MASSIVAHETUSE JA REAKTSIOONIKINEETIKA MÕJU VEE OSOONIMISELE

Magistritöö

Helen Juhkama

Juhendaja: Inna Kamenev, Keemiatehnika õppetool, dotsent

Keemia- ja keskkonnakaitse tehnoloogia õppekava KAKM02/09

2016
Autorideklaratsioon

Deklareerin, et käesolev magistritöö, mis on minu iseseisva töö tulemus, on esitatud Tallinna Tehnikaülikooli magistrikraadi taotlemiseks ja et selle alusel ei ole varem taotletud akadeemilist kraadi.

Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärsinevad andmed on viidatud või (avaldamata tööde korral) toodud autorlus välja põhitekstis.

............................

Helen Juhkama
Sisukord

Sisukord........................................................................................................................................3
Kasutatud tähised ja lühendid......................................................................................................5
Sissejuhatus ................................................................................................................................7
1. Vee osoonimise alused ...........................................................................................................8
   1.1. Osooni omadused .............................................................................................................8
      1.1.1. Osooni füüsikalised ja termodünaamilised omadused .............................................8
      1.1.1.1. Osooni lahusuvus vedelikus .................................................................................9
      1.1.2. Osooni keemilised omadused ...............................................................................11
         1.1.2.1. Kaudsed reaktsioonid ......................................................................................11
         1.1.2.2. Otsesed reaktsioonid .......................................................................................12
   1.2. Reaktsioonikineetika .......................................................................................................14
   1.3. Vee osoonimise rakendused ..........................................................................................16
2. Massiläbikanne- ja reaktsioonikineetika osoonimisel .........................................................19
   2.1. Füüsikaline massiülekanne ühes faasis .........................................................................19
   2.2. Füüsikaline massiläbikanne kahe faasi vahel .................................................................20
      2.2.1. Mahulise massiläbikandeteguri määramine .............................................................24
         2.2.1.1. Katseline määramine ......................................................................................24
         2.2.1.2. Arvutuslik määramine ....................................................................................25
   2.3. Absorptsioon koos samaaegse keemiline reaktsiooniga vees ........................................27
      2.3.1. Reaktsioonirežiimid ...............................................................................................27
      2.3.2. Massiläbikannet ning reaktsioonikineetikat mõjutavad tegurid .............................31
3. Viimaste aastate uuringud massivahetuse ja reaktsioonikineetika mõjust osoonimisele .34
   3.1. Veefaasi ning gaasifaasi kontsentratsiooni ja voolamise kiiruse mõju massivahetusele, reaktsioonikineetikale ja osoonimise efektiivsusele ..................................................34
   3.2. Kavitatsiooni kombineerimine osoonimisega .................................................................40
      3.2.1. Kavitatsioon ............................................................................................................40
      3.2.2. Kavitatsiooni mõju osoonimisele ja massivahetusele .............................................41
   3.3. Faasidvahelise piirpinna suuruse mõju massivahetusele ja osoonimisele ...................42
   3.4. pH mõju massivahetusele, reaktsioonikineetikale ja osoonimisele ..............................43
   3.5. Temperatuuri mõju massivahetusele, reaktsioonikineetikale ning osoonimise efektiivsusele .........................................................................................................................45
3.6. Reaktori ehituse (konfiguratsiooni) mõju massivahetusele, reaktsioonikineetikale ja osoonimise efektiivsusele ........................................................................................................... 46

3.6.1. Ejektor-tüüpi reaktor ........................................................................................................... 46
3.6.2. Täiustatud membraanreaktor .............................................................................................. 47
3.6.3. Vaheplatidega ostsillatsioonikolonn .................................................................................. 49
3.6.4. Rotatsioontäidiskolonn ...................................................................................................... 51

3.7. Järeldused osoonimise massiläbikannet ja reaktsioonikineetikat mõjutavate faktorite toime kohta .................................................................................................................................. 53

Kokkuvõte ................................................................................................................................... 55
Summary ..................................................................................................................................... 56
Kasutatud kirjandus ..................................................................................................................... 57
Kasutatud tähised ja lühendid

A – massiläbikandepind
C_i – molaarne kontseratsioon
C_i* - tasakaalukontseratsioon
Da – Damköhleri arv
D_i – molekulaarse difusiooni koefitsient
E – kiirendustegur
G – masskulu
Gr – Grashofi arv
Ha – Hatta arv
He – Henry konstant
I – inaktiveerimise aste
K_G – gaasifaasi massiläbikandetegur
KHT – keemiline hapnikutarve
K_L – vedelfaasi massiläbikandetegur
K_La – massiläbikandetegur mahu kohta
M – mineraalained ja orgaanilised ühendid
N_i – aine i hulk, mis kandub ajaühikus läbi piirpinna
P – üldröhk
Pe – Pécleti arv
Q – mahtkulu
R – mikroorganismid
Ra – Rayleighi arv
Re – Reynoldsi arv
S – lahusti
Sc – Schmidti arv
Sh – Sherwoodi arv
T – temperatuur
TOC – üldine orgaaniline süsinik
V_L – vedelfaasi maht
$X_M$ – molekuli konversiooniaste
$a$ – eripind
$f_i$ – komponendi i fugitiivsus
$k$ – massiülekandetegur, kineetikavörrandites reaktsiooni kiiruskonstant
$k_d$ – otsese reaktsiooni kiiruskonstant
$k_G$ – gaasifaasi massiülekandetegur
$k_{id}$ – kaudse reaktsiooni kiiruskonstant
$k_L$ – vedelfaasi massiülekandetegur
$k_{La}$ – massiülekandetegur mahu kohta
$r$ – reaktsioonikiirus
$x_i$ – komponendi i moolosa vedelfaasis
$y_i$ – komponendi i moolosa gaasifaasis
$\gamma_i$ – lahustunud aine aktiivsuskoefitsient
$\delta$ – kelme paksus
$\varepsilon_G$ – dispergeeritud gaasi mahuosa
$\mu$ – vee dünaamiline viskoossus
$\phi_i$ – komponendi i fugitiivsuskoefitsient
Sissejuhatus


Magistritöö teema valiku põhjuseks on autori huvi veepuhastusprotsesside vastu ning osoonimise potsentsiaal reoveepuhastuses. Osoonimine on küll laialdaselt kasutatav, kuid massivahetuse ning seeläbi ka reaktsioonikineetika arvestamist osoonimise protsessis on vähe käsitletud.

Antud töö eesmärgiks on anda ülevaade osoonimisest kui kemosorptsooniprotsessist ning välja selgitada, kuidas reaktsioonikineetikat ja massivahetuset osoonimise protsessi optimeerimisel arvesse võtta. Töös on esitatud kirjandusülevaade uuematest uurimustest ja arengutest osooni massivahetuse ja reaktsioonikineetika valdkonnas. On selgitatud erinevate protsessiparametreid mõju massivahetusele ja reaktsioonikineetikale. Samuti on käsitletud massivahetuse ja reaktsioonikineetika omavahelist seotust ning mõju osoonimise efektiivsusele.
1. Vee osoonimise alused

Osoon on väga tugev oksüdant ja desinfiteerija. Osoonimise efektiivsus sõltub kahest tegurist:
- osooni lahustuvus vees (gaas-vedelik massiläbikanne),
- orgaanilise aine ja oksüdandi vastastikused keemilised mõjud.

