i ja Walker’i katsekehad näitavad liigendite tekkimist (vt Joonis 4 ja Joonis 5). Otsast ahenevad naaglid purunevad tavaliselt kolme liigendiga, kus üks on tapikeele keskel ning teised kaks jäävad 2, vahel ka 2,5 naagli diameetri kaugusele. Läbi rõnga lükatud ja treitud naaglitel tekivad kolm liigendipunktli üksteisest kuni 2,5 naagli diameetri kaugusele.
Prismaatilistel naaglitel arenevad purunemisel sümmetriliselt neli liigendpunkti, mille vahed on 0,75…1,5 naagli diameetrit. [9]

\[
Z_{I₃d} = \min \left\{ \frac{D \cdot lₘ \cdot F_{ed}}{2 \cdot D \cdot lₛ \cdot F_{ed}} \right\}
\]

See on naagli ristiküudu lõikeline purunemine (vt Joonis 3f). Naagli piiratus ja kitsas lõtk külgmiste ja keskmise elemendi vahel on ilmselt põhjuseks, miks toimub just selline kiireloomuline purunemine. [1] Piirseisundi valem on USA puitnaaglitega liite standardis TFEC 1-2012 esitatud järgneval kujul [4]:

\[
Z_{V₃d} = \frac{\pi D^{2} F_{ev}}{2 \cdot R_d}, R_d = 3,5 \cdot K_θ
\]

Sandberg et al uuringus on antud purunemisviisi kandevõime valemil aga kuju

\[
Z_{V₃d} = 2 \frac{\pi D^{2}}{4} F_{ev}.
\]
Naagli nihkejõud on tüüpilise liite puhul 1,0…1,4 korda suurem konvensionaalsest nihkejöust ja sõltub väga keskmise ja äärmiste elementide vahelistest lõtkudest. Seepealast on liite kandevõime määriseise oluline ka jääkuskarakteristikute leidmine. Naagliga liite jääkus on tüüpiliselt oluliselt väiksem kui liidetavate elementide teljeline jääkus. Seepealast on traditsioonilise puitraami täpseks analüüsimiseks vajalik ka liite jääkuse arvestamine. W. M. Bulleit, L. B. Sandberg, T. L. O’Bryant, D. A. Weaver, W. E. Pattison ja M. W. Drewek on oma töödes lähenedud sellele probleemile defineerides efektiivse või ekvivalentse kinnitatud naagli pikkuse esindamaks liidet. Kuigi sellise jääkumõõdu juures on mää ravaks naagli deformatsioon, on oodata ka tappliite suuruse ja kiusuuna möju avaldumist. [1]

Purunemisviis V₃d on segu naagli lõikepurunemisest, paindumisest ja voolamisest ning seda ei tohi pidada puhtakujuliseks puidu ristiikudu purunemiseks. Naaglis ei teki ka klassikalist plastset liigendit, välja arvatud mõningat luusikutel juhtudel, kus see esineb sekundaarselt pärast lõikumist toimuval voolamisel (vt Joonis 6). [2]

Kui arenema hakkab purunemisviis V₃d, tekkivad üheaegselt mitu lõikelist murdekohta. Lähemal uurimisel on näha mitmeid pikisuunalisi lõikejälgi ümber naagli diameetri. Lõikejälje äärtes on märgata peeneid terviklikke pikisuunalisi puidukiudude, mis on lõigete vahel paindest väändunud. [2]

1.6 Kinnituselemendi voolavuspiirile vastava paindemomendi normväärtus ja paindetugevuse normväärtus

Maksimaalne elastse staadiumi moment Mₑl [Nmm] on ringikujulise ristlöike korral järgmine:

\[M_{el} = \sigma_{max,el} \frac{\pi d^3}{32} \text{ kus} \]

(22)
\[\sigma_{\text{max,el}} \] on paindepinge [N/mm²];

d on naagli diameeter [mm].

USA metallnaaglitega liidete standard lähtub plastse staadiumi maksimaalsest momendist. Kandevõime arvutusvalem on teisendatud kujule, kus kasutatakse paindetugevust. TFEC 1-2012 standardi järgi leitakse puidust naagli paindetugevus \(F_{by} \) [psi] järgmiselt:

\[F_{by} = 24850 \cdot G_{p}^{1.13}, \text{kus} \]

\(G_{p} \) on naagli erikaal 0% niiskuse juures. [4]

1.7 Muljumistugevus ja seda mõjutavad tegurid

Puidu survepurtusvuseks piki kiudu niiskusisalduse juures 15% on keskmiselt 350 kg/cm². Survepurunemisel nõtkuvad tugevamad ja jäigemad kiigrupid pehmepoolsete kevadpuidu kihtidesse. Esinevad suured plastsed deformatsioonid, mida on näha proovikeha pinnas voldistumisena. Habrast purunemist ei teki. [6, lk 14] Puidu survepurtus survele ristikiudu \(f_{c,90} \) on tunduvalt väiksem kui pikikiudu \(f_{c,0} \) ning deformatsioonid on nii suured, et proovikeha surutakse kokku. Muljumistugevuseks nimetatakse see seepärast tinglikku suurust, mida piiratakse deformatsiooniga.

Eurokoodeks 5 järgi on puidu norm-muljumistugevus pikikiudu \(f_{h,0,k} \) [N/mm²] leitav valemiga:
\[f_{h,0,k} = 0.082 \cdot (1 - 0.01 \cdot d) \cdot \rho_k, \text{ kus} \] (24)

\(\rho_k \) on puidu normtiheus \([\text{kg/m}^3]\);

\(d \) on kinnituselemendi diameeter \([\text{mm}]\), mis peab olema 6…30 mm.

USA metallnaaglitega puitliite standard ANSI/AWC NDS-2005 annab norm-muljumistugevuse leidmiseks järgmised valemid:

\[F_{\parallel} = 11200 \cdot G \text{ ja} \] (25)

\[F_{\perp} = \frac{6100 \cdot G^{1.45}}{\sqrt{D}}, \text{ kus} \] (26)

\(F_{\parallel} \) on norm-muljumistugevus pikikiudu \([\text{psi}]\);

\(G \) on puidu erikaal 0% niiskuse juures;

\(F_{\perp} \) on norm-muljumistugevus ristikiudu \([\text{psi}]\);

\(D \) on naagli diameeter \([\text{in}]\).

Muljumistugevused on USA puitnaaglitega kinnitatud puitliidete standardi TFEC 1-2012 põhjal leitavad valemitega:

\[F_{\parallel} = 4770 \cdot G_p^{1.32} \text{ ja} \] (27)

\[F_{\perp} = 4900 \cdot G_p \cdot G_t^{0.50}, \text{ kus} \] (28)

\(G_p \) on puitnaagli erikaal 0 % niiskuse juures;

\(G_t \) on tapipesa ja –keele materjali erikaal 0 % niiskuse juures. [4]

Sandberg et al kasutas oma uurimustöös naagli enda muljumistugevuse \(F_{ed} \) \([\text{MPa}]\) leidmiseks valemitek

\[F_{ed} = 39,0 \cdot G_{12}^{2.04}, \text{ kus} \] (29)

\(G_{12} \) on puitnaagli erikaal 12 % niiskuse juures.

Joonis 7 Pinge-deformatsiooni (vasakul) ja pinge-deformatsiooni juurdekasvu (paremal) graafikud

Puidu survetugevust ristikiudu ja deformatsioonide suurust mõjutab muljutava pinna ja kogu pinna suhe (vt Joonis 8). Mida väiksem see on, seda suurem on muljumistugevus (vrd Joonis 8 graafikuid 1 ja 2). Koormatud pinna all oleva materjali põikdeformatsioonid on kõrval oleva koormamata puidu poolt tõkestatud. Selliselt kujuneb välja lokaalne ruumiline...

Joonis 8 Muljumistugevuse ja deformatsioonide suuruste sõltuvus muljutava pinna ja kogu pinna suhtest

Puidu muljumistugevus kiudude suhtes nurga α all väheneb nurga suurenemisega [7, lk 33-34] ning seda võib leida Eurokoodeks 5 järgi seosega:

$$f_{h,\alpha,k} = \frac{f_{h,o,k}}{k_{90} \sin^2 \alpha + \cos^2 \alpha},$$

kus

$$\alpha$$ on nurk [°] jõu mujumissuuna ja pikikiu vahel;
Sama suurust leiab USA standardite ANSI/AWC NDS-2005 ja TFEC 1-2012 jaoks Hankinsoni valem:

\[
f_{90} = \begin{cases}
1,35 + 0,015d & \text{okaspuidule} \\
1,30 + 0,015d & \text{spoonliiimpuidule}, \text{kus} \\
0,90 + 0,015d & \text{lehtpuidule}
\end{cases}
\]

(Hankinsoni valem)

\[
F_{e\theta} = \frac{F_{e\parallel}F_{e\perp}}{F_{e\parallel}\sin^2\theta + F_{e\perp}\cos^2\theta}, \text{kus}
\]

(32)

\(\theta\) on maksimaalne nurk \((0^\circ \leq \theta \leq 90^\circ)\) mõjuvate jõudude ja puidu kiudude vahel. [4]

Puidu muljumisdeformatsioonid sõltuvad järgmistest teguritest: puidu niiskusest, puidukiudude suunast mõjuva jõu suhtes ja muljumispinna suurusest. Normidega on kehtestatud arvutuslikud muljumistugevused piki kiudu, pööki kiudu tervel pinnal, pööki kiudu, kui muljumispinna pikkus on rohkem kui 10 cm ning pööki kiudu, kui muljumispinna pikkus on 3 cm. Vahedalsete juhtumite korral saab muljumistugevust määrata lineaarse interpoleerimise teel. Muljumispindade kandevõime arvutatakse valemiga:

\[
N \leq m_{CM}R_{CM\alpha}F_{CM}, \text{kus}
\]

(33)

\(m_{CM} = 1,0\) on puidu töötamistingimuste tegur muljumisel;

\(R_{CM\alpha}\) on puidu arvutuslik muljumistugevus;

\(F_{CM}\) on arvutuslik muljumispinna suurus. [6, lk 74-75]
Naaglite minimaalsed vahekaugused on toodud Joonis 9. Kui ühendatava paketi paksus $b \leq 10d$, võib võtta $s_1=4d$ ja $s_2=s_3=2,5d$. Selliste vahekauguste korral leitakse naagli kandevöime jõudude mõjumisel piki kiudu puidu muljumise ja naagli painde tingimuste Tabel 1 järgi.

Tabel 1 Silindrilise naagli ühe lõike arvutuslik kandevöime [6, lk 117]

<table>
<thead>
<tr>
<th>Pingeseisukord</th>
<th>Elemendi nimetus</th>
<th>Arvutuslik kandevöime ühe töötava lõike kohta [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terasnaaglid</td>
<td>Naelad</td>
</tr>
<tr>
<td>Puidu muljumine</td>
<td>Sümmeetriliste ühenduste keskmised elemendid</td>
<td>50cd</td>
</tr>
<tr>
<td>Puidu muljumine</td>
<td>Sümmeetriliste ühenduste äärmed ja ebasümmeetriliste ühenduste õhemad elemendid</td>
<td>80ad</td>
</tr>
<tr>
<td>Puidu muljumine</td>
<td>Ebasümmeetriliste ühenduste paksemad elemendid</td>
<td>35cd</td>
</tr>
<tr>
<td>Naagli paine</td>
<td>Kinnituspikkuse järgi</td>
<td>$180d^2 + 2a^2$</td>
</tr>
<tr>
<td>Naagli paine</td>
<td>Maksimaalne</td>
<td>$250d^2$</td>
</tr>
</tbody>
</table>

Naagli kandevöime väärtused on järgnevas Tabel 2, kus naagli ühe lõike kandevöimeks loetakse väiksem tabelis toodud kandevöime väärtustest.

Tabel 2 Tammenaaglite arvutuslik kandevöime niiskuse ja kuumuse eest kaitstud kuuse- või männipuidust konstruktsioonides

<table>
<thead>
<tr>
<th>Elemendi nimetus</th>
<th>Elemendi paksus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sümmeetriliste ühenduste keskmised elemendid</td>
<td>c, 2,5</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>≥7</td>
</tr>
<tr>
<td>Sümmeetriliste ühenduste äärmed ja ebasümmeetriliste ühenduste õhemad elemendid</td>
<td>a, 2,5</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Parandustegureid jõudude suuna, puidu liigi, niiskuse režiimi ja koormuste iseloomu kohta kasutatakse samamoodi kui terasnaaglite korral. [6, lk 122-123]

Niiskussisalduse suurenedes väheneb puidu tugevus eriti paindel ja survel, vähem nihkel, eriti vähe tõmbel ja lõõkkoormusel. [7, lk 37] Joonis 7 Joonis 10 on näha, et niiskuse suurenemisega kuni 30 protsendini (kiudude küllastusaste) puidu painde-, surve- ja lõiketugevus algul järtsult vähenevad, kuid edasisel niiskumisel jäävad puidu tugevused praktiliselt konstanteks. [6, lk 21] Juhusliku niiskuse ω juures määratud tugevuse taandamiseks niiskusele $\omega = 12\%$ kasutatakse seost

$$\sigma_{12} = \sigma_w [1 + \alpha (\omega - 12)],$$

kus α väärtused näiteks männipuidul on survel pikikiudu 0,05, paindel 0,04, nihkel pikikiudu 0,03. valemid kehtivad niiskuse piirides 0…23%. Okaspuidu tõmbetugevust mõjutab niiskus õige vähe ja seda ei arvestata.
Joonis 10 Puidu tugevuse sõltuvus niiskussisaldusest

Kõrgematel temperatuuridel väheneb puidu tugevus. Temperatuurikav 20…50 °C langeb puidu survetugevus 20…40%, tõmbetugevus 12…15% ja nihketugevus 15…20%. Väheneb ka puidu elastsusmoodul umbes 2,5 korda. Temperatuuri tõustes suurenevad puidu deformatsioonid ning kuivamisprotsessiga kaasnevad suurte okste juures lisapinged. Sellega on seletatavad puitkonstruktsioonide avariid suvisel kuulmal ajal, kuigi konstruktsioon ei pruugigi olla maksimaalselt koormatud. Miinuskraadidel suureneb puidu tugevus staatilisel koormamisel igasuguse niiskussisalduse korral. Jäätnud toore puidu tugevus suureneb survel keskmiselt 30%, paindel 40% ning lõikel 70%. Lõökoormusel on külmunud puit hapruse tööttu kuni 50% nõrgem. [7, lk 37-38] [6, lk 21-23]

Standardi EN 384 kohaselt peab soovitatav puidu niiskusesisaldus vastama tasakaaluniiskusele keskkonnas, kus temperatuur on 20 °C ja suhteline õhuniiskus 65%. Paljudel okaspuuliikidel vastab see massi järgi ligikaudu 12% niiskusesisaldusele. Puitkonstruktsioonide arvutamise normides on kasutusele võetud kolm kasutusklassi, mis seavad kindlad tingimused niiskusele ja temperatuurile. Kasutusklassi 1 alla kuuluvaks loetakse konstruktsioonid, mille materjali niiskus vastab temperatuurile 20 °C ja õhu
suhteline niiskus on kuni 65%. Sellistel tingimustel on puitmaterjali niiskusesisaldus ≤ 12%. Kasutusklassi 2 materjali niiskus vastab temperatuurile 20 °C ja õhu suhtelisele niiskusele kuni 85%. Sel juhul on puidu niiskusesisaldus ≤ 20%. Kasutusklassi 3 materjali niiskus on suurem kasutusklassi 2 omast. Kasutusklasside 1 ja 2 korral on suurem niiskus lubatud mõnel nädalal aastas. [7, lk 38-39]

Voolavusteooria mudel (ingl yield model) põhineb liidetavate elementide muljumistugevuses. Metallnaaglite puhul on keskmiste tugevuste leidmiseks järgnevad valemid:

\[
F_{\|} = 77,2G;
\]

\[
F_{\perp} = 212G^{1,45}D^{-0,5}, \text{kus}
\]

G on ahjukuiv erikaal;

D on naagli diameeter.