Selleks, et viia osoon kontakti sihtaineega vedelfaasis, tuleb esiteks osoon viia vedelfaasi. Edasi võivad osooni ja sihtaine vahel toimuda mitmed keemilised reaktsioonid samaaegselt. (Gottschalk jt, 2010)

Seetõttu tuleb osoonimise protsessi kirjeldamiseks ning rakendamiseks esimese sammuna lahti seletada osooni füüsikalised ja keemilised omadused, eelkõige lahustumise (absorptsiooni) põhimõtted ning reaktsioonimehhanismid.

1.1. Osooni omadused

1.1.1. Osooni füüsikalised ja termodünaamilised omadused

Osoon on hapniku allotroopne vorm keemilise valemiga O₃. Suure tiheusega osoon omab iseloomuliku sinist värvust. (Degremont, 2007)

Osoon on ebastabiilne gaas, mida tuleb toota kasutuskohas. Osooni genereeritakse tavaliselt elektriga kas õhus sisalduvast hapnikust või puhtast gaasilisest hapnikust, kui on vaja suuri osooni kontsentratsioone (Gottschalk jt, 2010).

Tabelis 1 on esitatud osooni füüsikalised ja termodünaamilised omadused normaaltingimustel.
Tabel 1. Osooni füüsikalised ja termodünaamilised omadused (Metcalf & Eddy jt, 2014; Beltrán, 2004; Degremont, 2007)

<table>
<thead>
<tr>
<th>Omadus</th>
<th>Väärtus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molekulmass</td>
<td>48g/mol</td>
</tr>
<tr>
<td>Keemispunkt atmosfäärirõhul</td>
<td>(-111,9 ± 0,3)°C</td>
</tr>
<tr>
<td>Külmumispunkt</td>
<td>(-192,5 ± 0,4)°C</td>
</tr>
<tr>
<td>Kriitiline temperatuur</td>
<td>(-12,1 ± 0,1)°C</td>
</tr>
<tr>
<td>Kriitiline rõhk</td>
<td>55,30 x 10^5 Pa</td>
</tr>
<tr>
<td>Osooni tekkeentalpia (25°C, 1,013 x 10^5 Pa)</td>
<td>(34220 ± 240) cal/mol</td>
</tr>
<tr>
<td>Suhteline tihedus kuiva õhu suhtes (0 °C, 1,013 x 10^5 Pa)</td>
<td>1,657</td>
</tr>
<tr>
<td>Absolutne tihedus (0 °C, 1,013 x 10^5 Pa)</td>
<td>2,143 kg/m³</td>
</tr>
<tr>
<td>Lahustuvus vees (20°C)</td>
<td>12,07 mg/L</td>
</tr>
</tbody>
</table>

1.1.1.1. Osooni lahustuvus vedelikus

Gaasi lahustuvuseks vedelikus nimetatakse vedelikus lahustunud gaasi kontsentratsiooni tasakaaluolekus normaaltingimustel (0°C ja 1 atm) (Masschelein, 2000). Kui gaasifaas ja vedelfaas on tasakaalus, on vastavalt termodünaamika printsiiipidele kõikide komponentide fugitiivsused mõlemas faasis võrdsed:

\[ f_i^L(T,P,x) = f_i^G(T,P,y) \]  

kus \( f_i^L(T,P,x) \) ja \( f_i^G(T,P,y) \) on vastavalt komponendi i fugitiivsused vedelfaasis ja gaasifaasis.

Komponendi fugitiivsust gaasifaasis väljendab järgnev võrrand:

\[ f_i^G(T,P,y) = y_i \cdot P \cdot \phi_i^G(T,P,y) \]  

kus \( y_i \) on komponendi i moolosa gaasifaasis, \( P \) on üldrõhk ning \( \phi_i^G(T,P,y) \) on fugitiivsuskoefitsient, mis sõltub komponendist i, koostisest, temperatuurist ja rõhust.

Komponendi fugitiivsust gaasifaasis saab kirjeldada erinevatel viisidel sõltuvalt baasolekust. Gaaside jaoks, mis lahustuvad vedelikus, võetakse lahusti baasolekuks tavaliselt puhas ühend süsteemi temperatuuril ja rõhul ning lahustatud aine jaoks lõpmatu lahjendus.
Sellest tulenevalt on vajalik kirjeldada Henry konstanti $H_{i,S}$, mida defineeritakse kui $H_{i,S} = \lim (f_i/x_i)$, kui $x_i \to 0$ ja $x_S \to 1$.

Lahustunud aine i fugitiivsus lahistis $S$ väljendub järgnevalt:

$$f^L_{i,(T,P,x)} = \gamma_i \cdot x_i \cdot H_{i,S}$$

kus $\gamma_i$ on lahustunud aine aktiivsuskoefitsient ning $x_i$ on komponendi $i$ moolosa vedelfaasis.

Valem (4) kirjeldab tasakaalu gaasi- ja vedelfaasi vahel lahustunud aine i jaoks.

$$\gamma_i \cdot x_i \cdot H_{i,S} = \gamma_i \cdot P \cdot \phi^G_{i,(T,P,Y)}$$

Kui osoon lahustub normaaltingimustel vees, loetakse gaasifaasi ideaalseks, seetõttu on fugitiivsuskoefitsient $\phi_{O3} = 1$. Kui vedelfaas koosneb ainult puhtast veest, on osooni aktiivsuskoefitsient $\gamma_{O3}$ samuti 1. Aktiivsuskoefitsienti väärtus sõltub lahustunud soolade ja mitte-ioonsete ühendite olemasolust lahuses.

Võttes eelnevad arvesse saadakse võrrand:

$$\gamma_{O3} \cdot x_{O3} \cdot H_{O3,L} = \gamma_{O3} \cdot P$$

kus $\gamma_{O3} H_{O3,L}$ nimetatakse näivaks Henry konstandiks. (Foussard ja Debellefontaine, 2000)

**Lahustuvuse määramine**

Osooni lahustuvus on oluline tegur osoonimise kontaktseadmete projekteerimisel. Osooni lahustuvus vees sõltub mitmetest asjaoludest - temperatuur, pH, vee ioontugevus, orgaaniliste ja muude ainete esinemine vees.

Osooni lahustuvust määratakse talveliselt juhtides osooni sisaldavat gaasi konstantse voona ning praktiliselt konstantse osooni sisenemiskonentratsiooniga läbi poorse plaadi seisvasse vette poolperioodses kolonnis konstantse temperatuuri ja pH juures.

Lahustuvuse määramine on aga keeruline protsess osooni kõrge reaktiivsuse ning termilise ja katalüütilise lagunemise tõttu. (Munter jt, 2000)

Lagunemist kiirendavad põhiliselt kaks faktorit:

- temperatuuri kasv;
- pH kasv hääroksüülioonide esinemise tõttu (Degremont, 2007).

Munter, Kamenev ja Siirde (2000) on oma töös välja toonud, et osooni tasakaalukonentratsiooni vees, mille pH > 8, saab saavutada suurendades märkimisväärselt osooni massiläbikannet, viies massiläbikande ning osooni lagunemise tasakaalu, sest kõrge

Sellest tulenevalt, et saada korrektsed osooni lahustuvuse väärtused kõrge pH (pH>8) juures, on vajalik kiirendada osooni massilääbikannet vastavalt selle lagunemise kiirusele. (Munter jt, 2000)

1.1.2. Osooni keemilised omadused

Vesilahustes läbib osoon väga keerulised oksüdatsiooni reaktsioonid ja toimub ka osooni iselagunemine.

Nagu on kujutatud ka Joonisel 1, võib osoon saasteaine reageerida kahel erineval viisil:
- otsene reaktsioon lahustunud molekulaarise osooni ja saasteaine vahel,
- kaudne reaktsioon osooni lagunemisel vees tekkivate radikaalsete osakeste (OH•, HO2•) ja lahustunud saasteainete vahel. (Gunten ja Laplanche, 2000)

Need kaks reaktsioonirada viivad erinevate oksüdatsiooniprodtüideni ning nende reaktsioonide kineetika on erinev. (Gottschalk jt, 2010)

1.1.2.1. Kaudsed reaktsioonid

Kuna osoon on vees ebastabiilne, laguneb ta sekundaarseteks oksüdantideks, põhiliselt OH-radikaalideks. Kaudsetes reaktsioonides toimub radikaalide teke ning edasised reaktsioonid on radikaalide ning teiste ühendite vahelised. Radikaalid on molekulid, millel on paardumata elektron. Enamik radikaale reageerivad koheselt teise molekuliga. (Gottschalk jt, 2010)

Alljärgneval skeemil (Joonis 2) on kujutatud osooni lagunemise kineetika vees. Osooni lagunemine vees on radikaalne ahelprotsess. Joonisel on esitatud ka radikaalset.

ahelreaktsiooni mõjutavad lahustunud ained M. Lahustunud ained kas initsieerivad, soodustavad või inhibeerivad radikaalseid reaktsioone.

On eeldatud, et radikaalsetes reaktsioonides koosneb reaksiooni tee initsieerimisreaktsioonidest, järgnevatest reaktsioonidest ning lõpetamisreaktsioonidest. (Staehelin ja Holgné, 1985)

**Joonis 2. Lahustunud osooni reaktsioonid (modifitseeritud Staehelin ja Holgné, 1985)**

Mehhanismi esimeses astmes toimub osooni lagunemine, mida kiirendavad initsiaatorid, näiteks OH⁻, ja mille käigus moodustuvad sekundaarsed oksüdandid nagu hüdroksüülradikaalid (OH•). Radikaalid reageerivad mitte-selektiivselt ja koheselt (k=10⁸-10¹⁰ 1/(M⋅s)) sihtmolekulidega. Näiteks hüdroksüülradikaal saab oma puuduva elektroni tagasi eemaldades sihtmolekuli vesninikult elektroni ning moodustab vee molekuli. Sihtmolekul, kaotades elektroni, muutub ise radikaaliks, mis reageerib edasi, jätkates ahelreaktsiooni. Kui radikaal aga reageerib teise radikaaliga, nii et tekivad elektronide paarid, on ahelreaktsioon lõpetatud. (Gottschalk jt, 2010)

**1.1.2.2. Otsesed reaktsioonid**

Otsesed reaktsioonid on olulised, kui radikaalsed reaktsioonid on inhibeeritud. Selline olukord võib esineda, kui vesi ei sisalda ahelreaktsioone initsieerivaid ühendeid või sisaldab liiga palju radikaalipüüdureid, mis lõpetavad ahelreaktsioonid kiiresti. Tavaliselt happelistes
tingimustes (pH<4) esinevad põhiliselt otsesed reaktsioonid, üle pH=10 domineerivad kaused reaktsioonid. (Gottschalk jt, 2010)

Orgaaniliste ühendite otsene oksüdatsioon osooniga on aeglane selektiivne reaktsioon madala reaktsiooni kiiruskonstandiga (k=1,0-10⁶ 1/(M·s)) (Gottschalk jt, 2010).

Osooni otsesed reaktsioonid on seotud osooni füüsikalis-keemiliste omadustega (oksüdatsioonipotentsiaal on 2,07 V) ning osooni resonantsstruktuuriga, mis on esitatud Joonisel 3 (Gunten ja Laplanche, 2000).

\[
\begin{array}{c}
\delta^+ \\
\vdots \\
\delta^+
\end{array}
\leftrightarrow
\begin{array}{c}
\delta^- \\
\vdots \\
\delta^-
\end{array}
\]

Joonis 3. Osooni molekuli resonantsstrukturi vormid (Gunten ja Laplanche, 2000)

Tsükloliitumisreaktsioonid (Criegee mehhanism)


\[
\begin{array}{c}
\delta^+ \\
\vdots \\
\delta^+
\end{array}
\leftrightarrow
\begin{array}{c}
\delta^- \\
\vdots \\
\delta^-
\end{array}
\]

Joonis 4. Esmase osoniidi teke osooni dipolaarset tsükloliitumiselt polariseeritud \(\delta^+\)-\(\delta^-\) kaksiksidele (Gunten ja Laplanche, 2000)

Elektrofiilised reaktsioonid

Elektrofiilised reaktsioone kirjeldatakse kui polariseeritud hapniku aatomi elektrofiilset ründakut molekuli suure elektrontihedusega osadele. Põhilisteks reaktiivseteks ühenditeks on aromaatsed ühendid, mille funksionaalsed rühmad on elektronide doonoriks (OH-, NH₂- või

Redoksreaktsioon

Otsene reaktsioon osooni ja orgaanilise ühendi vahel elektronide ülekandumisega on väga haruldane. Üks teadaolev reaktsioon on vesinikperoksiidi aniooni oksüdeerimine (Gunten ja Laplanche, 2000):

\[ O_3 + HO_2^- \rightarrow O_3^- + HO_2^0 \]  \hspace{1cm} (6)

Hapniku aatomi ülekanne reaktsioonid

Reaktsioonid, mille käigus hapniku aatom kandub üle, toimuvad orgaaniliste ühenditega. Lisatakse hapniku aatom ning vabaneb hapniku molekul (Gunten ja Laplanche, 2000):

\[ O_3 + OH^- \rightarrow O_2 + HO_2^- \]  \hspace{1cm} (7)
\[ O_3 + NO_2^- \rightarrow O_2 + NO_3^- \]  \hspace{1cm} (8)
\[ O_3 + Br^- \rightarrow O_2 + BrO^- \]  \hspace{1cm} (9)
\[ O_3 + I^- \rightarrow O_2 + IO^- \]  \hspace{1cm} (10)
\[ O_3 + Fe^{2+} \rightarrow O_2 + FeO^{2+} \]  \hspace{1cm} (11)