Keskmine ahjukuiva materjali erikaal Sandberg et al katse jaoks oli valge männi jaoks 0,39, suhkravahtra 0,70. Kasutades valemeid (35) ja (36), saame, et vastavad väärtsed oleksid valge männi jaoks 30,1 MPa ja 10,7 MPa ning suhkravahtra jaoks 54,0 MPa ja 25,1 MPa. Naagli enda tugevust saab määrata Schmidt’i ja Daniels’i poolt nominaaldiameetriga 25,4 mm valgest tammest naaglite jaoks välja töötatud empiirilise valemi järgi:

30
\[F_{ed} = 39,0(G_{12})^{2.04}, \text{kus} \]

\(G_{12} \) on erikaal 12-protsendilise puidu niiskussisalduse juures.

Antud katse juures oli punasest tammest naaglite \(G_{12} \) ligikaudu 0,60, mis tähendab, et naagli kandevõimeks võib arvestada 13,7 MPa. Olgu ka märgitud, et Church ja Tew tegid oma kandevõime katseid valgest tammest naaglitega, mis pesitsesid poolsilindrilises ebatsuuga või punase tamme „taskutes“. Nende tulemused näitasid umbkaudu 50% vähenemist \(F_{e\parallel} \) puhul võrreldes metallist naagliga. Church’i ja Tew’i katse aga oli üles ehitatud nii, et ilmselt sisaldas piirav deformatsioon nii naagli kui ka alusmaterjali purunemist.

Sandberg’i et al katsete tulemustest võib välja lugeda, et valemite (1) – (2) järgi ennustatud purunemisviis ühtib katset saadud andmetega. Mönes katserühmas esines kahe tüüpi purunemisviise. Eriti keeruline oli vahet teha purunemisviisidel \(I_d \) ja \(V_d \), sest mõlemal juhul on naagli purunemine kontsentreritud lõikepindadel ja pole aru saada, kas see tuleneb muljumiskandevöime ületamisest, tapikeele ja –seina vahelises väikesest lõtkust ning lõikejõulisest purunemisest või mõlema eelmainitu kombinatsioonist. Kõigil juhtudel aga andis voolavusteoorial põhinev mudel minimaalsed kandevöimed, mis vastasid purunemisviisidele. Mudeli järgi leitud kandevöimed olid katseliselt saadud tulemustest keskmiselt 9,3% väiksemad. Kandevöime oli keskmisest valge männi ristikiudu koormatud.
ja 50,8 mm külgmiste elementidega juhul 15,8% madalam ning samal juhul piki kiudu koormates 1,9% kõrgem. [1]

Joonis 11 Church’i ja Tew’i puitnaaglite muljumistugevuse katseskeem

Alusmaterjali kiudude suuna mõju uuriti 0-, 45- ja 90-kraadise kiudude koormamine juures. Punasest tammest alusmaterjali puhul ei täheldatud mõju proportsionaalsele piirpingele ega 5% diameetri kõrvaledest meetodiga voolavuspierire määramisel. Ebatsuuga korral olid aga mõlemad näitajad ristikiudu koormamise puhul madalamad.

Ava suuruse mõju testiti kasutades 2,53 cm diameetriga naagli jaoks kolme suurusega ava alusmaterjalis: avad olid naagli diameetri mõõdust 1,59; 2,38 ja 3,18 mm suuremad. Naagleid koormati tangentsiaalselt ning alusmaterjali pikikiudu. Efekt ava suurusest pingetele oli väike.

Naagli diameetri mõju välja selgitamiseks katsetati kolme diameetrit: 2,54; 2,86 ja 3,18 cm. Alusmaterjali kiud olid katses koormatud ristisuunas, naaglid aga nii tangentsiaalselt kui radiaalselt. Naaglid diameetri erinevus mõjutas proportsionaalset piirpinget ja 5-protsendilise
nihkega pinget väga vähe. Tangentsiaalselt koormates erinevused puudusid, radiaalselt koormates oli 2,54 cm naagli proporsionaalne piirpinge teistest madalam. [13]

Shanks’i ja Walker’i katsed näitasid näitas eduvalt, et liigendite tekkimiskauguse järgi saab ennustada piirkoormust. Kui suurendada vahet 0,75 naagli diameetrilt 2 diameetrini, väheneb piirkoormus 43…54%. Seega on liite tugevuse seisukohalt oluline mõista liigendite tekkimisega seotut, mis on mõjutatud järgnevatest teguritest:

1. naagli jäikusest: kõrge Young’i mooduli ja lõikejäikuse korral tekivad hinged üksistele lähemale;
2. naagli ,,istuvusest“ naagliavasse: kui ahenev naagel ei sobitu avasse just lõpuosast, võib see avas pöörduda ning tekitada suurte vahedega nelja liigendi moodustumise või puruneda kolmest kohast;
3. tapikeele ,,istuvusest“ tapiavasse: suurema lõtku korral moodustuvad liigendid tapis üksiste kaugemale;
4. tapiava jäikusest: mida jäigem on tapisein, seda lähemale liigendid üksistele moodustuvad. [9]
2 TÖÖ EESMÄRK JA ÜLESANDED

Restaureerimisfilosoofia seisukohast on oluline, et konstruktsioonide taastamisel kasutatakse algupäraseid materjale ja võimalusel ka töövõtteid. Seepärast on meie kultuuriloo hoidmiseks ning ehituskunsti ja –traditsiooni säilitamiseks ja arendamiseks vajalik osata puitnaaglitega liidete kandevöimeid arvutada. Varasematel aegadel on see olnud ehitusmeistrite kogemuse küsimus ning nende vastutada, kuid tänapäeval võiks olla välja töötatud vastavad arvutuseeskirjad ja standardid, mis lubaksid liiteid ratsionaalselt projekteerida ja annaksid teaduslikult ka kindluse konstruktsiooni vastupidavusele.

Seni puuduvad Euroopas vastavad standardid puitnaaglitega liidete kandevöimete leidmiseks. Puudub ka vastav standard, mille järgi puitnaaglist kinnitiga liitele kandevöime väljaselgitamiseks katseid läbi viia.

Eelnevast lähtuvalt on antud diplomitöö eesmärgiks püüd välja selgitada puitnaaglist liite katsetusmeetod ja kandevöime. Selleks vajalikud ülesanded on järgnevad:

1. välja töötada katsetulemusi standarditega Eurokoodeks 5 (koos L. Musta magistritöö märkustega) ja TFEC 1-2012, Sandberg et al uriumuse valemitega ning L. Allikas’e ja V. Kulbachi raamatus „Puitkonstruktsioonid“ toodud eeskirjadega ning välja selgitada, kas antud valemeid võiks rakendada puitnaaglist liidete kandevöimete arvutamisel.

2. võrrelda katsetulemusi standarditega Eurokoodeks 5 (koos L. Musta magistritöö märkustega) ja TFEC 1-2012, Sandberg et al uriumuse valemitega ning L. Allikas’e ja V. Kulbachi raamatus „Puitkonstruktsioonid“ toodud eeskirjadega ning välja selgitada, kas antud valemeid võiks rakendada puitnaaglist liidete kandevöimete arvutamisel.
3 MATERJAL JA METOODIKA

3.1 Katsemetoodika

Katsemasinatele esitab EVS-EN 26891:1999 järgmised nõuded:

a) peab koormama ja mõõtma jõudu vähemalt täpsusega ± 1 % eeldavast maksimaalset jõust või paremini;

b) peab mõõtma koormusest tulenevaid deformatsioone vähemalt täpsusega ± 1 % või täpsemalt. Kui deformatsioonid on väiksemad kui 2 mm, siis täpsusega ± 0,02 mm.

Eeldatav maksimaalne jõud liite jaoks määratakse kindlaks kogemuste, arvutuste või esialgsete katsete põhjal.

Koormamisel peab üldjuhul järgima järgnevalt kirjeldatud skeemi (vt Joonis 13). Katsekehale rakendatakse koormust kuni 40 % eeldavast maksimaalset koormusest ja seda hoitakse 30 sekundit. Seejärel vähendatakse koormust kuni 10 % maksimaalset koormusest ja hoitakse jälle 30 sekundit. Pärast seda suurendatakse koormust kuni piirkoormuse saavutamiseni või kui saavutatakse deformatsioon väärtusega 15 mm. Alla 70 % eeldatava koormuse juures olgu koormamiskiirus 20 % eeldavast maksimaalset koormusest minuti kohta veaga ± 25 %. Suurema kui 70 % eeldatava koormuse juures
kohandatakse koormust nii, et piirkoormus või deformatsioon suurusega 15 mm saavutatakse 3 – 5 minuti jooksul.

Joonis 13 Koormamisprotsess

Iga katsekeha jaoks määratakse katse käigus kindlaks piirkoormus, mis saabub kas deformatsiooni juures suurusega 15 mm või enne seda purunemisel. Deformatsioone loetakse graafikul näidatud hetkedel. Ka tehakse kindlaks maksimaalne deformatsioon maksimaalse koormuse juures. Kui koormuse-/deformatsioonidiagrammi pole võimalik koostada, mõõdetakse deformatsioone iga 10 % koormuse tõusu järgi.

Kui katsetamise käigus tuleb välja, et maksimaalse eeldatava koormuse ja katsetes leitud maksimaalse koormuse erinevus on rohkem kui 20 %, tuleks eeldatavat maksimaalset koormust järgnevate katsete vastavalt muuta. Juba saadud maksimaalseid koormusväärtuseid võib katse teelmutest ühe osana muutmata kujul arvesse võtta, kuid sellisel juhul tuleb teha vastavad muudatused deformatsioonimooduli valemites seoses uue eeldatava maksimaalse koormusega. [14]

Michigani tehnikaülikooli professorid L. Bougue Sandberg ja William M. Bulleit on läbi viinud 72 katset kahelõikelise naagliga tappliite mudeliga (vt Joonis 14). Katsetes kasutati 25,4 mm läbimõõduga punase tamme (Quercus rubra) naagleid, mis on Põhja-Ameerika ehituses laialdaselt levinud. N-ö tapikele paksuseks oli 50,8 mm. Pooled detailidest tehti valgest männist (Pinus strobus) ja pooled suhkruvahtrast (Acer saccharum). Iga liigi puhul pooltel katsetest olid n-ö tapipesa detailide paksused kas 25,4 mm või 50,8 mm. Iga grupi jaoks oli ka kaks kombinatsiooni: keskmist detaili koormati paralleelselt kiusuunaga (vt joonis 14a) ja äärmisi risti kiusuunaga või vastupid (vt joonis 14b). Kõik nimetatud alagrupid jagati omakorda ka naagli kiudude suuna järgi kolmeks: radiaalsuunaline koormus, tangentsiaalsuunaline koormus, koormus 45-kraadise nurja all.
Kõik detailid viidi tasakaaluseisundisse: niiskusesisaldus männi- ja vahtrapuidust detailidel jäi vahemikku 6 – 8 %, tammenaaglitel 8 %.

Katsed sooritati 98 kN servohüdraulilise arvutijuhtitud universaalse katsemasinaga. Kasutati 25 kN jõumõõtetoosi. Aega, koormust ja nihet mõõdeti katse jooksul iga sekundi kohta. Koormamine lõpetati, kui nihke suuruseks mõõdeti 20 mm või kui sai määrata voolavuspiiri, kus koormus langes järsult 10 – 15 %. Männipuidust katsekehi koormati kiirusega 0,015 mm/s 5 minuti jooksul ja vahtrapuidust katsekehi 0,008 mm/s 6 minuti jooksul.

Vältimaks välimiste klotside laiali vajumist, paigaldati liitele Jorgenseni pitskruvi puidu jaoks. See toetus koormamislauale ja oli külgmiste detailidega vaid kontaktis neid pingutamata. Et kontrollida, ega pitskruvi kasutamine katset mõjuta, mõõdeti jõudünamomeetriga selle mõju. Kuna maksimaalne dünamomeetri mõõtulemus oli 0,045 kN, mis on vähem kui 0,5 % keskmisest maksimaalsest jõust, ja hõõrdetegur puipuiduga liites on 0,60, võib väita, et hõõrdest põhjustatud viga on tühine. [1]

Jonathan Shanks ja Peter Walker töötasid katseliselt ja lõplike elementide mudelit vaadeldes välja puinäagлина tapplite kandevöime ja jääkuse hindamise meetodis, mis on peamiselt kasutatav Ühendkuningriikide toorest tammepuidust liidetel ka kuivatatud lamelcomos_plugins. Varasem uurimus samade autorite poolt on kinnitanud, et Suurbritannia traditsioonilistes liidetes tekkiv enamasti plastne purunemine tõmbejüüle kui tapikesele rabe lõikepurunemine. Enamasti kasutatakse Suurbritannias tammete puittappemõõdna 19 mm (0,75 tol). Liidetavate detailide ristsõlėike mõõmed jäavad nii traditsioonilistel kui ka kaasasõitsetel puitsörestikel vahemikku 200 – 250 mm. Kui tegemist on teadaolevalt suuremate jõududega, kasutatakse ka 25,4 mm (1 toll) ja suuremaid naagleid.

3.2 Katsematerjal

Et liites võib kandevõimet mõjutada väga palju erinevaid tegureid, võeti anutud lõputöös vaatluse alla vaid mõned. Naaglite jaoks valiti välja ja kaks puiduliiki ning kaks erinevat diameetrit, samuti varieeriti tappliidet imiteeriva detailide paksusi kahe erineva mõõdu vahel. Katseid tehti kokku 24 liitemudelil, iga erineva konfiguratsiooniga katsekehi oli kolm.

40
katsetati liites ühte naaglit. Tapikeelt imiteerivad detailid on Sandberg’i ja Bulleit’i eeskujul kõrguse ja laiusega 150x150 mm ning paksusega kas 50 või 100 mm, mis on lähedasemad kohalikus ehitusstraditsioonis kasutatavate mõõtudega. Tapipesa seinu imiteerivad detailid olid valmistatud mõõmetega 150x150 mm ning vastavalt paksustega kas 25 või 50 mm. Keskmne detail on võrreldes külgmistega vertikaalsuunas 25 mm nihutatud, et see ei hakkaks koormamisel survele tööle. Naagel sobitus avasse tihedalt ja seda ei olnud võimalik avas enam keerata. Lühemad naaglid said detailidesse löödud haamri abil, pikemate puhul kasutati töö lihtsustamise mõttes survemasinat. Naagli kuivude suuna mõju katsetamisel ei arvestatud, sest eelnevalt on teada, et selle mõju hinnatakse väikseks. Puitdetaile, mis esindasid tappliident, koormati kõiki pikki kiudu.