Nukleofiilne reaktsioon


1.2. Reaktsioonikineetika

Eelnevates peatükkides (peatükk 1.1.2.1 ja 1.1.2.2 ) kirjeldati osoonimise käigus toimuvate reaktsioonide mehhanisme. Osoonimise protsessis on oluliseks ka reaktsioonide kineetika ehk see, kui kiiresti need reaktsioonid toimuvad. Vaja on teada kineetilisi parameetreid nagu reaktsiooni järk n ning reaktsiooni kiiruskonstant k.
Saab eristada kahte tüüpi osoonimise sihtaineid (Gunten ja Laplanche, 2000):
- mineraalained ja orgaanilised ühendid M, mille puhul osoonimise efekti mõõdetakse molekuli konversiooniastmega
  \[ X_M = (C_M^0 - C_M)/C_M^0 \] (12)
- mikroorganismid R, mille puhul osoonimise efekti mõõdetakse mikroobide inakteerimise astmega I
  \[ I = \log R_0/R \] (13)
Lahustunud aine M võib vees reageerida erinevate oksüdantidega. Järgnevalt on tehtud eeldus, et oksüdantideks on ainult osoon ja hüdroksüülradikaalid.
Reaktsioon on üldiselt teist järku ning esimest järku sihtaine ning oksüdantide suhtes.
Arvestades, et ühendi M osoonimine hõlmab nii otsest (reaktsiooni kiiruskonstandiga \( k_d \)) kui kaudset (reaktsiooni kiiruskonstandiga \( k_{id} \)) reaktsiooni, avaldub kineetilise võrrandi järgmisel kujul (Gunten ja Laplanche, 2000):
  \[ r_M = -(k_dC_{O3,L}C_{M,L} + k_{id}C_{OH^*,L}C_{M,L}) \] (14)
Ideaaljuhul saab O₃ ja OH kontsentratsioonid vees lugeda ajas konstantseteks. Ainult ühendi M kontsentratsioon muutub ning võrrandit saab lihtsustada, saades pseudo-esimest järku reaktsiooni (Gottschalk, Libra ja Saupe, 2010):
  \[ r_M = -k'C_{M,L} \] (15)
kus \( k' \) on pseudo-esimest järku reaktsiooni kiiruskonstant, mis sõltub otse ja kaudse oksüdatsiooni kiiruskonstantidest ning osooni ja OH-radikaalide kontsentratsioonist:
  \[ k' = k_dC_{O3,L} + k_{id}C_{OH^*,L} \] (16)
Korrektse kiirusevörrandi leidmiseks tuleb reaktsiooni järk igale reagendile määrama eksperimentaalselt. Osooni kontsentratsiooni on võimalik lihtsalt mõõta (UV- või kolorimeetrilise meetodiga), kuid OH• kontsentratsiooni määramine on kompliseeritud, sest radikaalid reageerivad kergesti vees sisalduvate lisanditega ning nende kontsentratsioon püsiolekus on väike (Gunten ja Laplanche, 2000).
1.3. Vee osoonimise rakendused

Tänu oma tugevatele oksüdeerivatele omadustele on osoon leidnud laialdaselt kasutust. Osooni rakendatud rakendused näiteks toiduainetööstuses, vee desinfiteerimiseks, pakendite puhastamiseks ja seadmete steriliseerimiseks.

Rääkides veepehmustusest, oli osooni kasutamise esmaseks eesmärgiks desinfiteerimine. Peagi avastati, et osooni kasutamisel on ka teisi positiivseid efekte nagu maitse ja lõhna parandamine ning värvuse eemaldamine. (Gottschalk jt, 2010)

Seega, põhilised osooni kasutuseesmärgid veepehmustuses on järgmised:
- desinfiteerimine;
- viiruste inaktiveerimine;
- lahustunud raau ja/või mangaani oksüdatsioon;
- värvuse eemaldamine;
- maitse eemaldamine;
- lõhna eemaldamine;
- orgaanika (sealhulgas pestitsiitide, detergentide, ja fenoolide) lagundamine;
- tsüaniidide lagundamine;
- hõljuvaine eemaldamine;
- lahustunud orgaanika biolagundatavuse suurendamine (United States Environmental Protection Agency, 1980; Gottschalk jt, 2010; Degremont, 2007).

Osoon on veepehmustuses väga populaarne oksüdaant ning osooniga vee puhastamisel on mitmeid eeliseid:
- osoon on efektiivne desinfiteerija;
- osoon on kloorist efektiivsem enamike viiruste, eoste, tsüstide ja ootsüstide deaktiveerimisel;
- osoonil on biotsidaalsed omadused, mida ei mõjuta pH;
- lühem kontakttaeg kui klooril;
- oksüdeerib sulfiid;
- lisab vette lahustunud hapnikku.

Osooni kasutamise üheks suureks eelseks eelseks on see, et ta ei moodusta klooritud kõrvalprodukte. Küll aga moodustub osoonimise käigus muid kõrvalprodukte nagu aldehüüdid, erinevad happed, aldo- ja ketohapped. Seda tingimustel, et vesi ei sisalda bromiidi. Bromiidi esinevusel tekivad broomitud kõrvalproduktid nagu bromoform, broometaanape, broompikriin,
broomitud atsetonitrilid, tsüanogeenbromiidühendid. Kõrvalproduktid, mis ei ole broomitud, on biolagundatavad ning neid saab lagundada järgneva bioloogilise puhastusega. Broomitud ühendite eemaldamine on keerulisem, seega tuleks bromiidi esinemisel vees eelistada mõnda teist desinfitseerimise viisi. (Metcalf & Eddy jt, 2014)


Lisaks on vaja kontaktseadmest väljuv gasis sisalduv jääkosoon lagundada, kuna osoon on väga korrosiivne ja toksiline. Osooni kasutamine on kallis ja energiamahukas protsess. (Metcalf & Eddy jt, 2014)


Osoonimise kasutamine on suurenenud nii tänul tehnoloogia arengule kui ka õigusaktidest tulenevate nõuete karmistumisega. Kuna halogeenitud kõrvalproduktide lubatud sisaldus vees on piiratud, siis on võetud kasutusele alternatiivseid desinfitseerimise meetodeid. (Gottschalk jt, 2010)

Hinnanguliselt oli 2014. aastal ainuüksi Ameerika Ühendriikides rohkem kui 280 suurt veepuhastusjaama, mis kasutasid osoonimist (Veeb 1).

**Osoonimise kasutamine kombineeritult teiste meetoditega**

Osoonimist on võimalik kasutada veepuhastuse eri etappides. Suurendamaks osoonimise efektiivsust, tuleb osoonimise protsess tervesse puhastusskeemi võimalikult optimaalselt paigutada (Joonis 5).

Osooni võib kasutada puhastusprotsessi esimestes etappides, nii-öelda eelpuhastusena (eelp- osoonimine). Eelpuhastusprotsessis kasutatakse osooni koaguleerivat mõju ning osooni võimet oksüdeerida mangaani ja rauda ning mikroaasteaineid. Osooni kasutamisega puhastusprotsessi alguses paranee vee puhastusefekt järgmistes etappides.

Osoonimist saab kasutada ka peamise desinfitseerimise etapina; sel juhul osoonimine paigutatakse puhastusskeemis protsessi keskele või lõpu lähedale. (Gottschalk jt, 2010)
Osoonimist kasutatakse ka pärast füüsitiklis-keemilist või bioloogilist puhastust, et eemaldada detergendid, värvis, vähendada puhastatava vee keemilist hapnikutarvet (KHT-d), desinfitseerida, ohjata mikroorganismide levikut ning vähendada jääkmuda teket biopuhastuses.

Lisaks on osooni võimalik kasutada aktiivmuda töötlemisel mudast vee eemaldamise ja muda tihendamise parandamiseks ning lõhna eemaldamiseks. (Marcе jт, 2016)

2. Massiläbikanne- ja reaktsioonikineetika osoonimisel


2.1. Füüsikaline massiülekkanne ühes faasis

Massiläbikandemudelites (mida käsitletakse täpsemalt peatükis 2.2) eeldatakse tavaliselt, et faasidevahelise piirpinna vahetus läheduses on mõlemas faasis (nii gaasi- kui ka vedelaasi) laminaarne viskoosne piirkond (nn fluidumi kelme ehk piirkond) ning massilevi toimub selles kelmes molekulaarse difusiooni teel. Faasi tuumas toimub massilevi konvektsiooni teel. Selle tõttu eeldatakse ka, et põhiline massiülekandetakistus on fluidumi kelmes (edaspidi kelmes) ning fluidumi tuumas on takistus tühine. (Geankoplis, 2003)

Fick’i difusiooni esimene seadus on aluseks teooriatele, mis kirjeldavad massiülekannet faasidevaheliselt piirpinnalt läbi kelmekihi faasi tuuma (Gottschalk jt, 2010):

\[ N = -D_{O3} \frac{dC_{O3}}{dx} \]  \hspace{1cm} (17)

kus \( D_{O3} \) – molekulaarse difusiooni koefitsient,
\( C_{O3} \) – osoon molaarne kontsentraatsioon,
\( x \) – asukoht piirpinna suhtes.

On eeldatud, et massiülekanne piirkond on statsionaarne, see tähendab, et piirkond esine massiakumulatsiooni. Samuti eeldatakse, et vedelaas on suljetud süsteem.
Fick’i võrrandi (17) integreerimisel on tavaliselt üheks eelduseks, et mass ülekandetegur k kelmes on proportsionaalne molekulaarse difusiooni koefitsiendiga astmes n D^n ning n varieerub 0,5-1 (Gottschalk jt, 2010):

\[ k \propto \frac{D^n}{\delta} \quad (18) \]

kus  
\[ k \] – kelme mass ülekandetegur,  
\[ D \] – molekulaarse difusiooni koefitsient,  
\[ n = 0,5-1,0 \] sõltuvalt süsteemi turbulentsist,  
\[ \delta \] - kelme paksus.

Osooni difusioonikoefitsiendt puhtas vees temperatuuril 20°C on tavaliselt \( D_{O3} = 1,74 \cdot 10^{-9} \) m²/s ning Stokes-Einstein seadus (19) loetakse kehtivaks temperatuurivahemikes, mida kasutatakse veevarustuse ja keskkonna rakendusalades (Masschelein, 2000).

\[ \frac{D_{O3} \mu}{T} = const \quad (19) \]

kus  
\[ \mu \] - vee dünaamiline viskoossus,  
\[ T \] – temperatuur, K.

Difusioonikoefitsiendi määramine on oluline, sest kahekelmenteooria kohaselt on osooni massiläbikandetakistus määratatud gaasi difusiooniga vedelfaasis. (Masschelein, 2000)

2.2. Füüsikaline massiläbikanne kahe faas vahel


<table>
<thead>
<tr>
<th>Massiläbibandemudel</th>
<th>$k_L$</th>
<th>Märkused</th>
</tr>
</thead>
</table>
| **Kahekelsemudel**  | $k_L = \frac{D_L}{\delta_L}$ | D$_L$ – vedeliku molekulaarne difusioonikoefitsient  
δ$_L$ – vedeliku kõrval paksus |
| **Penetratsioonimudelid** | $\overline{k}_L = 2 \frac{D_L}{\pi \theta}$ (Higbie, 1935) | θ – pinnaelemendi eksponenteerimise aeg |
|                     | $\overline{k}_L = \sqrt{D_L s}$ (Danckwerts, 1951) | s – pinna uuenemise määr |
| **Kombineeritud mudelid** | $\overline{k}_L = \sqrt{D_L s} \coth \left( \frac{\delta_L}{s} \right)$ (Dobbins, 1964) |  |
|                     | $\overline{k}_L = \frac{D_L}{\delta_L} \left[ 1 + 2 \sum_{n=1}^{\infty} \left( 1 + n^2 \pi^2 D_L / (s \delta_L) \right) \right]^{-1}$ (Toor ja Marchello, 1958) |  |
| **Keerise elemendi e raku (eddy cell) mudelid** | $\overline{k}_L = 1,46 \left( \frac{D_L V}{L} \right)^{1/2}$ (Fortescue ja Pearson, 1964) | $V = \sqrt{\nu^2}$ – keskmise kiirus  
L – keerise pikkus |
|                     | $\overline{k}_L = 0,4 (\varepsilon v_L)^{1/4} S e^{-1/2}$ (Lamont ja Scott, 1970) | ε – energia dissipatsiooni kiirus (J/ kg)  
v$_L$ – vedeliku kinemaatiline viskoosus |
|                     | $\overline{k}_L = C_1 D_L^{1/2} \left( \frac{\varepsilon}{v_L} \right)^{1/4}, Re_t \gg 1$ |  |
|                     | $\overline{k}_L = C_2 F(\alpha) \left( \frac{D_L V}{L} \right)^{1/2}$,  
$Re_t, mis ei ole \gg 1$ (Brumfield ja Theofanous, 1976) | $Re_t = \frac{V L}{\nu_L}$  
V ja L – turbulentse keerise kiirus ja teekonna pikkus  
$\alpha = \frac{\sqrt{\theta_{expon} V}}{L}$  
funktsioon |
| **Turbulentse e keeriselise (eddy) difusiooni mudelid** | $k_L = \frac{n}{\pi} \sin \left( \frac{\pi}{n} \right) a \pi D_L^{1-1/n}$,  
n = 2 $\Rightarrow$ $k_L = \frac{2}{\pi} a^{1/2} D_L^{1/2}$ (King, 1966) | Plika kontaktajaga asümptoot  
$D_t = a \nu^n$  
a – tegur, mis arvestab hüdrodünaamilisi tingimusi |
|                     | $k_L = 0,32 D_L^{1/2} \rho_L^{1/2} v_0^{3/2} \sigma_r^{-1/2}$ (Davies, 1972) | $D_t = \nu_0 y^2 / \lambda$ (Levich, 1962)  
$\nu_0$ – turbulentsekiirus  
$\lambda$ – piirkihi üleminekutsoonipaksus, kus sumbuvad kiiruse ja kontsentratsiooni turbulentse kõikumised |
Osooni massiläbikanne gaasifaasist vedelfaasi

Osooni läbikannet gaasifaasist vedelfaasi kirjeldab kõige paremini kahekelmeteooria, millele vastav kontsentratsioonide profiil on esitatud Joonisel 6.

Kahekelmeteooria puhul eeldatakse kahe hüpooteetilise laminaarse kelme eksisteerimist faasidevahelise piirpinna vahetus läheduses. Esiteks peab aine difundeeruma läbi vedeliku pinna, seejärel vedelikus lahustuma ning difundeeruma vedeliku sees.