Kuusematerjal oli varem liistul välitingimustes staablis seisnud ning naaglimaterjal oli varasemalt olnud kuivades sisetingimustes. Kogu materjal seisis enne töötlemist vaakumkambris. Pärast töötlemist ja enne katsetamist hoiustati detaile ühe ööpäeva jaheas sisseruumis.
Alljärgnevalt on Tabel 3 ja Tabel 4 Tabel 3 ärä toodud kasutatud puitmaterjali keskmised tihedused ning niiskussisaldused ja nende varieeruvused.

Tabel 3 Katsematerjali tihedused

<table>
<thead>
<tr>
<th>Puiduliik</th>
<th>Keskmine katsekehade tihedus [kg/m³]</th>
<th>Väikseim tihedus [kg/m³]</th>
<th>Suurim tihedus [kg/m³]</th>
<th>Keskmine katsekehade tihedus 12% niiskussisalduse juures [kg/m³]</th>
<th>Keskmine kuiv tihedus puiduliigil kirjanduse järgi [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saar</td>
<td>909,4</td>
<td>713,9</td>
<td>1466,2</td>
<td>912,4</td>
<td>680</td>
</tr>
<tr>
<td>Tamm</td>
<td>675,4</td>
<td>600,3</td>
<td>1023,1</td>
<td>681,3</td>
<td>720</td>
</tr>
<tr>
<td>Kuusk</td>
<td>480,9</td>
<td>411,5</td>
<td>537,8</td>
<td>444,3</td>
<td>460</td>
</tr>
</tbody>
</table>

Tabel 4 Katsematerjali niiskussisaldused

<table>
<thead>
<tr>
<th>Puiduliik</th>
<th>Keskmine niiskussisaldus [%]</th>
<th>Väikseim niiskussisaldus [%]</th>
<th>Suurim niiskussisaldus [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saar</td>
<td>11,9</td>
<td>7,0</td>
<td>14,0</td>
</tr>
<tr>
<td>Tamm</td>
<td>11,2</td>
<td>10,0</td>
<td>12,8</td>
</tr>
<tr>
<td>Kuusk</td>
<td>19,5</td>
<td>8,6</td>
<td>26,0</td>
</tr>
</tbody>
</table>

Esialgne koormamiskiirus sai välja arvutatud eeldusega, et hinnanguliselt võib alusmaterjali tugevuseks lugeda C24 ja naagil C30. Arvutuskäik variandi jaoks, kus katsetatakse 20 mm läbimõõduga naaglit tappmudelis paksustega 25-50-25 mm ehk naaglipikkusega 120 mm on näidatud allpool (valemid allikast [5]) ning tulemused erinevate variantide jaoks on esitatud Tabel 5. Katsetamise koormamiskiirused valiti arvutustulemustele toetudes F₃ väärustuste järgi. Kuna oletatav koormamiskiirus osutus esimese katse jaoks piisavalt täpseks, s.t maksimaalne koormus saavutati 290 sekundi jooksul, kui see oli vaja saavutada 300 sekundi jooksul, ei olnud seda vaja muuta. Kuigi järgnevatel katsetel polnud maksimaalse koormuse saavutamise aeg enam ühtlane, oli katseid väävle ja parema võrdlustulemuse saamiseks koormamiskiirust pärast igat katset eraldi enam ei muudetud.

Andmed alusmaterjali kohta:

C24
\[f_{c,0,k} = 21 \, N/mm^2 \]

Andmed naagli kohta:

C30
\[f_{c,90,k,C} = 2,7 \, N/mm^2 \]
\[f_{v,k} = 4 \, N/mm^2 \quad t_1 = 50 \, mm \]
\[t_2 = 25 \, mm \]
\[f_{c,90,k} = 2.5 \, N/mm^2 \]

Koormuse ülevarutegur: \(\gamma_Q = 1.5 \)
Sisejõudude õlg: \(l = 75 \, mm \)

Eeldatav purustav jõud naagli nihkekandevõimest kahelõikelise liite korral:

- Poolringi raskuskeskme koordinaat:
 \[z_1 = 0.21 \cdot D = 0.21 \cdot 20 = 4.2 \, mm \]
 \((38) \)

- Poolringi pindala:
 \[A_r = \frac{\pi \cdot D^2}{4 \cdot 2} = \frac{\pi \cdot 20^2}{4 \cdot 2} = 157,1 \, mm^2 \]
 \((39) \)

- Poolringi staatiline moment:
 \[S_{pool} = z_1 \cdot \frac{A_r}{2} = 4.2 \cdot 157,1 = 660 \, mm^2 \]
 \((40) \)

- Ringi inertsimoment:
 \[I_y = \frac{\pi \cdot D^4}{64} = \frac{\pi \cdot 20^4}{64} = 7854 \, mm^2 \]
 \((41) \)

- Naaglile mõjuv põikjõud:
 \[Q = \frac{f_{v,k} \cdot I_y \cdot D}{S_{pool}} = \frac{4 \cdot 7854 \cdot 20}{660} = 952 \, N \]
 \((42) \)

 Kuna liide on kahelõikeline:
 \[F_1 = \gamma_Q \cdot 2 \cdot Q = 1.5 \cdot 2 \cdot 952 = 2856 \, N = 2.86 \, kN \]
 \((43) \)

Koormus naagli muljumisest ristikiudu:

- Naaglile muljutava pinna pindala:
 \[A_1 = 2 \cdot t_2 \cdot D = 2 \cdot 25 \cdot 20 = 1000 \, mm^2 \]
 \((44) \)

- Naaglile muljumistugevus ristikiudu:
 \[F_2 = \gamma_Q \cdot f_{c,90,k,c} \cdot A_1 = 1.5 \cdot 2.7 \cdot 1000 = 4050 \, N \]
 \[= 4.05 \, kN \]
 \((45) \)

Koormus alusmaterjali muljumistugevusest pikikiudu:

- Alusmaterjali muljutava pinna pindala:
 \[A_2 = t_1 \cdot D = 50 \cdot 20 = 1000 \, mm^2 \]
 \((46) \)

- Alusmaterjali muljumistugevus pikikiudu:
 \[F_3 = \gamma_Q \cdot \frac{f_{c,0,k} \cdot A_2}{2} = 1.5 \cdot \frac{21 \cdot 1000}{2} = 15750 \, N \]
 \[= 15.75 \, kN \]
 \((47) \)

44
Tabel 5 Eeldatavad maksimaalsed koormused

<table>
<thead>
<tr>
<th>Naagli läbimõõt – pikkus</th>
<th>F₁ [kN]</th>
<th>F₂ [kN]</th>
<th>F₃ [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-120</td>
<td>2,86</td>
<td>4,05</td>
<td>15,75</td>
</tr>
<tr>
<td>25-120</td>
<td>4,46</td>
<td>8,10</td>
<td>19,69</td>
</tr>
<tr>
<td>20-220</td>
<td>2,86</td>
<td>5,06</td>
<td>31,5</td>
</tr>
<tr>
<td>25-220</td>
<td>4,46</td>
<td>10,13</td>
<td>39,4</td>
</tr>
</tbody>
</table>

Pärast katsetamist lammutati katsemudel lahti ja mõõdeti kõigil detailidel puidu niiskussisaldus.

Katsetulemusi võrreldi standardtite Eurokoodeks 5 ja TFEC 1-2012 ning Sandberg et al uurimuse valemitega saadud arvutuslike tulemustega ning hinnati nende sobivust kasutuselevõtukus. Tammenaaglike puhul sai võrdlusi sooritada ka L. Allikas’e ja V. Kulbach’i raamatus „Puitkonstruktsioonid“ toodud eeskirjade järgi.
4. TULEMUSED

4.1 Katsetulemused

Kõik katsed viidi läbi liitemudeli purunemiseni, kus mää ravaks sai naagli purunemine või 25 mm paksuste puitdetaillide puhul nende lõhenemine. Naaglitel oli muljumisjäljed ja paindest tingitud praod (vt Joonis 17).

Joonis 17 Naaglote purunemispildid.

Järgnevalt on ära toodud katsetulemusete koormus-deformatsiooni graafikud (vt Joonis 18 kuni Joonis 21). Siin ja edaspidi on kasutusel järgnev katseskeemi märkimise süsteem, kus S-täht tähistab saarepuidust naaglit, T-täht tamme puitu ning koodi XX-XXX esimene osa näitab puitnaagli diameetrit (20 ja 25 mm) ja teine osa puitnaagli pikkust (120 mm puitdetaillide paksuste 25-50-25 mm puhul ja 220 mm puitdetaillide paksuste 50-100-50 mm puhul). Katseid tehti kokku 24 ning nii on ka järjekorranumbreid 24. Tehnilistel põhjustel
on katsemasina arvuti poolikult salvestanud katse nr 13 tulemused, mistõttu on selle katse tulemused vaatlusest kõrvale jätud.

Joonis 18 Katsetulemused 20 mm läbimõõdu ja 120 mm pikkuste puitnaaglitega

Joonis 19 Katsetulemused 25 mm läbimõõdu ja 120 mm pikkuste puitnaaglitega
Joonis 20 Katsetulemused 20 mm läbimõõdu ja 220 mm pikkuste puitnaaglitega

Et tulemused katsete kohta oleks paremini võrreldavad, arvestati katsete puhul jõudu, mis tekitas mudelile 5 mm deformatsiooni. Liisi Musta magistritöös selgus standardite
võrdlemisel, et puitnaaglite voolavuspiirile vastav paindemomendi leidmiseks tuleb kasutada paindetugevuse ja elastse vastupanumomendi korrutist.

4.2 Arvutuslikud kandevõimed Eurokoodeks 5 järgi

Järgnevalt on toodud näide 20 mm diameetri ja 120 mm pikkuse tammenaagliga liitemudeli kandevõime arvutamisest. Arvutustes kasutati mõõtmi stel saadud aritmeetiliselt keskmisi väärtsusi.

Andmed:

\[d = 20,1 \, mm \]
\[t_1 = 25,0 \, mm \]
\[t_2 = 50,2 \, mm \]
\[\rho_k = 444,3 \, kg/m^3 \]
\[f_{m,tamm} = 97,7 \, N/mm^2 \]
\[f_{m,saar} = 105,0 \, N/mm^2 \]

Paindetugevuse väärtused \(f_{m,tamm} \) ja \(f_{m,saar} \) on saadud raamatust „Puiduteadus“. [16]

Lahenduskäik:

Pikikiudu norm-muljumistugevus:
\[
f_{h,1,k} = f_{h,2,k} = \frac{0,082 \cdot (1 - 0,01 \cdot d) \cdot \rho_k}{29,1} = \frac{0,082 \cdot (1 - 0,01 \cdot 20,1) \cdot 444,3}{29,1} = 29,1 \, N/mm^2 \tag{24}
\]

Elementide muljumistugevuste suhe:
\[
\beta = \frac{f_{h,2,k}}{f_{h,1,k}} = \frac{29,1}{29,1} = 1 \tag{6}
\]

Elastse staadiumi paidemoment:
\[
M_{el} = \sigma_{max,el} \cdot \frac{\pi \cdot d^3}{32} = \frac{f_{m,saar} \cdot \pi \cdot d^3}{32} = \frac{97,7 \cdot \pi \cdot 20,1^3}{32} = 77851 \, Nmm \tag{22}
\]

Purunemisviis (g):
\[
F_{v,Rk} = f_{h,1,k} \cdot t_1 \cdot d = 29,1 \cdot 25,0 \cdot 20,1 = 14628 \, N = 14,63 \, kN \tag{8}
\]

Purunemisviis (h):
\[
F_{v,Rk} = 0,5 \cdot f_{h,2,k} \cdot t_2 \cdot d = 0,5 \cdot 29,1 \cdot 50,2 \cdot 20,1 = 14676 \, N = 14,68 \, kN \tag{11}
\]
Purunemisviis (j):
\[F_{v,Rk} = 1,05 \frac{f_{h,1,k} \cdot t_1 \cdot d}{2 + \beta} \left[\sqrt{\frac{2\beta(1 + \beta)}{2 + \beta} + \frac{4\beta \cdot (2 + \beta) \cdot M_{y,Rk}}{f_{h,1,k} \cdot d \cdot t_1^2} - \beta} \right] \]
\[= 1,05 \frac{29,1 \cdot 25,0 \cdot 20,1}{2 + 1} \left[\sqrt{\frac{2 \cdot 1(1 + 1)}{2 + 1} + \frac{4 \cdot 1 \cdot (2 + 1) \cdot 77851}{29,1 \cdot 20,1 \cdot 25,0^2}} - 1 \right] = 7988 N = 7,99 kN \]

Purunemisviis (k):
\[F_{v,Rk} = 1,15 \sqrt{\frac{2\beta}{1 + \beta} \frac{M_{y,Rk}}{f_{h,1,k} \cdot d}} \]
\[= 1,15 \sqrt{\frac{2 \cdot 1}{1 + 1} \sqrt{2 \cdot 77851 \cdot 29,1 \cdot 20,1} = 10976 N} \]
\[= 10,98 kN \]

Kandevöimele saab otsustavaks jõud 7,99 kN ning purunemisviis (j).

Järgnevalt on Tabel 6 esitatud arvutustulemused ka teiste katsete kohta. Helepunastest lahtrites on antud liite kandevöime arvutuse minimaalseim tulemus ja määravaks saav jõud.

Tabel 6 Arvutuslikud kandevõimid Eurokoodeks 5 järgi

<table>
<thead>
<tr>
<th>Katse</th>
<th>d [mm]</th>
<th>t_1 [mm]</th>
<th>t_2 [mm]</th>
<th>f_{h,1,k}= f_{h,2,k} [N/mm^2]</th>
<th>M_{el} [Nmm]</th>
<th>g [N]</th>
<th>h [N]</th>
<th>j [N]</th>
<th>k [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S20-120</td>
<td>20,3</td>
<td>25,2</td>
<td>50,0</td>
<td>29,0</td>
<td>86190,0</td>
<td>14834,4</td>
<td>14736,2</td>
<td>8317,6</td>
<td>11592,1</td>
</tr>
<tr>
<td>T20-120</td>
<td>20,1</td>
<td>25,0</td>
<td>50,2</td>
<td>29,1</td>
<td>77850,7</td>
<td>14627,6</td>
<td>14676,4</td>
<td>7987,7</td>
<td>10976,4</td>
</tr>
<tr>
<td>S25-120</td>
<td>25,3</td>
<td>25,2</td>
<td>50,2</td>
<td>27,2</td>
<td>167512,0</td>
<td>17343,4</td>
<td>17286,0</td>
<td>11736,7</td>
<td>17473,9</td>
</tr>
<tr>
<td>T25-120</td>
<td>25,5</td>
<td>25,1</td>
<td>50,0</td>
<td>27,2</td>
<td>158340,0</td>
<td>17288,3</td>
<td>11490,0</td>
<td>17018,2</td>
<td></td>
</tr>
<tr>
<td>S20-220</td>
<td>20,5</td>
<td>50,0</td>
<td>99,8</td>
<td>29,0</td>
<td>88762,7</td>
<td>29688,0</td>
<td>29613,8</td>
<td>12178,0</td>
<td>11806,8</td>
</tr>
<tr>
<td>T20-220</td>
<td>20,2</td>
<td>49,4</td>
<td>99,5</td>
<td>29,1</td>
<td>78627,9</td>
<td>28985,6</td>
<td>29181,1</td>
<td>11752,0</td>
<td>11044,7</td>
</tr>
<tr>
<td>S25-220</td>
<td>25,5</td>
<td>50,1</td>
<td>100,0</td>
<td>27,1</td>
<td>170840,0</td>
<td>34664,1</td>
<td>34606,4</td>
<td>15482,8</td>
<td>17684,8</td>
</tr>
<tr>
<td>T25-220</td>
<td>25,2</td>
<td>50,1</td>
<td>99,3</td>
<td>27,3</td>
<td>153417,8</td>
<td>34394,2</td>
<td>34108,1</td>
<td>15064,2</td>
<td>16693,5</td>
</tr>
</tbody>
</table>

Liisi Musta magistritöö USA ja Euroopa standardite valemid analüüsist selgus, et purunemisviis (j) puhul pole Eurokoodeks 5 valmis puitnaagli puhul vaja kasutada kordajat
1,05. Samuti tõdeti, et USA puitnaaglid käsitlev standard TFEC 1-2012 ei kajastu neljandat purunemisviisi, sest seda puitnaaglite puhul väidetavalt ei esine.

Järgnevalt on Liisi Musta magistritööle toetudes lisaks ära toodud purunemisviisi (j) arvutus kordajata 1,05. Muud andmed ja purunemisviisi tulemused jäid samaks eelneva juhuga.

Purunemisviis (j):

\[
F_{v,Rk} = \frac{f_{h,1,k} \cdot t_1 \cdot d}{2 + \beta} \left[2 \beta (1 + \beta) + \frac{4 \beta \cdot (2 + \beta) \cdot M_{v,Rk}}{f_{h,1,k} \cdot d \cdot t_1^2} - \beta \right]^{2} \\
= \frac{29,1 \cdot 25,0 \cdot 20,1}{2 + 1} \left[2 \cdot 1(1 + 1) + \frac{4 \cdot 1 \cdot (2 + 1) \cdot 77851}{29,1 \cdot 20,1 \cdot 25,0^2} - 1 \right]^{2} \\
= 7607 N = 7,61 kN
\]

Ka sellisel juhul saab määravaks purunemisviis (j) ja jõud 7,61 kN. Teiste naaglite arvutuslikud tulemused leiab alljärgnevast Tabel 7. Helepunastest lahtrites on antud liite kandevõime arvutuse minimaalseim tulemus ja määravaks saav jõud.

Tabel 7 Arvutuslikud kandevõimed Eurokoodeks 5 järgi arvestades L. Musta lõputööd

<table>
<thead>
<tr>
<th>Katse</th>
<th>d [mm]</th>
<th>t₁ [mm]</th>
<th>t₂ [mm]</th>
<th>f₁h,1,k= f₁h,2,k [N/mm²]</th>
<th>Mₘl [Nmm]</th>
<th>g [N]</th>
<th>h [N]</th>
<th>j [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S20-120</td>
<td>20,3</td>
<td>25,2</td>
<td>50,0</td>
<td>29,0</td>
<td>86190,0</td>
<td>14834,4</td>
<td>14736,2</td>
<td>7921,6</td>
</tr>
<tr>
<td>T20-120</td>
<td>20,1</td>
<td>25,0</td>
<td>50,2</td>
<td>29,1</td>
<td>77850,7</td>
<td>14627,6</td>
<td>14676,4</td>
<td>7607,3</td>
</tr>
<tr>
<td>S25-120</td>
<td>25,3</td>
<td>25,2</td>
<td>50,2</td>
<td>27,2</td>
<td>167512,0</td>
<td>17343,4</td>
<td>17286,0</td>
<td>11177,8</td>
</tr>
<tr>
<td>T25-120</td>
<td>25,5</td>
<td>25,1</td>
<td>50,0</td>
<td>27,2</td>
<td>158340,0</td>
<td>17345,9</td>
<td>17288,3</td>
<td>10942,9</td>
</tr>
<tr>
<td>S20-220</td>
<td>20,5</td>
<td>50,0</td>
<td>99,8</td>
<td>29,0</td>
<td>88762,7</td>
<td>29688,0</td>
<td>29613,8</td>
<td>11598,1</td>
</tr>
<tr>
<td>T20-220</td>
<td>20,2</td>
<td>49,4</td>
<td>99,5</td>
<td>29,1</td>
<td>78627,9</td>
<td>28985,6</td>
<td>29181,1</td>
<td>11192,4</td>
</tr>
<tr>
<td>S25-220</td>
<td>25,5</td>
<td>50,1</td>
<td>100,0</td>
<td>27,1</td>
<td>170840,0</td>
<td>34664,1</td>
<td>34606,4</td>
<td>14745,5</td>
</tr>
<tr>
<td>T25-220</td>
<td>25,2</td>
<td>50,1</td>
<td>99,3</td>
<td>27,3</td>
<td>153417,8</td>
<td>34394,2</td>
<td>34108,1</td>
<td>14346,9</td>
</tr>
</tbody>
</table>

4.3 Arvutuslikud kandevõimed TFEC 1-2012 järgi

Toodud näide on 20 mm diameetri ja 120 mm pikkuse tammengaalgiga liitemudeli kandevõime arvutamisest. Arvutustes kasutati mõõtmistel saadud aritmeetiliselt keskmisi väärtsusi.
Andmed:

\[D = 20,1 \text{ mm} = 0,791 \text{ in} \]
\[l_s = 25,0 \text{ mm} = 0,984 \text{ in} \]
\[l_m = 50,2 \text{ mm} = 1,975 \text{ in} \]
\[G_{p,saar} = 0,748 \]
\[G_{p,tamm} = 0,569 \]
\[G_t = 0,387 \]
\[\theta = 0^\circ \]

Lahenduskäik:

Pikikiudu norm-muljumistugevus:

\[F_{es} = F_{em} = F_{e\|} = 4770 \cdot G_{p,tamm}^{1.32} = 4770 \cdot 0,569^{1.32} = 2231 \text{ psi} \]
(27)

Tegur K_\theta:

\[K_\theta = 1 + \frac{\theta}{360} = 1 + \frac{0}{360} = 1 \]
(2)

Tapikeele ja -pesa norm-muljumistugevuste suhe:

\[R_e = \frac{F_{em}}{F_{es}} = \frac{2231}{2231} = 1 \]
(4)

Naagli paindetutevus:

\[F_{yb} = 24850 \cdot G_{p,tamm}^{1.13} = 24850 \cdot 0,569^{1.13} = 13132 \text{ psi} \]
(23)

Abisuuurus k_3:

\[k_3 = -1 + \sqrt{\frac{2 \cdot (1 + R_e)}{R_e} + \frac{2 \cdot F_{yb} \cdot (2 + R_e) \cdot D^2}{3 \cdot F_{em} \cdot l_s^2}} \]
\[= -1 + \sqrt{\frac{2 \cdot (1 + 1)}{1} + \frac{2 \cdot 13132 \cdot (2 + 1) \cdot 0,791^2}{3 \cdot 2231 \cdot 0,984^2}} \]
\[= 2,407 \]
(3)

Naagli lõikekandevõime:

\[F_{yv} = 4850 \cdot G_{p,tamm} \cdot G_t^{0.75} = 4850 \cdot 0,569 \cdot 0,387^{0.75} \]
\[= 1352 \text{ psi} \]
(5)

Purunemisviis I_m:

\[Z_{lm} = \frac{D \cdot l_m \cdot F_{em}}{4,0 \cdot K_\theta} = \frac{0,791 \cdot 1,975 \cdot 2231}{4,0 \cdot 1} = 872 \text{ lb} = 3878 \text{ N} \]
\[= 3,88 \text{ kN} \]
(1)

Purunemisviis I_s:

\[Z_{ls} = \frac{2 \cdot D \cdot l_s \cdot F_{es}}{4,0 \cdot K_\theta} = \frac{2 \cdot 0,791 \cdot 0,984 \cdot 2231}{4,0 \cdot 1} = 869 \text{ lb} = 3865 \text{ N} \]
\[= 3,87 \text{ kN} \]
(9)
Purunemisviis III:

\[
Z_{III_s} = \frac{2 \cdot k_3 \cdot D \cdot l_s \cdot F_{em}}{(2 + R_e) \cdot 3,2 \cdot K_\theta} = \frac{2 \cdot 2,407 \cdot 0,791 \cdot 0,984 \cdot 2231}{(2 + 1) \cdot 3,2 \cdot 1} = 871 \text{ lb} = 3877 \text{ N} = 3,88 \text{ kN}
\] (12)

Purunemisviis Vd:

\[
Z_{V_d} = \frac{\pi \cdot D^2 \cdot F_{yp}}{2 \cdot 3,5 \cdot K_\theta} = \frac{\pi \cdot 0,791^2 \cdot 1352}{2 \cdot 3,5 \cdot 1} = 380 \text{ lb} = 1690 \text{ N} = 1,69 \text{ kN}
\] (20)

Kandevõime määrab vähim tulemus ja seega saab otsustavaks purunemisviis Vd ning jõud 1,69 kN. Tabel 8 on antud teiste katsegruppide arvutuslikud kandevõimed. Helepunastest lahrites on antud liite kandevõime arvutuse minimaalseim tulemus ja mää ravaks saav jõud.

Tabel 8 Arvutuslikud kandevõimed TFEC 1-2012 järgi

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S20-120</td>
<td>0,799</td>
<td>1,969</td>
<td>0,991</td>
<td>3205,3</td>
<td>17907,2</td>
<td>2,357</td>
<td>1779,5</td>
<td>5607,9</td>
<td>5645,3</td>
<td>5544,2</td>
<td>2268,0</td>
</tr>
<tr>
<td>T20-120</td>
<td>0,79</td>
<td>1,975</td>
<td>0,984</td>
<td>2231,1</td>
<td>13131,5</td>
<td>2,407</td>
<td>1352,3</td>
<td>3877,8</td>
<td>3864,9</td>
<td>3876,5</td>
<td>1689,7</td>
</tr>
<tr>
<td>S25-120</td>
<td>0,997</td>
<td>1,975</td>
<td>0,991</td>
<td>3205,3</td>
<td>17907,2</td>
<td>2,914</td>
<td>1779,5</td>
<td>7021,6</td>
<td>7045,0</td>
<td>8554,7</td>
<td>3532,1</td>
</tr>
<tr>
<td>T25-120</td>
<td>1,003</td>
<td>1,969</td>
<td>0,988</td>
<td>2231,1</td>
<td>13131,5</td>
<td>3,017</td>
<td>1352,3</td>
<td>4896,8</td>
<td>4913,1</td>
<td>6175,6</td>
<td>2712,5</td>
</tr>
<tr>
<td>S20-220</td>
<td>0,807</td>
<td>3,927</td>
<td>1,969</td>
<td>3205,3</td>
<td>17907,2</td>
<td>1,425</td>
<td>1779,5</td>
<td>14088,7</td>
<td>14112,2</td>
<td>9561,8</td>
<td>3578,7</td>
</tr>
<tr>
<td>T20-220</td>
<td>0,794</td>
<td>3,917</td>
<td>1,946</td>
<td>2231,1</td>
<td>13131,5</td>
<td>1,441</td>
<td>1352,3</td>
<td>9707,2</td>
<td>9707,2</td>
<td>6641,4</td>
<td>2656,0</td>
</tr>
<tr>
<td>S25-220</td>
<td>1,004</td>
<td>3,937</td>
<td>1,972</td>
<td>3205,3</td>
<td>17907,2</td>
<td>1,626</td>
<td>1779,5</td>
<td>9626,4</td>
<td>9707,2</td>
<td>6641,4</td>
<td>2656,0</td>
</tr>
<tr>
<td>T25-220</td>
<td>0,992</td>
<td>3,911</td>
<td>1,972</td>
<td>2231,1</td>
<td>13131,5</td>
<td>1,642</td>
<td>1352,3</td>
<td>9626,4</td>
<td>9707,2</td>
<td>6641,4</td>
<td>2656,0</td>
</tr>
</tbody>
</table>

4.4 Arvutuslikud kandevõimed Sandberg et al järgi

Järgnevalt on toodud näide 20 mm diameetri ja 120 mm pikkuse tammenaagliga liitemudeli kandevõime arvutamisest. Arvutustes kasutati mõõtmistel saadud aritmeetiliselt keskmisi väärtsusi.

Andmed:

\[
D = 20,1 \text{ mm} = 0,791 \text{ in}
\]
\[
l_s = 25,0 \text{ mm} = 0,984 \text{ in}
\]
\(l_m = 50,2 \text{ mm} = 1,975 \text{ in} \)

\(F_{es} = 2231 \text{ psi} \) (vt ptk 1.11 Arvutuslikud kandevõimed TFEC 1-2012 järgi)

\(F_{em} = 2231 \text{ psi} \) (vt ptk 1.11 Arvutuslikud kandevõimed TFEC 1-2012 järgi)

\(F_{yb} = 13132 \text{ psi} \) (vt ptk 1.11 Arvutuslikud kandevõimed TFEC 1-2012 järgi)

\(G_{12,saar} = 0,850 \)

\(G_{12,tamm} = 0,645 \)

\(G_{p,saar} = 0,748 \)

\(G_{p,tamm} = 0,569 \)

\(G_t = 0,387 \)

Lahenduskäik:

Abitegur Q:
\[
Q = \frac{2(F_{es} + F_{em})}{F_{em}} + \frac{2F_{yb}(2F_{es} + F_{em})D^2}{3F_{em}F_{es}l_s^2} = \frac{2(2231 + 2231)}{2231} + \frac{2 \cdot 13132 \cdot (2 \cdot 2231 + 2231) \cdot 0,791^2}{3 \cdot 2231 \cdot 2231 \cdot 0,984^2} = 11,61
\]

Naagli muljumistugevus:
\[
F_{ed} = 39,0 \cdot G_{12,tamm}^{2,04} = 39,0 \cdot 0,645^{2,04} = 15,97 \text{ MPa} = 2316 \text{ psi}
\]

Naagli ristikiudu muljumistugevus:
\[
F_{e\perp} = F_{ev} = 4900 \cdot G_{p,tamm} \cdot G_t^{0,50} = 4900 \cdot 0,748 \cdot 0,387^{0,50} = 1733 \text{ psi}
\]

Purunemisviis Iₙ:
\[
Z_{l_m} = Dl_mF_{em} = 0,791 \cdot 1,975 \cdot 2231 = 3487 \text{ lb} = 15511 \text{ N}
\]

\[= 15,51 \text{ kN} \]

Purunemisviis Iₙ:
\[
Z_{l_s} = 2Dl_sF_{es} = 2 \cdot 0,791 \cdot 0,984 \cdot 2231 = 3475 \text{ lb} = 15459 \text{ N}
\]

\[= 15,50 \text{ kN} \]

Purunemisviis IIIₙ:
\[
Z_{lls} = \frac{2Dl_sF_{em}F_{es}}{2F_{es} + F_{em}}(\sqrt{Q} - 1) = \frac{2 \cdot 0,791 \cdot 0,984 \cdot 2231 \cdot 2231}{2 \cdot 2231 + 2231}(\sqrt{11,61} - 1) = 2789 \text{ lb} = 12405 \text{ N} = 12,41 \text{ kN}
\]

Purunemisviis IVₙ:
\[
Z_{IV} = 2D^2 \frac{2F_{yb}F_{em}F_{es}}{3(F_{es} + F_{em})} = 2 \cdot 0,791^2 \frac{2 \cdot 13132 \cdot 2231 \cdot 2231}{3(2231 + 2231)} = 3913 \text{ lb} = 17410 \text{ N} = 17,41 \text{ kN}
\]

Purunemisviis Iₙ:
\[
Z_{l_d} = \min\{D \cdot l_m \cdot F_{ed} = 0,791 \cdot 1,975 \cdot 2316 = 3619 \text{ lb} = 16100 \text{ N}, 2 \cdot D \cdot l_s \cdot F_{ed} = 2 \cdot 0,791 \cdot 0,984 \cdot 2316 = 3607 \text{ lb} = 16046 \text{ N}\}
\]

\[= 16,1 \text{ kN} \]

54
Purunemisviis

\[V_d: \quad Z_{V_d} = 2 \pi \frac{D^2}{4} \quad F_{ev} = 2 \frac{\pi \cdot 0.791^2}{4} \cdot 1733 = 1703 \text{ lb} = 7577 \text{ N} = 7.58 \text{ kN} \] (21)

Otsustavaks osutub purunemisviis \(V_d \) ja arvutuslik kandevõime on 7,58 kN. Ülejäänud arvutustulemused on esitatud Tabel 9. Helepunastes lahtrites on kandevõimele otsustavaks osutunud jõud.