Läbikande kiirus gaasi ja vedeliku vahel sõltub järgnevalt:
- gaasi- ja vedelfaasi füüsikaliste omadustest,
- kontsentratsiooni erinevustest piirkihi eri punktides,
- turbulentsi astmest. (Degremont, 2007)

![Joonis 6. Massiläbikanne gaas-vedelik süsteemis kahekelmemudeli järgi (modifitseeritud Gottschalk jt, 2010)](image)

Osooni hulk, mis kandub ajal hõlmatud piirpinna \( (N_{O3}) \) statsionaarse ekvimolaarse vastasdifusiooni protsessi käigus, leitakse järgnevalt võrranditega:

\[
N_{O_3} = k_G A (C_{O_3,G} - C_{O_3,G,l}) = k_L A (C_{O_3,L} - C_{O_3,L}) \quad (20)
\]

\[
N_{O_3} = K_G A (C_{O_3,G} - C_{O_3,G}) = K_L A (C_{O_3,L} - C_{O_3,L}) \quad (21)
\]

kus \( k_G \) ja \( k_L \) on vastavalt gaasi- ja vedelfaasi massiülekandetegurid, \( K_G \) ja \( K_L \) massiläbikandetegurid, \( A \) massiläbikandepind, \( C_{O_3,G} \) ja \( C_{O_3,L} \) osooni kontsentratsioonid vastavalt gaasi- ja vedelfaasis, \( C_{O_3,G,l} \) ja \( C_{O_3,L} \) osooni kontsentratsioonid gaasi- ja
vedelfaasis piirpinnal, \( C_{O3,G}^* \) ja \( C_{O3,L}^* \) on osooni tasakaalukonsentratsioonid vastavalt gaasi- ja vedelfaasis. (Roustan ja Bin, 2000)

Massiülekandetegurid \( k_G \), \( k_L \) ning massiläbikandetegurid \( K_G \), \( K_L \) on vastavalt massiülekandetakistuse või -läbikandetakistuse pöördväärtused.

Eeldatud, et piirpinnal on faasid tasakaalus ja faasidevahelist tasakaalu kirjeldatakse järgneva võrrandiga:

\[
C_{O3,Gl} = HeC_{O3,Ll}
\]

kus He on Henry konstant.

Kelmekihi massiülekandetegur ning massiläbikandetegur on omavahel seotud järgmiselt:

\[
\frac{1}{K_G} = \frac{1}{k_G} + \frac{1}{Hek_L}
\]

\[
\frac{1}{K_L} = \frac{1}{k_L} + \frac{He}{k_G}
\]

Osoon on vees värelahustuv, osooni difusiooni gaasikelmes peetakse tavaliselt palju kiiremaks kui vedelikuvelmes. Seetõttu on massiülekanne vedelfaasis limiteerivaks astmeks ning osoon-vesi süsteemis võib tehda järgmised lähendused:

\[
K_L \approx k_L \]

\[
C_{O3,Gl} \approx C_{O3,G} \]

\[
C_{O3,Ll} \approx \frac{C_{O3,G}}{He}
\]

Võrrandid (23) ja (24) kehtivad, kui läbikandeksiiirus on lineaarselt seotud liikumapaneva jõuga ning tasakaalusõltuvus on lineaarne. Sellest tulenevalt on mainitud võrrandid sobilikud kahekelsmustel jaoks ning igal ajahetkel penetratsiooni ja kelme-penetratsiooni mudelite jaoks. Aegkeskimistatud tegurite jaoks, mis saadakse penetratsiooni ja kelme-penetratsiooni mudelite testist, ei ole need võrrandid sobilikud, sest tingimused piirpinnal sõltuvad ajast, välja arvatud juhul, kui kogu massiläbikandetakistus on kas vedelfaasis või gaasifaasis. (Roustan ja Bin, 2000)

Valemid (20) ja (21) sisaldavad massiläbikandepinda, mis ei ole tavaliselt teada. Seetõttu on sobilikum kasutada vedelfaasi mahtu \( V_L \) ja massiläbikandetegurit mahu kohta \( K_{La} \), kusjuures a on eripind.
Kasutades massiläbikandtegurit mahu kohta $K_{L,a}$ (ehk mahulist massiläbikandtegurit), saab osooni massiläbikandevörrandi kirjutada järgmisel kujul:

$$N_{O3} = (K_{L,a})(C_{O3,L} - C_{O3,L})V_L$$  \hspace{1cm} (28)

küs $V_L$ on vedelfaasi maht ning a on eripind. (Roustan ja Bin, 2000)

Massiläbikannet kahe faasi vahel mõjutavad mitmed parameetrid, mille saab üldiselt jagada kaheks:

- parameetrid, mis mõjutavad massiläbikande liikumapanevat jõudu;
- parameetrid, mis mõjutavad massiläbikandtegurit.

See aga ei tähtenda, et üks parameeter ei või mõlemat faktorit mõjutada. Liikumapanevat jõudu mõjutavateks parameetriteks on näiteks temperatuur ja ioontugevus. Massiläbikannet mõjutavateks parameetriteks on protsessi parameetrid nagu võimsus, reaktori mõõtmed, füüsilise kiirus, gravitatsioonikonstant ja voolukiirus ning füüsilised parameetrid nagu kinemaatiline viskoossus, tihedus, pindplaneerus, difusioonikoefitsient ja Henry konstant. (Gottschalk jt, 2010) Lisaks eelnevalt mainitule mõjutavad massiläbikannet ka füüsilise absorptsiooniga samaaegselt toimuvad keemilised reaktsioonid, millest antakse ülevaade peatükis 2.3.

2.2.1. Mahulise massiläbikandteguri määramine

2.2.1.1. Katseline määramine

Tabel 3. Massiläbikandeteguri eksperimentaalsel määramisel kasutatavad mudelid (Roustan ja Bin, 2000)

<table>
<thead>
<tr>
<th>Mudel</th>
<th>Märkused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstantse gaasi koostise mudel</td>
<td>( C_{O3,G} = C_{O3,G,\text{sisses}} ) vedelfaas hästi segunenud</td>
</tr>
<tr>
<td>Ideaalse segunemise mudel</td>
<td>Gaasifaas hästi segunenud, gaasi koostis muutuv</td>
</tr>
<tr>
<td>Läbivoolumudel</td>
<td>Väljatõrjerežiim gaasifaasis</td>
</tr>
<tr>
<td>Mitmeetapilise segunemise mudel</td>
<td>Gaasi liikumist käsitletakse kui liikumist läbi järjestikuste segunemisrakkude</td>
</tr>
<tr>
<td>Aksiaalse dispersiooni mudel</td>
<td>Valdavalt väljatõrjerežiim gaasi- ja/või vedelfaasis mõningase aksiaalse dispersiooniga</td>
</tr>
<tr>
<td>Tagasivooluga mitmeetapilise segunemise mudel</td>
<td>Eeldatakse, et gaasifaas koosneb mitmest järjestikusest ideaalse segunemise rakust ning rakkude vahel on vastuvool</td>
</tr>
<tr>
<td>Nn kahe mulli mudel (Two-bubble-class model)</td>
<td>Võetakse arvesse mullide erinevat suurust heterogeenses režiimis (eeldades kahte mulli suuruse gruppi)</td>
</tr>
</tbody>
</table>

Ei saa üheselt väita, milline mudel kõige paremini massiläbikannet kirjeldab, sest ei olda kindlad difusioonikoefitsiendi vääruste täpsuses.