Tabel 9 Arvutslikud kandevõimed Sandberg et al järgi

<table>
<thead>
<tr>
<th>Katse</th>
<th>Q</th>
<th>(F_{ed}) [psi]</th>
<th>(F_{ev}) [psi]</th>
<th>(I_m) [N]</th>
<th>(I_3) [N]</th>
<th>(I_{IV}) [N]</th>
<th>(I_4) [N]</th>
<th>(I_{d,min}) [N]</th>
<th>(V_d) [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S20-120</td>
<td>11.27</td>
<td>4059</td>
<td>2280</td>
<td>22431.5</td>
<td>22581.0</td>
<td>17741.6</td>
<td>24855.9</td>
<td>28409.0</td>
<td>28598.4</td>
</tr>
<tr>
<td>T20-120</td>
<td>11.61</td>
<td>2316</td>
<td>1733</td>
<td>15511.0</td>
<td>15459.5</td>
<td>12405.0</td>
<td>17409.8</td>
<td>16099.6</td>
<td>16046.1</td>
</tr>
<tr>
<td>S25-120</td>
<td>15.32</td>
<td>4059</td>
<td>2280</td>
<td>28086.6</td>
<td>28179.9</td>
<td>27375.0</td>
<td>38710.0</td>
<td>35571.2</td>
<td>35689.3</td>
</tr>
<tr>
<td>T25-120</td>
<td>16.13</td>
<td>2316</td>
<td>1733</td>
<td>19587.2</td>
<td>19652.4</td>
<td>19762.1</td>
<td>27947.7</td>
<td>20330.4</td>
<td>20398.1</td>
</tr>
<tr>
<td>S20-220</td>
<td>5.88</td>
<td>4059</td>
<td>2280</td>
<td>45191.7</td>
<td>45304.9</td>
<td>21512.4</td>
<td>25348.1</td>
<td>57234.4</td>
<td>57377.9</td>
</tr>
<tr>
<td>T20-220</td>
<td>5.96</td>
<td>2316</td>
<td>1733</td>
<td>30866.4</td>
<td>30659.6</td>
<td>14731.0</td>
<td>17525.5</td>
<td>32037.6</td>
<td>31822.9</td>
</tr>
<tr>
<td>S25-220</td>
<td>6.90</td>
<td>4059</td>
<td>2280</td>
<td>56354.9</td>
<td>56448.8</td>
<td>30597.6</td>
<td>39221.0</td>
<td>71372.5</td>
<td>71491.4</td>
</tr>
<tr>
<td>T25-220</td>
<td>6.98</td>
<td>2316</td>
<td>1733</td>
<td>38505.7</td>
<td>38828.7</td>
<td>21252.4</td>
<td>27365.4</td>
<td>39966.7</td>
<td>40302.0</td>
</tr>
</tbody>
</table>

4.5 Arvutuslikud kandevõimed tammenaaglit arvutusjuhiste järgi

Järgnevalt on toodud näide 20 mm diameetri ja 120 mm pikkuse tammenaagliga liitemudeli kandevõime arvutamisest. Arvutustes kasutati mõõtmetel saadud aritmeetiliselt keskmisi väärusti. Valemid on võetud tabelist 10.

Andmed:

\[
\begin{align*}
 d &= 2.01 \text{ cm} \\
 a &= 2.50 \text{ cm} \\
 c &= 5.02 \text{ cm}
\end{align*}
\]

Lahenduskäik:

Puidu muljumine keskmistes elementides:

\[
2 \cdot 30 \cdot c \cdot d = 2 \cdot 30 \cdot 5.02 \cdot 2.01 = 605 \text{ kg} = 5937 \text{ N} = 5.94 \text{ kN}
\]
Puidu muljumine äärmistes elementides:

\[2 \cdot 50 \cdot a \cdot d = 2 \cdot 50 \cdot 2,50 \cdot 2,01 = 503 \, kg = 4928 \, N = 4,93 \, kN \]

Naagli paine kinnituspikkuse järgi:

\[
2(45d^2 + 2a^2) = 2(45 \cdot 2,01^2 + 2 \cdot 2,50^2) = 389 \, kg = 3811 \, N = 3,81 \, kN
\]

Naagli maksimaalne paine:

\[2 \cdot 65d^2 = 2 \cdot 65 \cdot 2,01^2 = 525 \, kg = 5151 \, N = 5,15 \, kN \]

Tammenaaglite juhiste järgi saab liite kandevõimele määravaks naagli paine kinnituspikkuse järgi ja jõud 3,81 kN. Tabel 11 annab tulemused ka teiste katsegruppide jaoks. Helepunastes lahrvides on koormused, mis saavad liite kandevõimele määravaks.

Tabel 11 Arvutuslik kandevõimed tammenaaglite arvutusjuhiste järgi

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T20-120</td>
<td>2,01</td>
<td>2,50</td>
<td>5,02</td>
<td>5937</td>
<td>4928</td>
<td>3811</td>
<td>5151</td>
</tr>
<tr>
<td>T25-120</td>
<td>2,55</td>
<td>2,51</td>
<td>5,00</td>
<td>7502</td>
<td>6277</td>
<td>5986</td>
<td>8290</td>
</tr>
<tr>
<td>T20-220</td>
<td>2,01</td>
<td>4,94</td>
<td>9,95</td>
<td>11768</td>
<td>9737</td>
<td>4523</td>
<td>5151</td>
</tr>
<tr>
<td>T25-220</td>
<td>2,52</td>
<td>5,01</td>
<td>9,93</td>
<td>14724</td>
<td>12381</td>
<td>6589</td>
<td>8096</td>
</tr>
</tbody>
</table>
5. ARUTELU

Tulemusi analüüsides (vt Tabel 12, Tabel 13, Tabel 14) saab nentida, et tegelikult annavad köigi standardite ja eeskirjade arvutusvalemid liite kandevöime varu kasuks. Vaid tammepuidust 25 mm diameetriga ja 220 mm pikkuse naagliga katse korral ületas Eurokoodeks 5 arvutuslik kandevöime tegelikku katselist kandevöimet. Kui vaadata standardeid eraldi, annavad reaalsele olukorrale köige lähedasema ja väikseima kõikumisega tulemuse just Eurokoodeks 5 metallnaaglitele mõeldud valemid tammepuidust naaglite jaoks. Üleüldiselt on kindlaimaks lahendusviisiks siiski Sandberg et al uurimus kajastatud valemid.

Eurokoodeks 5 puhul tuleks võrrelda arvutuslike ja katselisi tulemusi puiduliike kaupa, sest tamme ja saare puhul on selgelt näha erinevus arvutuslike ja katseliste tulemuste omavahelises kokkulepevuses. Kaheksast katsegrupist kuue puhul sai määravaks purunemisviis (j); nii saare- kui ka tammenaaglite puhul diameetriga 20 mm ja pikkusega 220 mm sai otsustavaks kaupa purunemisviis (k).

Saarepuidust naaglite arvutuslikud tulemused erinesid absoluutväärtuste poolest katselistest keskmiselt 32,6 %. Suurim erinevus tulemustes saarepuidust naaglitega oli 25 mm diameetriga ja 220 mm pikkusega naagliste puhul, kus see oli 41,2 % kandevöime varu kasuks. Keskmised tulemused erinesid absoluutväärtusel 8,6 % väärtuselt. Väikseim seevastu 25 mm diameetriga ja 120 mm pikkuste saarenaaglite puhul, kus arvutuslik kandevöime ületas katselist 29,0 % ja keskmisest tulemusest oli see 3,6 % väiksem.

Tammepuidust naaglite arvutuslikud ja katselised tulemused Eurokoodeks 5 järgi olid antud töös teineteisele köige lähedased. Keskmiselt erinesid absoluutväärtused vaid 8,2 %. Maksimaalne erinevus katseliste ja arvutuslike tulemuste vahel tuli välja diameetriga 25 mm ja pikkusega 120 mm naagliste puhul, kus see oli 9,6 % kandevöime kasuks. Keskmisest on erinevus vaid 1,4 %. Minimaalne erinevus tekkis 25 mm ja 220 mm pikkuste tammenaaglite juures, kus kandevöime jäi 6,4 % varu kahjuks. Absoluutväärtusena võetuna on see keskmisest erinevusprotsendist 1,8 % väärtuselt väiksem.

Kui võtta arvesse Liisi Musta magistritöö tulemused valemite analüüsi osas, siis on köigi katsetulemuste juures määravaks purunemisviis (j) ning erinevused katseliste ja arvutuslike tulemuste vahel suurenevad mõnevõrra varu kasuks. Nii on saarenaaglite keskmine...
arvutuslike ja katseliste tulemuste erinevus 35,3 %; suurim seejuures 44,0 % ja vähim 31,0 %. Tammenaaglite juures on samad näitajad keskmiselt 8,8 % ning suurim ja vähim erinevus katseliste ja arvutuslike tulemuste juures 13,9 % kandevöime varu kasuks ning 1,3 % varu kahjuks.

TFEC 1-2012 on spetsiaalselt puitnaaglite arvutamiseks välja töötatud USA standard. Selle järgi on arvutuslikud tulemused küll kõige ühtlasmad, kuid ka väga tugevalt ja ebaratsionaalselt varu kasuks võrreldes katseliste tulemustega. Standardi puhul ei ole küll puiduliikidel arvutustulemustele suurt mõju, aga paremak ülevaateks esitatakse need siiski eraldi. Kõigi katsegruppide puhul sai arvutusliku kandevöime puhul määravaks purunemisviis V_d.

Keskmiselt on saarenaaglite arvutuslikud tulemused 83,1 % väiksemad katseliselt saadud kandevöimetest. Suurim erinevus tekkis 25 mm ja 220 mm pikkuste naaglite juures, kus erinevusprotsent oli 86,4 %, mis erineb keskmisest vaid 3,3 % võrra. Väikseim erinevus esines atestiga 25 mm ja pikkusega 120 mm saarenaaglite puhul, kus erinevusprotsent oli 78,6 %. See tulemus on samuti keskmise erinevusprotsendiga üsna lähedane: vaid 4,5 % väiksem.

TFEC 1-2012 tammenaaglite arvutuslikud keskmised kandevöimed olid saarenaaglite omadest katseliste lähemal, kuid vahe on vaid 1,5 % ja pole märkimisväärne. Arvutuslike ja katseliste kandevöimete keskmine erinevus tammenaaglitega katsetes on 81,6 %. Suurim erinevusprotsent esines 20 mm diameetriga ja 220 mm pikkusega naaglite puhul ning see oli 85,8 %. Keskmisest tulemusest on see 4,2 % suurem. Väikseim erinevus kahe tulemuse vahel leiti 25 mm diameetri ja 120 mm pikkuse naagliga katsegrupi juures, kus see on 78,7 % ning erineb keskmisest 2,9 % võrra.

Sandberg et al uurimuses antud valemite põhjal aga on saadud ehk kõige realismlikumad tulemused, mis annaksid julguse just neid valemeid kasutada. Valemile abil leitud purunemispilt vastas ka katsetustes leitlute. Valemid purunemisviisidele I_m ja I_s sarneavad TFEC 1-2012 standardile, kuid ära on jätetud teisendustegur R_d ning purunemisviiside III ja V_d valemid on eraldi välja töötatud. Kõigi katsegruppide puhul sai määravaks purunemisviis V_d ning arvutuslikud tulemused annavad kandevöime võrreldes katsetulemustega varu
kasuks. Erinevused puiduliikide kaupa on arvutustulemustes vörreldes katsetulemustega väikesed ja tühiseks loetavad.

Saarepuidust naaglite arvutuslik keskmine erinevus katsetulemustest on 24,1 %. Erinevusprotsent on suurim 25 mm diameetri ja 220 mm pikkuste naaglite korral ning see on 39,1 %, suurenedes keskmisest 15 % võrra. Väikseima erinevuse arvutuste ja katsete vahel andsid naaglid diameetri ja pikkusega 25 mm ja 120 mm. Erinevusprotsent tulemuste vahel oli kõigest 4,1 %, keskmisest erinevusprotsendist erines see 20 % võrra.

Tammenaaglite arvutuslikud ja katselised tulemused on mõnevõrra teineteisele lähedasemad: erinevusprotsent tulemuste vahel on keskmiselt 17,6 % varu kasuks. Suurim erinevusprotsent arvutuslike ja katsetulemuste vahel oli siinsel juhul 20 mm diameetri ja 220 mm pikkuste naaglite korral ning see oli 36,3 %. Keskmisest erinevusprotsendist oli see 18,7 % võrra suurem. Väikseima erinevuse määras ka sel korral naaglite katsegrupp diameetriga 25 mm ja pikkusega 120 mm. Ka siin on erinevus väga väike: 4,3 %. Keskmisest erinevusprotsendist on see 13,3 % võrra väiksem.

Kui vaadelda Sandberg et al arvutusvalemite tulemusi ja võrrelda neid katseliste tulemustega, annavad need päris hea tulemus. Kuigi suurima ja vähima erinevusprotsendi amplituud on üle 30 % – täpsemalt saarel 34,9 % ja tammel 32,0 % – on minimaalne erinevus arvutuslike ja katseliste tulemuste vahel 4,1 % ja 4,3 %, mis on juba väga hea tulemus. Arvestades, et puit on ebahomogeene materjal, on see pigem hea, sest arvutuslikud tulemused tulevad ka minimaalsete erinevuste korral vörreldes katselistega möödistlikul määral varu kasuks. Ka Sandberg et al uurimuse kokkuvõttes leiti, et valemitega leitud purunemisviisid vastasid tegelikele ning eelduslikud kandevõime tulemused jäid keskmiselt 9,3 % katselistele alla, erinedes 15,8 % võrra väiksema ristikud koormamise korral ja 1,9 % võrra suurema pikikiudu koormamise korral. [1]

Ka L. Allikas’e ja V. Kulbach’i raamatus „Puitkonstruktsioonid“ ära toodud arvutuseeskirjad tammenaaglite kasutamiseks annavad vörreldes katsetulemustega väga konservatiivsed tulemused varu kasuks. Kandevõimele saab arvutuste järgi määrvaks naagli paine kinnituspikkuse järgi. Keskmiselt on arvutuslikud tulemused 56,3 % katselistest suuremad. Suurim erinevus 62,2 % näol esineb naaglites diameetriga 20 mm ja pikkusega 220 mm. See on keskmisest 5,9 % võrra suurem. Väikseim erinevus tuleb välja
25 mm diameetriga ja 120 mm pikkuste tammemaaglite korral, kus see on 52,9 % ning keskmisest 3,4 % võrra väiksem. Arvutuseeskirjad on esitatud väga lihtsustatud kujul võttes arvesse ainult naagli ja liiteelementide mõötmeid.

Kuna antud töö raames tehti katseid vähe ja piiratud koguses, ei saa nende põhjal lõplikke järeldusi veel teha, kas ja kuidas võiks katsetulemustega võrreldud standardide ja arvutusjuhised puitmaaglite liidete kandevõimet arvutamiseks rakendada. Töö esialgsete tulemuste põhjal osutusid üsna täpseteks standardi Eurokoodeks 5 arvutuslikud tulemused. Kuigi need erinesid puidu- ja liiteelementide mõõtmeid, andsid need puiduliiikide saarsete ja tamme puhul küllaltki olulisel määral, andsid need puiduliikide saare ja tamme arvutused ühe konstandi alusel: puiduliikide paindetugevus. Kuigi saare paindetugevusse 105,0 N/mm² ei ole tamme paindetugevusest 97,7 N/mm² nii oluliselt palju suurem, tuleks tulevikus uurida, kuidas see täpsemalt kandevõimet mõjutab ja kuidas seda arvutusvaemitesse sobitada. Töö esialgsete tuleb selleks puiduliiikide kaupa leida vastavad konstandid.

Nii Eurokoodeks 5 kui ka TFEC 1-2012 standardid põhinevat Kohanseni voolavusteoorial, mille valemid ja seosed on üsna kindlalt paigas ja välja töötatud. Et metallmaaglitele mõeldud valemeid ka puitmaaglita liidete kandevõimet arvutamiseks kasutada saaks, tuleks edaspidistes uurimustes käsitleda konstantseid kordajaid nendes valemites. Eurokoodeks 5 puhul, mis andis võrreldud katsetulemustega tõeldsete vastuseid, tuleks leida uus kordaja purunemisviiside (j) ja (k) arvutusvaemitesse 1,05 ja 1,15 asemel. Samuti oleks tulevikus vaja uurida norm-muljumistugevuse valemit ja seda, kas kordaja 0,082 sobib ka puitmaaglita liidete puhul kasutamiseks.

Tabel 12 Eurokoodeks 5, Eurokoodeks 5 koos L. Musta soovitustega ja katsetulemuste võrdlemine

<table>
<thead>
<tr>
<th>Katse</th>
<th>Eurokoodeks 5 [N]</th>
<th></th>
<th></th>
<th></th>
<th>Eurokoodeks 5 L. Musta järgi [N]</th>
<th></th>
<th></th>
<th></th>
<th>Katsed [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>h</td>
<td>j</td>
<td>k</td>
<td>Erinevus katsest [N%]</td>
<td>g</td>
<td>h</td>
<td>j</td>
<td>Erinevus katsest [N%]</td>
</tr>
<tr>
<td>S20-120</td>
<td>14834,4</td>
<td>14736,2</td>
<td>8317,6</td>
<td>11592,1</td>
<td>3638,3</td>
<td>30,4</td>
<td>14834,4</td>
<td>14736,2</td>
<td>7921,6</td>
</tr>
<tr>
<td>T20-120</td>
<td>14627,6</td>
<td>14676,4</td>
<td>7987,7</td>
<td>10976,4</td>
<td>801,8</td>
<td>9,1</td>
<td>14627,6</td>
<td>14676,4</td>
<td>7607,3</td>
</tr>
<tr>
<td>S25-120</td>
<td>17343,4</td>
<td>17286,0</td>
<td>11736,7</td>
<td>17473,9</td>
<td>4784,8</td>
<td>29,0</td>
<td>17343,4</td>
<td>17286,0</td>
<td>11177,8</td>
</tr>
<tr>
<td>T25-120</td>
<td>17345,9</td>
<td>17288,3</td>
<td>11490,0</td>
<td>17018,2</td>
<td>1220,6</td>
<td>9,6</td>
<td>17345,9</td>
<td>17288,3</td>
<td>10942,9</td>
</tr>
<tr>
<td>S20-220</td>
<td>29688,0</td>
<td>29613,8</td>
<td>12178,0</td>
<td>11806,8</td>
<td>4990,6</td>
<td>29,7</td>
<td>29688,0</td>
<td>29613,8</td>
<td>11598,1</td>
</tr>
<tr>
<td>T20-220</td>
<td>28985,6</td>
<td>29181,1</td>
<td>11752,0</td>
<td>11044,7</td>
<td>927,2</td>
<td>7,7</td>
<td>28985,6</td>
<td>29181,1</td>
<td>11192,4</td>
</tr>
<tr>
<td>S25-220</td>
<td>34664,1</td>
<td>34606,4</td>
<td>15482,8</td>
<td>17684,8</td>
<td>10854,2</td>
<td>41,2</td>
<td>34664,1</td>
<td>34606,4</td>
<td>14745,5</td>
</tr>
<tr>
<td>T25-220</td>
<td>34394,2</td>
<td>34108,1</td>
<td>15064,2</td>
<td>16693,5</td>
<td>-907,1</td>
<td>-6,4</td>
<td>34394,2</td>
<td>34108,1</td>
<td>14346,9</td>
</tr>
</tbody>
</table>
Tabel 13 TFEC 1-2012, Sandberg et al arvutusvalemite ja katsetulemuste võrdlemine

<table>
<thead>
<tr>
<th>Katse</th>
<th>TFEC 1-2012 [N]</th>
<th>Sandberg et al [N]</th>
<th>Katsed [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iₘ</td>
<td>Iᵣ</td>
<td>IIIᵣ</td>
</tr>
<tr>
<td>S20-120</td>
<td>5607,9</td>
<td>5645,3</td>
<td>5544,2</td>
</tr>
<tr>
<td>T20-120</td>
<td>3877,8</td>
<td>3864,9</td>
<td>3876,5</td>
</tr>
<tr>
<td>S25-120</td>
<td>7021,6</td>
<td>7045,0</td>
<td>8554,7</td>
</tr>
<tr>
<td>T25-120</td>
<td>4896,8</td>
<td>4913,1</td>
<td>6175,6</td>
</tr>
<tr>
<td>S20-220</td>
<td>11297,9</td>
<td>11326,2</td>
<td>6722,6</td>
</tr>
<tr>
<td>T20-220</td>
<td>7716,6</td>
<td>7664,9</td>
<td>4603,4</td>
</tr>
<tr>
<td>S25-220</td>
<td>14088,7</td>
<td>14112,2</td>
<td>9561,8</td>
</tr>
<tr>
<td>T25-220</td>
<td>9626,4</td>
<td>9707,2</td>
<td>6641,4</td>
</tr>
<tr>
<td>Katse</td>
<td>Tammenaeglite arvutusjuhis [N]</td>
<td>Puidu muljumine keskmistes elementides</td>
<td>Puidu muljumine äärmistes elementides</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T20-120</td>
<td>5937,1</td>
<td>4927,8</td>
<td>3811,0</td>
</tr>
<tr>
<td>T25-120</td>
<td>7502,1</td>
<td>6276,7</td>
<td>5986,2</td>
</tr>
<tr>
<td>T20-220</td>
<td>11767,7</td>
<td>9737,4</td>
<td>4523,1</td>
</tr>
<tr>
<td>T25-220</td>
<td>14723,9</td>
<td>12381,1</td>
<td>6589,4</td>
</tr>
</tbody>
</table>
Magistritöö „Puitnaagliga puit-puiduga liite kandevõime määramine“ eesmärgiks on välja töötada puitnaagliga kinnitatud liite katsetamise metoodika ning selgitada välja kas ja kuidas erinevad standardid ja arvutusjuhised (Eurokoodeks 5, Eurokoodeks 5 L. Musta magistritöö järeldustega, TFEC 1-2012, Sandberg et al uurimise arvutusvalemid, arvutusjuhised tammenaaglite kohta L. Allikas’e ja V. Kulbachi raamatust „Puitkonstruktsioonid“) liite kandevõime määramiseks kehtivad puitnaagliga puit-puiduga kahelõikelise liite kohta. Seniajani puuduvad standardid nii katsetamise kui ka kandevõime arvutamise kohta. Töö on aga oluline, sest katsetoodika väljatöötamine on aluseks edaspideks uuringuteks ning kandevõime arvutusjuhiste leidmine lubab projektteerida puitnaagliga liiteid ratsionaalsemalt, teaduspõhisemalt ja kindlamalt. Puitnaaglite kasutamine on tähtis osa meie ehituskunsti pärandist ning antud töö teadmised ja tulemused osutuvad puitnaaglitega konstruktsioonide restaureerimisel kindlasti vajalikeks.

Saadud katsetulemust'i võrreldi seejärel standardite ja arvutusjuhiste valemite tulemustega. Selgus, et kõige realistlikumalt ja kindlamalt saab puitnaagliga kahelõikelise liite kandevõimet määrama Sandberg et al uuringu kasutatud valemite järgi. Nendega arvutatud kandevõime jää alati varu kasuks ning ka arvutuslike ja katseliste kandevõimete

64
minimaalseim vahe jäi mõistlikult väike: ligikaudu 4%. Samuti andsid valemid kahe puiduliigi lõikes üsna ühtlased kandevõime tulemused vörreldes näiteks Eurokoodeks 5 arvutusvalemitega. Tuleb märkida, et arvutuslikult leitud purunemisviis vastas katselisele.

Ka Eurokoodeks 5 valemid andsid üsna häid tulemusi, kuid neis esines tugev erinevus erinevate puiduliikide tõttu. Ilmselt mõjutab tulemused puidu paindetugevuse ja seepärast oleks valemite kasutuselevõtaks vaja teha veel edasi uuuringuid. Parema katsetulemustele vastavuse saamiseks võib uurida ka kordajate muutmist purunemisviiside (j) ja (k) ning puidu norm-muljumistugevuse valemite. See on aga juba edasise uurimise ülesandeks.

Puitnaaglitega arvutamise standardi TFEC 1-2012 ja L. Allikas’e ja V. Kulbach’i raamatust „Puitkonstruktsoonid“ võetud tammenaaglite kandevõime arvutusjuhiste saadud vastused jaagi vörreldes katsetulemustega väga konservatiivseteks. TFEC 1-2012 valemite võib näha sarnasusi Sandberg et al valemitega, sest purunemisviiside \(I_m \) ja \(I_s \) valemid on neis jagatud läbi teisendusteguriga \(R_d \). Tammenaaglite arvutusjuhised on aga antud väga lihtsakalisel, kus kandevõime sõltub peamiselt kordajatest, naagli diameetrist ning ühendatavate elementide paksustest.

Kuigi katseid on lõplike ja otsustavate järelluste tegemiseks antud töö käigus liiga vähe läbi viidud, näitavad tulemused siiski suundumust, et puitnaaglitega puit-puiduga kaheloikeline liidete kandevöime arvutamiseks võiks kasutusele võtta Sandberg et al töös välja võetud valeja. Sellest on selle töö oluliseks ja tõenäoline rohkem katseid. Kuna töös koormatu tapimudelit vaid pikikiudu, võiks edaspidistest uurimistes käsitleda ka ristikiudu koormamist ning nurga, näiteks 45-45 kraadise nurga, all koormamist.

Lõpetuseks võib töödeta, et antud magistritöö täitus oma eesmärki: välja töötati teaduslikud tulemusi ja puit-raiduga liidete kandevõime katsetamiseks ning katsetulemuste erinevate kandevõimevalemitega vörreldes leiti sobivad valemid puitnaagliga liidete arvutamiseks.

Autor tänab väga Eesti Maaülikooli lektorit Regino Kask’e, kes juhendas katsetamisel ning Väimela Kutsehariduskeskuse kutseöpetajat Taavi Pumbo’t, kes valmis selle tööõpetamiseks ja -dokumentatsioon. Eriline tänu kuulub juhendajale Illimar Kalk’ile, kelle innustusel ja toel antud töö valminud on.
KIRJANDUSE LOETELU

LISAD
1. 120
 Ø20
2. 120
 Ø25
3. 50
 75 75
 150
 Ø20
4. 50
 75 75
 150
 Ø25
5. 25
 75 75
 150
 Ø20
6. 25
 75 75
 150
 Ø25

Pos	Detail	Mõõdud	Materjal	Kogus
1 | Puitnaagel | Ø20mm, L=120mm | saar | 3tk
1 | Puitnaagel | Ø20mm, L=120mm | tamm | 3tk
2 | Puitnaagel | Ø25mm, L=120mm | saar | 3tk
2 | Puitnaagel | Ø25mm, L=120mm | tamm | 3tk
3 | Keskmise puidetail | 150x150x50mm | kuusk | 6tk
4 | Keskmise puitdetail | 150x150x50mm | kuusk | 6tk
5 | Äärmine puidetail | 150x150x25mm | kuusk | 12tk
6 | Äärmine puitdetail | 150x150x25mm | kuusk | 12tk

Nimi: M. Aia
Allkiri: 07.02.16
Juhendas: I. Kalk

TTÜ Tartu Koolid
Leht: 2
Lehti: 3
Töhis: EAEI105352
<table>
<thead>
<tr>
<th>Pos</th>
<th>Detail</th>
<th>Mõõdud</th>
<th>Materjal</th>
<th>Kogus</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Puitnaagel</td>
<td>φ20mm, L=220mm</td>
<td>saar</td>
<td>3tk</td>
</tr>
<tr>
<td>7</td>
<td>Puitnaagel</td>
<td>φ20mm, L=220mm</td>
<td>tamm</td>
<td>3tk</td>
</tr>
<tr>
<td>8</td>
<td>Puitnaagel</td>
<td>φ25mm, L=220mm</td>
<td>saar</td>
<td>3tk</td>
</tr>
<tr>
<td>8</td>
<td>Puitnaagel</td>
<td>φ25mm, L=220mm</td>
<td>tamm</td>
<td>3tk</td>
</tr>
<tr>
<td>9</td>
<td>Keskmine puidetail</td>
<td>150x150x100mm</td>
<td>kuusk</td>
<td>6tk</td>
</tr>
<tr>
<td>10</td>
<td>Keskmine puidetail</td>
<td>150x150x100mm</td>
<td>kuusk</td>
<td>6tk</td>
</tr>
<tr>
<td>11</td>
<td>Äärmine puidetail</td>
<td>150x150x50mm</td>
<td>kuusk</td>
<td>12tk</td>
</tr>
<tr>
<td>12</td>
<td>Äärmine puidetail</td>
<td>150x150x50mm</td>
<td>kuusk</td>
<td>12tk</td>
</tr>
</tbody>
</table>