\( K_L \) väärust saab määrata ka pideva absorpsiooniprotsessiga, mille käigus määratakse osooni kontsentratsiooni profiilid reaktoris. Saadavate andmete matemaatilisel tööle misel eeldatakse, et mõlemat faasi saab kirjeldada dispersioonimudeliga (väljatõrjerežiim mõlemas faasis mõningase aksiaalse dispersiooniga). (Roustan ja Bin, 2000)

2.2.1.2. Arvutuslik määramine

\( K_L \) väärust on võimalik ka arvutada. Arvutused saab teostada vedelfaasi massiülekandeteguri \( K_L \) ja eripinna a hinnanguliste arvutuste kaudu. Taivaliselt kasutatakse vedelfaasi massiülekandeteguri \( K_L \) määramiseks üksikute mullide jaoks leitud korrelatsioone ning eripinna a hindamiseks on vajalik informatsioon mulli Sauteri keskmise läbimõõdu ning dispergeeritud gaasi mahuosa \( \varepsilon_G \) kohta. (Roustan ja Bin, 2000)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu)</td>
<td>([\text{W/m} \cdot \text{s}])</td>
</tr>
<tr>
<td>(\rho)</td>
<td>([\text{kg/m}^3])</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>([\text{mm}])</td>
</tr>
<tr>
<td>(\varepsilon/\varepsilon)</td>
<td>([\text{mm}])</td>
</tr>
<tr>
<td>(\Delta\varepsilon)</td>
<td>([\text{mm}])</td>
</tr>
<tr>
<td>(\Delta\varepsilon/\varepsilon)</td>
<td>([\text{mm}])</td>
</tr>
</tbody>
</table>

**Table 1. Massükraadangrunud korrektioonvalikud mullile**

*Note: The table contains a variety of parameters and their corresponding expressions, likely related to fluid mechanics or a related field.*

**Korrelatsioon**

\[ % \]

**Bellen, 1999**

**Vesselingh ja Cockx, 1974**

**Akita ja Yoshida, Glastonbury, 1972**

**Lochiel, 1964**

**Boussinesq, 1905**

**Tabel 9.**

**6.**

**Mulli hindamise viisik**

**Roustan ja Bin, 2000**

**Table 9.**

**26**

**Table 4.**

**Massükraadangrunud korrektioonvalikud mullile (Roussou, 2000)**

*Note: The table continues with additional parameters and their expressions, indicating a complex field of study.*
2.3. Absorptsioon koos samaaegse keemilise reaktsiooniga vees

Samaaegselt füüsikalise absorptsiooniga reageerib osoon mitmete vees olevate orgaaniliste aineteega (orgaanilised ühendid, viirused, bakterid jne) ning on kasulik teada, kas ja kuidas need reaktsioonid suurendavad osooni läbikannet vedelfaasi.

Selleks on vajalik välja selgitada, kui palju osooni kandub vees füüsikalise absorptsiooniga. (Degremont, 2007)

Tegurit, mis näitab, mitu korda massiläbikandetegur kemosorptsioonil on suurem massiläbikandetegurist füüsikalisel absorptsioonil, nimetatakse kiirendusteguriks E. Seega kiirendustegur näitab, kuidas keemiline reaktsioon mõjutab massiläbikandeteguri väärust. Kiirendusstegur sõltub reaktsioonirežiimist ning sellistest protsessist parameetritest nagu kelme massiülekandetegur, reaktsiooni kiiruskonstandid, difusioonikoeffitsient, osooni lahustuvus vedelfaasis (Roustan ja Bin, 2000).

Võttes arvesse kiirendustegurit, muutub osooni massiläbikandevörrand järgnevaks:

\[
N_{O_3} = E(K_L a)(C_{O_3,L} - C_{O_3,L})V_L
\]  

(29)

2.3.1. Reaktsioonirežiimid

Osooni reaktsiooni lahustunud ainega B võib formuleerida kui bimolekulaarset reaktsiooni, kus m on stöhhiomeetriline suhe. Reaktsioon on esimest järku nii osooni kui aine B suhtes.

Sellest tulenevalt avaldub reaktsioon järgnevalt (Roustan ja Bin, 2000):

\[
O_3 + mB \rightarrow \text{produktid}
\]

Reaktsiooni kiirusevörrandid on järgmised:

\[
r_{O_3} = k_2 C_{O_3,L} C_{B,L}
\]

\[
r_B = m k_2 C_{O_3,L} C_{B,L}
\]

Keemiline reaktsioon võib muuta osooni kontsentratsioonigradiendi kelmekihis. Muutuse suurus aga sõltub reaktsioonirežiimist. Reaktsioone saab liigitada vastavalt kiirusel väga aeglasteks, aeglasteks/keskmise kiirusega ning kiireteks reaktsioonideks (Joonis 7). (Degremont, 2007)
Joonis 7. Osooni kontsentratsiooniprofiilid kemosorptsiooni erinevates kineetilistes režiimides (modifitseeritud Gottschalk jt, 2010)

Väga aeglased reaktsioonid

Aeglased/keskmise kiirusega reaktsioonid

Küred/hetkelised reaktsioonid

Sõltuvalt orgaanilise aine kontsentratsioonist vees võib üldistusena välja tuua, et pinnavee osoonimisel toimuvad reaktsioonid eelkõige vedelfaasi tuumas, mitte piirpinnal. Põhjavees,
kus reaktsioonidesse on kaasatud mangaani- ja rauasoolad, toimuvad reaktsioonid sageli piirpinnal. Reovee osoonimisel võib esineda mõlemat tüüpi reaktsioone. (Degremont, 2007)

Kineetilise režiimi määramiseks kasutatakse mitmeid dimensioonita arve.

Nendeks on näiteks Damköhleri arv Da

$$\text{Da} = k_L a \cdot \tau \quad (30)$$

ja hetkeline kiirendustegur $E_i$

$$E_i = 1 + Z \quad (31)$$

$$Z = \frac{D_B C_{B,L}}{m D_{O3} C_{O3,L}} \quad (32)$$

kus $\tau$ – vedeliku hüdrauliline viibeaeg kontakteadmes,

$C_{O3,L}^*$ – osooni kontsentratsioon vees gaas vedelik piirpinnal,

$C_{B,L}$ – komponendi B kontsentratsioon, mol/L,

$D_{O3}$ – O₃ difusioonikofitsient m²/s,

$D_B$ – komponendi B difusioonikofitsient m²/s. (Roustan ja Bin, 2000)

Kõige enam kasutatakse Hatta arvu, mida defineeritakse pöördumatu reaktsiooni korral järgmiselt (Roustan ja Bin, 2000):

$$H_B = \frac{D_{O3} \cdot k_2 \cdot C_{B,L}}{k_L} \quad (33)$$

kus $k_2$ – kiiruskonstant, L/(mol·s),

$k_L$ – massiülekandetegur vedelikkelgem, m/s.