Materjal:
- saar
- tamm
- kuusk

Nimetamata piirhald:

Mass:

Mõõt: 1:5

Nimi:

Allkiri:

Kuupäev: 07.02.16

Juhendas: I. Kalk

TTÜ Tartu Kolledž

Leht: 3

Lehti: 3

Töhis: EAE105352

Puiduki suund
<table>
<thead>
<tr>
<th>Käste</th>
<th>Detail</th>
<th>Mõõtmed</th>
<th>Ruumala</th>
<th>Kaal</th>
<th>Tiheus</th>
<th>Niskus [%]</th>
<th>Veekogus [kg/m³]</th>
<th>Tihedus 12% niiskuse juures</th>
<th>Tihedus 0% niiskuse juures</th>
<th>Tihedus 12%</th>
<th>Erikaal 12% niiskuse juures</th>
<th>Erikaal 0% niiskuse juures</th>
<th>Maksimaalne</th>
<th>Nihe maksimaalse jõue kestvus [s]</th>
<th>Arvutustes kasutatav jõue kasutamiseks jõud [N]</th>
<th>Artmeetiline keskmise jõud [N]</th>
<th>Standardhälve [%]</th>
<th>Standardhälve [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S01</td>
<td>122</td>
<td>148</td>
<td>122</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>K03</td>
<td>K05A</td>
<td>K05B</td>
<td>K03</td>
<td>S01</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>122</td>
<td>148</td>
<td>122</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>26</td>
<td>50</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>26</td>
<td>50</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Käste</th>
<th>Detail</th>
<th>Mõõtmed</th>
<th>Ruumala</th>
<th>Kaal</th>
<th>Tiheus</th>
<th>Niskus [%]</th>
<th>Veekogus [kg/m³]</th>
<th>Tihedus 12% niiskuse juures</th>
<th>Tihedus 0% niiskuse juures</th>
<th>Tihedus 12%</th>
<th>Erikaal 12% niiskuse juures</th>
<th>Erikaal 0% niiskuse juures</th>
<th>Maksimaadne</th>
<th>Nihe maksimaalne jõue kestvus [s]</th>
<th>Arvutustes kasutatav jõue kasutamiseks jõud [N]</th>
<th>Artmeetiline keskmise jõud [N]</th>
<th>Standardhälve [%]</th>
<th>Standardhälve [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S01</td>
<td>122</td>
<td>148</td>
<td>122</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>K03</td>
<td>K05A</td>
<td>K05B</td>
<td>K03</td>
<td>S01</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>122</td>
<td>148</td>
<td>122</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>26</td>
<td>50</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>26</td>
<td>50</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>20,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td>822,2</td>
<td>32,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T01</td>
<td>K03</td>
<td>K05A</td>
<td>K05B</td>
<td>S01</td>
<td>K05A</td>
<td>K05B</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>150</td>
<td>147</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>147</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19.5</td>
<td>20.5</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td>50</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1122</td>
<td>147</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>19.5</td>
<td>20.5</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td>50</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>20.5</td>
<td>20.5</td>
<td>20.5</td>
<td>20.5</td>
<td>20.5</td>
<td>20.5</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9046.5</td>
<td>9046.5</td>
<td>9046.5</td>
<td>9046.5</td>
<td>9046.5</td>
<td>9046.5</td>
<td>9046.5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>169.8</td>
<td>169.8</td>
<td>169.8</td>
<td>169.8</td>
<td>169.8</td>
<td>169.8</td>
<td>169.8</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6971.0</td>
<td>6971.0</td>
<td>6971.0</td>
<td>6971.0</td>
<td>6971.0</td>
<td>6971.0</td>
<td>6971.0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8789.5</td>
<td>8789.5</td>
<td>8789.5</td>
<td>8789.5</td>
<td>8789.5</td>
<td>8789.5</td>
<td>8789.5</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>12894.4</td>
<td>12894.4</td>
<td>12894.4</td>
<td>12894.4</td>
<td>12894.4</td>
<td>12894.4</td>
<td>12894.4</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>938.5</td>
<td>938.5</td>
<td>938.5</td>
<td>938.5</td>
<td>938.5</td>
<td>938.5</td>
<td>938.5</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>7.85</td>
<td>7.85</td>
<td>7.85</td>
<td>7.85</td>
<td>7.85</td>
<td>7.85</td>
<td>7.85</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-1817.9</td>
<td>-1817.9</td>
<td>-1817.9</td>
<td>-1817.9</td>
<td>-1817.9</td>
<td>-1817.9</td>
<td>-1817.9</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1595.1</td>
<td>1595.1</td>
<td>1595.1</td>
<td>1595.1</td>
<td>1595.1</td>
<td>1595.1</td>
<td>1595.1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>18.15</td>
<td>18.15</td>
<td>18.15</td>
<td>18.15</td>
<td>18.15</td>
<td>18.15</td>
<td>18.15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>K03</td>
<td>T01</td>
<td>K05B</td>
<td>K05A</td>
<td>K03</td>
<td>T01</td>
<td>K05B</td>
<td>K05A</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>121</td>
<td>150</td>
<td>150</td>
<td>150.5</td>
<td>121</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>150.5</td>
<td>20.1</td>
<td>148.5</td>
<td>148.5</td>
<td>150.5</td>
<td>20.7</td>
<td>147.5</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>25</td>
<td>50.5</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1128750</td>
<td>38375</td>
<td>556875</td>
<td>556875</td>
<td>1143838</td>
<td>40700</td>
<td>553125</td>
<td>551250</td>
<td></td>
</tr>
<tr>
<td>555.1</td>
<td>24.95</td>
<td>282.6</td>
<td>299.5</td>
<td>568.3</td>
<td>26.38</td>
<td>283.4</td>
<td>251.3</td>
<td></td>
</tr>
<tr>
<td>491.8</td>
<td>650.2</td>
<td>507.5</td>
<td>537.8</td>
<td>496.9</td>
<td>648.2</td>
<td>512.3</td>
<td>455.8</td>
<td></td>
</tr>
<tr>
<td>21.8</td>
<td>10</td>
<td>21.8</td>
<td>20.9</td>
<td>10</td>
<td>10.9</td>
<td>21.7</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td>107.2</td>
<td>65.0</td>
<td>110.6</td>
<td>112.4</td>
<td>49.7</td>
<td>70.6</td>
<td>111.2</td>
<td>98.5</td>
<td></td>
</tr>
<tr>
<td>59.0</td>
<td>78.0</td>
<td>60.9</td>
<td>64.5</td>
<td>59.6</td>
<td>77.8</td>
<td>61.5</td>
<td>54.7</td>
<td></td>
</tr>
<tr>
<td>443.6</td>
<td>663.2</td>
<td>457.7</td>
<td>490.0</td>
<td>506.8</td>
<td>655.3</td>
<td>462.6</td>
<td>412.1</td>
<td></td>
</tr>
<tr>
<td>384.6</td>
<td>585.1</td>
<td>396.8</td>
<td>425.4</td>
<td>447.2</td>
<td>577.5</td>
<td>401.2</td>
<td>357.4</td>
<td></td>
</tr>
<tr>
<td>0.444</td>
<td>0.663</td>
<td>0.458</td>
<td>0.490</td>
<td>0.507</td>
<td>0.655</td>
<td>0.463</td>
<td>0.412</td>
<td></td>
</tr>
<tr>
<td>0.385</td>
<td>0.585</td>
<td>0.397</td>
<td>0.425</td>
<td>0.447</td>
<td>0.578</td>
<td>0.401</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>10199.6</td>
<td>11205.6</td>
<td></td>
</tr>
<tr>
<td>12.9</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>191.6</td>
<td>210.1</td>
<td></td>
</tr>
<tr>
<td>9441.8</td>
<td>9955.1</td>
<td></td>
</tr>
<tr>
<td>9441.8</td>
<td>9955.1</td>
<td></td>
</tr>
<tr>
<td>652.3</td>
<td>1165.6</td>
<td></td>
</tr>
<tr>
<td>7.42</td>
<td>13.26</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>K04</td>
<td>S02</td>
<td>K06B</td>
<td>K06A</td>
<td>K04</td>
<td>S02</td>
<td>K05B</td>
<td>K05A</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>121</td>
<td>148</td>
<td>147</td>
<td>150</td>
<td>122</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>150,5</td>
<td>25,5</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>25</td>
<td>148,5</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1128750</td>
<td>61764</td>
<td>555000</td>
<td>551250</td>
<td>1125000</td>
<td>59856</td>
<td>556875</td>
<td>555000</td>
<td></td>
</tr>
<tr>
<td>560,8</td>
<td>45,27</td>
<td>282,1</td>
<td>250,1</td>
<td>560,1</td>
<td>32,13</td>
<td>289,7</td>
<td>292,3</td>
<td></td>
</tr>
<tr>
<td>496,8</td>
<td>733,0</td>
<td>508,3</td>
<td>453,7</td>
<td>497,9</td>
<td>536,8</td>
<td>520,2</td>
<td>526,7</td>
<td></td>
</tr>
<tr>
<td>9,5</td>
<td>10,9</td>
<td>22,5</td>
<td>20,2</td>
<td>19,7</td>
<td>12</td>
<td>19,8</td>
<td>21,7</td>
<td></td>
</tr>
<tr>
<td>47,2</td>
<td>79,9</td>
<td>114,4</td>
<td>91,6</td>
<td>98,1</td>
<td>64,4</td>
<td>103,0</td>
<td>114,3</td>
<td></td>
</tr>
<tr>
<td>59,6</td>
<td>88,0</td>
<td>61,0</td>
<td>54,4</td>
<td>59,7</td>
<td>64,4</td>
<td>62,4</td>
<td>63,2</td>
<td></td>
</tr>
<tr>
<td>509,3</td>
<td>741,0</td>
<td>455,0</td>
<td>416,5</td>
<td>459,6</td>
<td>536,8</td>
<td>479,7</td>
<td>475,6</td>
<td></td>
</tr>
<tr>
<td>449,6</td>
<td>653,1</td>
<td>394,0</td>
<td>362,0</td>
<td>399,8</td>
<td>472,4</td>
<td>417,2</td>
<td>412,4</td>
<td></td>
</tr>
<tr>
<td>0,509</td>
<td>0,741</td>
<td>0,455</td>
<td>0,416</td>
<td>0,460</td>
<td>0,537</td>
<td>0,480</td>
<td>0,476</td>
<td></td>
</tr>
<tr>
<td>0,450</td>
<td>0,653</td>
<td>0,394</td>
<td>0,362</td>
<td>0,400</td>
<td>0,472</td>
<td>0,417</td>
<td>0,412</td>
<td></td>
</tr>
<tr>
<td>16601,9</td>
<td>19351,1</td>
<td></td>
</tr>
<tr>
<td>6,3</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>240,3</td>
<td>290,3</td>
<td></td>
</tr>
<tr>
<td>16161,4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16161,4</td>
<td>19351,1</td>
<td></td>
</tr>
<tr>
<td>16521,5</td>
<td></td>
</tr>
<tr>
<td>-360,0</td>
<td>2829,7</td>
<td></td>
</tr>
<tr>
<td>-2,18</td>
<td>17,13</td>
<td></td>
</tr>
<tr>
<td>2667,9</td>
<td></td>
</tr>
<tr>
<td>16,15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>K04</td>
<td>K02</td>
<td>K06B</td>
<td>K06A</td>
<td>K04</td>
<td>S02</td>
<td>K06B</td>
<td>K06A</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>120</td>
<td>147</td>
<td>147</td>
<td>150,5</td>
<td>122</td>
<td>150</td>
<td>147,5</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>25,5</td>
<td>150</td>
<td>150</td>
<td>150,5</td>
<td>25,5</td>
<td>147</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>25,5</td>
<td>25</td>
<td>50,5</td>
<td>25</td>
<td>25,5</td>
<td></td>
</tr>
<tr>
<td>1132500</td>
<td>61254</td>
<td>562275</td>
<td>551250</td>
<td>1143838</td>
<td>62274</td>
<td>551250</td>
<td>564188</td>
<td></td>
</tr>
<tr>
<td>559,9</td>
<td>41,81</td>
<td>281,7</td>
<td>261</td>
<td>557,1</td>
<td>44,46</td>
<td>256,3</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>494,4</td>
<td>682,6</td>
<td>501,0</td>
<td>473,5</td>
<td>487,1</td>
<td>713,9</td>
<td>465,0</td>
<td>522,9</td>
<td></td>
</tr>
<tr>
<td>20,9</td>
<td>11,7</td>
<td>20,1</td>
<td>19,8</td>
<td>19,1</td>
<td>12,2</td>
<td>19,2</td>
<td>18,9</td>
<td></td>
</tr>
<tr>
<td>103,3</td>
<td>79,9</td>
<td>100,7</td>
<td>93,8</td>
<td>93,0</td>
<td>87,1</td>
<td>89,3</td>
<td>98,8</td>
<td></td>
</tr>
<tr>
<td>59,3</td>
<td>81,9</td>
<td>60,1</td>
<td>56,8</td>
<td>58,4</td>
<td>85,7</td>
<td>55,8</td>
<td>62,8</td>
<td></td>
</tr>
<tr>
<td>450,4</td>
<td>684,6</td>
<td>460,4</td>
<td>436,6</td>
<td>452,5</td>
<td>712,5</td>
<td>431,5</td>
<td>486,8</td>
<td></td>
</tr>
<tr>
<td>391,1</td>
<td>602,7</td>
<td>400,3</td>
<td>379,8</td>
<td>394,0</td>
<td>626,8</td>
<td>375,7</td>
<td>424,1</td>
<td></td>
</tr>
<tr>
<td>0,450</td>
<td>0,685</td>
<td>0,460</td>
<td>0,437</td>
<td>0,452</td>
<td>0,713</td>
<td>0,432</td>
<td>0,487</td>
<td></td>
</tr>
<tr>
<td>0,391</td>
<td>0,603</td>
<td>0,400</td>
<td>0,380</td>
<td>0,394</td>
<td>0,627</td>
<td>0,376</td>
<td>0,424</td>
<td></td>
</tr>
<tr>
<td>15326,9</td>
<td>16746,0</td>
<td></td>
</tr>
<tr>
<td>3,3</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>230,1</td>
<td>251,6</td>
<td></td>
</tr>
<tr>
<td>13129,6</td>
<td>14051,8</td>
<td></td>
</tr>
<tr>
<td>13129,6</td>
<td>14051,8</td>
<td></td>
</tr>
<tr>
<td>12710,7</td>
<td></td>
</tr>
<tr>
<td>418,9</td>
<td>-2469,6</td>
<td></td>
</tr>
<tr>
<td>3,30</td>
<td>-14,95</td>
<td></td>
</tr>
<tr>
<td>1411,2</td>
<td></td>
</tr>
<tr>
<td>11,10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K04</td>
<td>T02</td>
<td>K06B</td>
<td>K06A</td>
<td>K04</td>
<td>T02</td>
<td>K06B</td>
<td>K06A</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>122</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>120</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>150,5</td>
<td>25,4</td>
<td>147</td>
<td>147</td>
<td>151</td>
<td>25,5</td>
<td>147</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1128750</td>
<td>61787</td>
<td>551250</td>
<td>551250</td>
<td>1132500</td>
<td>61254</td>
<td>551250</td>
<td>551250</td>
<td></td>
</tr>
<tr>
<td>514,2</td>
<td>39,73</td>
<td>259,2</td>
<td>265,1</td>
<td>561,5</td>
<td>39,49</td>
<td>226,8</td>
<td>230,3</td>
<td></td>
</tr>
<tr>
<td>455,5</td>
<td>643,0</td>
<td>470,3</td>
<td>480,8</td>
<td>495,8</td>
<td>644,7</td>
<td>411,5</td>
<td>417,7</td>
<td></td>
</tr>
<tr>
<td>8,6</td>
<td>12</td>
<td>19,9</td>
<td>18,6</td>
<td>19,8</td>
<td>10,7</td>
<td>27,8</td>
<td>18,1</td>
<td></td>
</tr>
<tr>
<td>39,2</td>
<td>77,2</td>
<td>93,6</td>
<td>89,4</td>
<td>98,2</td>
<td>69,0</td>
<td>114,4</td>
<td>75,6</td>
<td></td>
</tr>
<tr>
<td>54,7</td>
<td>77,2</td>
<td>56,4</td>
<td>57,7</td>
<td>59,5</td>
<td>77,4</td>
<td>49,4</td>
<td>50,1</td>
<td></td>
</tr>
<tr>
<td>471,0</td>
<td>643,0</td>
<td>433,1</td>
<td>449,1</td>
<td>457,1</td>
<td>653,1</td>
<td>346,5</td>
<td>392,3</td>
<td></td>
</tr>
<tr>
<td>416,4</td>
<td>565,9</td>
<td>376,7</td>
<td>391,4</td>
<td>397,6</td>
<td>575,7</td>
<td>297,1</td>
<td>342,1</td>
<td></td>
</tr>
<tr>
<td>0,471</td>
<td>0,643</td>
<td>0,433</td>
<td>0,449</td>
<td>0,457</td>
<td>0,653</td>
<td>0,346</td>
<td>0,392</td>
<td></td>
</tr>
<tr>
<td>0,416</td>
<td>0,566</td>
<td>0,377</td>
<td>0,391</td>
<td>0,398</td>
<td>0,576</td>
<td>0,297</td>
<td>0,342</td>
<td></td>
</tr>
<tr>
<td>14686,4</td>
<td></td>
<td>14777,4</td>
<td></td>
</tr>
<tr>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>217,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>219,9</td>
<td></td>
</tr>
<tr>
<td>13865,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11137,4</td>
<td></td>
</tr>
<tr>
<td>13865,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11137,4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>K09</td>
<td>S07</td>
<td>K11A</td>
<td>K09</td>
<td>S07</td>
<td>K09A</td>
<td>K06B</td>
<td>K06B</td>
<td>K09</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>147,5</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>25</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>20,5</td>
<td>121,5</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>99,5</td>
<td>50</td>
<td>49</td>
<td>100</td>
<td>25,5</td>
<td>25,5</td>
<td>25,5</td>
<td>25,5</td>
<td>25,5</td>
<td></td>
</tr>
<tr>
<td>225,3675</td>
<td>40082</td>
<td>225,3675</td>
<td>40082</td>
<td>225,3675</td>
<td>40082</td>
<td>225,3675</td>
<td>40082</td>
<td>225,3675</td>
<td></td>
</tr>
<tr>
<td>991,5</td>
<td>58,77</td>
<td>513,9</td>
<td>492,9</td>
<td>400,0</td>
<td>0,460</td>
<td>0,391</td>
<td>0,400</td>
<td>0,391</td>
<td></td>
</tr>
<tr>
<td>21,6</td>
<td>7</td>
<td>17,8</td>
<td>13,8</td>
<td>20,9</td>
<td>13,6</td>
<td>20,7</td>
<td>20,6</td>
<td>20,7</td>
<td></td>
</tr>
<tr>
<td>120,8</td>
<td>70,469</td>
<td>101,8</td>
<td>62,61</td>
<td>277,1</td>
<td>278,7</td>
<td>278,7</td>
<td>278,7</td>
<td>278,7</td>
<td></td>
</tr>
<tr>
<td>0,0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19371,8</td>
<td>339,8</td>
<td>339,8</td>
<td>339,8</td>
<td>339,8</td>
<td>339,8</td>
<td>339,8</td>
<td>339,8</td>
<td>339,8</td>
<td></td>
</tr>
<tr>
<td>6,9</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>344,0</td>
<td>486,4</td>
<td>486,4</td>
<td>486,4</td>
<td>486,4</td>
<td>486,4</td>
<td>486,4</td>
<td>486,4</td>
<td>486,4</td>
<td></td>
</tr>
<tr>
<td>2,90</td>
<td>2,90</td>
<td>2,90</td>
<td>2,90</td>
<td>2,90</td>
<td>2,90</td>
<td>2,90</td>
<td>2,90</td>
<td>2,90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>K11A</td>
<td>150</td>
<td>150</td>
<td>149.5</td>
<td>150.5</td>
<td>149.5</td>
<td>150.5</td>
<td>150.5</td>
<td>150.5</td>
<td>150.5</td>
<td>150.5</td>
<td>150.5</td>
<td>150.5</td>
<td>150.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>K11B</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T07</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T07</td>
<td>99.5</td>
<td>101.3</td>
<td>102.1</td>
<td>101.3</td>
<td>101.1</td>
<td>101.1</td>
<td>100.9</td>
<td>100.7</td>
<td>100.5</td>
<td>100.3</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>K09</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T07</td>
<td>221</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>K11A</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>K11B</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>T07</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>T07</td>
<td>99.5</td>
<td>101.3</td>
<td>102.1</td>
<td>101.3</td>
<td>101.1</td>
<td>101.1</td>
<td>100.9</td>
<td>100.7</td>
<td>100.5</td>
<td>100.3</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K09</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>T07</td>
<td>221</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>K11A</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>K11B</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>T07</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S08</td>
<td>19</td>
<td>K10</td>
<td>K12A</td>
<td>K12B</td>
<td>S08</td>
<td>K11B</td>
<td>K11A</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>K10</td>
<td>S08</td>
<td>K10</td>
<td>S08</td>
<td>K10</td>
<td>S08</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>221</td>
<td>150</td>
<td>150</td>
<td>149.5</td>
<td>150</td>
<td>220.5</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>150.5</td>
<td>25.7</td>
<td>151</td>
<td>150.5</td>
<td>150</td>
<td>25.3</td>
<td>150.5</td>
<td>150.5</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>48.5</td>
<td>48</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2257500</td>
<td>114585</td>
<td>1132500</td>
<td>1128750</td>
<td>2242500</td>
<td>110795</td>
<td>1102187</td>
<td>1090824</td>
<td></td>
</tr>
<tr>
<td>1053</td>
<td>96.51</td>
<td>550.7</td>
<td>548.1</td>
<td>994.2</td>
<td>96.46</td>
<td>511.9</td>
<td>497.3</td>
<td></td>
</tr>
<tr>
<td>466.4</td>
<td>842.3</td>
<td>486.3</td>
<td>485.6</td>
<td>443.3</td>
<td>870.6</td>
<td>464.4</td>
<td>455.9</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>14</td>
<td>20.5</td>
<td>17.6</td>
<td>21</td>
<td>13.2</td>
<td>12.8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>111.9</td>
<td>117.9</td>
<td>99.7</td>
<td>85.5</td>
<td>93.1</td>
<td>114.9</td>
<td>59.4</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>56.0</td>
<td>101.1</td>
<td>58.4</td>
<td>58.3</td>
<td>53.2</td>
<td>104.5</td>
<td>55.7</td>
<td>54.7</td>
<td></td>
</tr>
<tr>
<td>410.4</td>
<td>825.4</td>
<td>444.9</td>
<td>458.4</td>
<td>403.4</td>
<td>860.2</td>
<td>460.7</td>
<td>465.0</td>
<td></td>
</tr>
<tr>
<td>354.4</td>
<td>724.3</td>
<td>386.6</td>
<td>400.1</td>
<td>350.2</td>
<td>755.7</td>
<td>405.0</td>
<td>410.3</td>
<td></td>
</tr>
<tr>
<td>0.410</td>
<td>0.825</td>
<td>0.445</td>
<td>0.458</td>
<td>0.403</td>
<td>0.860</td>
<td>0.461</td>
<td>0.465</td>
<td></td>
</tr>
<tr>
<td>0.354</td>
<td>0.724</td>
<td>0.387</td>
<td>0.400</td>
<td>0.350</td>
<td>0.756</td>
<td>0.405</td>
<td>0.410</td>
<td></td>
</tr>
<tr>
<td>30204.0</td>
<td></td>
</tr>
<tr>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>224.8</td>
<td></td>
</tr>
<tr>
<td>27201.9</td>
<td></td>
</tr>
<tr>
<td>27201.9</td>
<td></td>
</tr>
<tr>
<td>26337.0</td>
<td></td>
</tr>
<tr>
<td>864.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-208.9</td>
<td></td>
</tr>
<tr>
<td>3.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>781.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K12A</td>
<td>K12B</td>
<td>S08</td>
<td>K10</td>
<td>K12B</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>150</td>
<td>151</td>
<td>150</td>
<td>151</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>150</td>
<td>151</td>
<td>150</td>
<td>151</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>99.5</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1043</td>
<td>565.8</td>
<td>585.2</td>
<td>1038</td>
<td>92.16</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>465.8</td>
<td>598.3</td>
<td>496.3</td>
<td>461.1</td>
<td>820.7</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>24</td>
<td>10.9</td>
<td>18.6</td>
<td>21.2</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>111.8</td>
<td>65.2</td>
<td>92.3</td>
<td>97.8</td>
<td>101.8</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>55.9</td>
<td>71.8</td>
<td>99.6</td>
<td>151</td>
<td>98.5</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>409.9</td>
<td>604.9</td>
<td>488.4</td>
<td>481.7</td>
<td>817.4</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>354.0</td>
<td>533.1</td>
<td>404.0</td>
<td>429.6</td>
<td>363.4</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.34</td>
<td>0.533</td>
<td>0.404</td>
<td>0.426</td>
<td>0.363</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>17371.6</td>
<td>0.605</td>
<td>0.464</td>
<td>0.488</td>
<td>0.419</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>30038.2</td>
<td>0.533</td>
<td>0.404</td>
<td>0.426</td>
<td>0.363</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>12.4</td>
<td>12.2</td>
<td>12.4</td>
<td>12.2</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>130.2</td>
<td>224.2</td>
<td>134.2</td>
<td>25681.0</td>
<td>25681.0</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>13741.0</td>
<td>14157.1</td>
<td>14157.1</td>
<td>14157.1</td>
<td>14157.1</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>-1.416.1</td>
<td>-2.94</td>
<td>532.4</td>
<td>3.76</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>-656.0</td>
<td>-2.49</td>
<td>532.4</td>
<td>3.76</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>K10</td>
<td>T08</td>
<td>K12B</td>
<td>K12A</td>
<td>K10</td>
<td>T08</td>
<td>K12B</td>
<td>K12A</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>220</td>
<td>150,5</td>
<td>150</td>
<td>150</td>
<td>222</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>25,1</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>25</td>
<td>151</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>50</td>
<td>50,5</td>
<td>99,5</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2227500</td>
<td>108803</td>
<td>1136275</td>
<td>1143825</td>
<td>2253675</td>
<td>108919</td>
<td>1132500</td>
<td>1132500</td>
<td></td>
</tr>
<tr>
<td>976,5</td>
<td>67,03</td>
<td>552,9</td>
<td>543,2</td>
<td>1005</td>
<td>65,38</td>
<td>517,8</td>
<td>552,9</td>
<td></td>
</tr>
<tr>
<td>438,4</td>
<td>616,1</td>
<td>486,6</td>
<td>474,9</td>
<td>446,0</td>
<td>600,3</td>
<td>457,2</td>
<td>488,2</td>
<td></td>
</tr>
<tr>
<td>22,9</td>
<td>12,8</td>
<td>16</td>
<td>20,8</td>
<td>26</td>
<td>10,8</td>
<td>16,6</td>
<td>18,5</td>
<td></td>
</tr>
<tr>
<td>100,4</td>
<td>78,9</td>
<td>77,9</td>
<td>98,8</td>
<td>116,0</td>
<td>64,8</td>
<td>75,9</td>
<td>90,3</td>
<td></td>
</tr>
<tr>
<td>52,6</td>
<td>73,9</td>
<td>58,4</td>
<td>57,0</td>
<td>53,5</td>
<td>72,0</td>
<td>54,9</td>
<td>58,6</td>
<td></td>
</tr>
<tr>
<td>390,6</td>
<td>611,1</td>
<td>467,1</td>
<td>433,1</td>
<td>383,5</td>
<td>607,5</td>
<td>436,2</td>
<td>456,5</td>
<td></td>
</tr>
<tr>
<td>338,0</td>
<td>537,2</td>
<td>408,7</td>
<td>376,1</td>
<td>330,0</td>
<td>535,4</td>
<td>381,3</td>
<td>397,9</td>
<td></td>
</tr>
<tr>
<td>0,391</td>
<td>0,611</td>
<td>0,467</td>
<td>0,433</td>
<td>0,384</td>
<td>0,607</td>
<td>0,436</td>
<td>0,456</td>
<td></td>
</tr>
<tr>
<td>0,338</td>
<td>0,537</td>
<td>0,409</td>
<td>0,376</td>
<td>0,330</td>
<td>0,535</td>
<td>0,381</td>
<td>0,398</td>
<td></td>
</tr>
<tr>
<td>15307,7</td>
<td>15655,1</td>
<td>15720,7</td>
<td>16143,1</td>
<td>2253675</td>
<td>108919</td>
<td>1132500</td>
<td>1132500</td>
<td></td>
</tr>
<tr>
<td>7,7</td>
<td>10,1</td>
<td>11,7</td>
<td>117,5</td>
<td></td>
</tr>
<tr>
<td>113,0</td>
<td>117,5</td>
<td></td>
</tr>
<tr>
<td>14757,0</td>
<td>13973,3</td>
<td></td>
</tr>
<tr>
<td>14757,0</td>
<td>13973,3</td>
<td></td>
</tr>
<tr>
<td>599,9</td>
<td>-183,8</td>
<td></td>
</tr>
<tr>
<td>4,24</td>
<td>-1,30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K12A</td>
<td></td>
<td>151</td>
<td>151</td>
<td>50</td>
<td>534.4</td>
<td>1140050</td>
<td>1140050</td>
<td>468.8</td>
<td>17.8</td>
<td>83.4</td>
<td>441.6</td>
<td>385.3</td>
<td>0.442</td>
<td>0.385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K12B</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>50</td>
<td>1140050</td>
<td>561</td>
<td>492.1</td>
<td>19.4</td>
<td>95.5</td>
<td>59.1</td>
<td>455.7</td>
<td>396.6</td>
<td>0.456</td>
<td>0.397</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Mõõtmed on antud järgmiselt: naagril esimene mõõde pikkus ja teine diameeter, tappliidet kujutavate detailide esimesed kaks mõõdet kõrgus ja laius ning kolmas detaili paksus.