Tuginedes Hatta arvule, saab reaktsioonirežiimi kohta tehda järgnevaid järeldusi (Roustan ja Bin, 2000):

Ha < 0,02

Vedeliku piirkelmes reaktsioone ei toimu, reaktsioonid on väga aeglased ning toimuvad vedelfaasi tuumas. Kiirendustegur on 1. Osooni kontsentratsioon $C_{O3,L}$ avaldub järgmiselt:

$$C_{O3,L} = \frac{C_{O3,L}^*}{(1 + R + 1/\text{Da})} \quad (34)$$

$$R = \frac{k_2 C_{B,L}}{k_L a} \quad (35)$$

Vedeliku piirkelmes ei avalda takistust ning gaasi absorptsioon määratakse täielikult keemilise kineetika kaudu.
0,02 < \( Ha < 0,3 \)
Reaktsioon toimub vedeliku põhiosas. Reaktsioon on liiga aeglane, et kiirendada absorptsiooni, seeega \( E=1 \).

0,3 < \( Ha < 3 \)
Reaktsioonid toimuvad nii vedeliku tuumas kui vedeliku piirkelmes, \( E >1 \).

\( Ha > 3 \)
Reaktsioonikiirus on väga suur ning reaktsioon toimub täielikult vedeliku piirkelmes. Lahustunud osooni vedelfaasi tuuma ei jõua. Vedelfaasis on osooni kontsentratsioon null, \( E > 1 \). Gaasi absorptsiooni väljendab järgmine võrrand:
\[
N_{O_3} = E k_L aC_{O_3,L}^* V_L
\]  
(36)

\( Ha > 3 \) ja \( E_i > 2Ha \)
Teist järku reaktsiooni võib käsitleda kui pseudo-esimest järku reaktsiooni, ühendi B kontsentratsiooni võib lugeda konstanteks, \( E=Ha \). Osooni absorptsiooni väljendab järgmine võrrand:
\[
N_{O_3} = E k_L aC_{O_3,L}^* V_L = Ha k_L aC_{O_3,L}^* V_L = \sqrt{D_{O_3} k_L} aC_{O_3,L}^* V_L
\]  
(37)

Antud võrrandis ei ole kelme massiülekandetegurit, kuna massiülekanne kelmes ei oma mõju absorbeerunud osooni hulgale.

\( Ha > 3 \) ja \( Ha > 10E_i \)
Reaktsiooni võib lugeda hetkeliseks ning \( E = E_i \). Osoon reageerib koheselt ühendiga B ning osooni ja ühendi B kontsentratsioonis on võrdsed nulliga. Protsessi kontrollib täielikult massivahetus. Nendel tingimustel \( E = E_i = 1 + Z \).

\( Ha > 3 \) (väga suured väärited)
Reaktsioonitsoon liigub piirpinnale ning jääb sinna, gaasifaasi takistusest kontrollib absorptsiooni.

Hatta arvu järgi klassifitseeritud reaktsioonirežiimid on seotud kiirendusteguriga. Teadaolevalt näitab kiirendustegur, kuidas keemiline reaktsioon mõjutab massiläbikandetegurit vääritud järjest. Joonisel 8 on esitatud kiirendusteguri \( E \) sõltuvus Hatta arvust erinevates kinetilistes režiimides. Nagu eelnevalt kirjeldatud, on ka jooniselt näha, et kiire reaktsioonipirirkonnas on absorptsioon seotud keemilise reaktsiooniga, kiirendustegur \( E > 1 \) ning Hatta arvu kasvades kasvab vastavalt ka kiirendustegur. Aeglases reaktsioonipirirkonnas ei kiire reaktsioonipirirkonnas tänu keemilisele reaktsioonile. Kiirendusteguris väärtus on 1 või alla selle. Aeglases režiimis mõjutab absorptsiooni aga suhe \( \beta/aL \), mis näitab vedeliku kogumahu.
(vedeliku põhiosa ja vedelikuvelme mahu summa) suhet vedelikuvelme mahuga. Jooniselt on näha, et gaasi absorptsiooni kiirus suureneb selle suhte suurendes, mis tähendab, et vedelikuvelme paksuse vähenedes paraneb absorptsioon.

\[ E = H_a \]

\[ \beta/a\delta_L = 1 \]
\[ \beta/a\delta_L = 10^3 \]
\[ \beta/a\delta_L = 10^6 \]


Oluline on välja tuua, et Hatta arv sõltub komponendi B kontsentratsioonist. Perioodilises reaktoris sõltub komponendi B kontsentratsioon ajast. Sellest tulenevalt võivad perioodilises reaktoris läbi viidud katsetes esineda erinevad reaktsioonirežiimid. (Roustan ja Bin, 2000; Munter jt, 2000)

2.3.2. Massiläbikannet ning reaktsioonikineetikat mõjutavad tegurid

Kuna osoonimisel on tegemist kemosorptsiooniprotsessiga, kus toimuvad samaaegselt massivahetus ja keemilised reaktsioonid, siis sellest tulenevalt on efektiivseks osoonimiseks tarvis leida parameetride optimaalsed väärtused, mis tagaksid nii kiire massivahetuse kui ka reaktsioonikiiuruse.

Massiläbikannet on võimalik kiirendada kahele viisile - mõjutades liikumapanevat jõudu või osooni tasakaalukontsentratsiooni. Massivahetus ning reaktsioonikiiirus on omavahel aga seotud. Alljärgnevas tabelis (Tabel 5) on esitatud põhilised massivahetust mõjutavad tegurid ja nende otsene mõju ning liikudes tabelis vasakult paremale ka kaudsed mõjud.
**Tabel 5. Erinevate tegurite mõju osoonimisprotsessile**

<table>
<thead>
<tr>
<th>Tegur</th>
<th>Otsene mõju</th>
<th>Kaudsed mõjud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaasi kulu</td>
<td>Massivahetus</td>
<td>Reaktsiooni-kiirus</td>
</tr>
<tr>
<td>Vedeliku kulu</td>
<td>Massivahetus</td>
<td>Reaktsiooni-kiirus</td>
</tr>
<tr>
<td>Osooni kontsentratsioon gaasis</td>
<td>Tasakaal</td>
<td>Liikumapanev jõud</td>
</tr>
<tr>
<td>Osooni kontsentratsioon vedelikus</td>
<td>Reaktsiooni-</td>
<td>Liikumapanev jõud</td>
</tr>
<tr>
<td></td>
<td>kiirus</td>
<td>Massivahetus</td>
</tr>
<tr>
<td></td>
<td>Liikumapanev jõud</td>
<td>Massivahetus</td>
</tr>
<tr>
<td>Saasteaine kontsentratsioon</td>
<td>Reaktsiooni-kiirus</td>
<td>Liikumapanev jõud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Massivahetus</td>
</tr>
<tr>
<td>pH</td>
<td>Reaktsiooni-kiirus</td>
<td>Liikumapanev jõud</td>
</tr>
<tr>
<td>Temperatuur</td>
<td>Tasakaal</td>
<td>Liikumapanev jõud</td>
</tr>
<tr>
<td></td>
<td>(C*O₃L)</td>
<td>Massivahetus</td>
</tr>
<tr>
<td></td>
<td>Reaktsiooni-kiirus</td>
<td>Liikumapanev jõud</td>
</tr>
</tbody>
</table>


Ka osooni kontsentratsioon on massivahetuse kiirendamise seisukohast olulise tähtsusega. Osooni kontsentratsioon gaasifaasis mõjutab otseselt osooni tasakaalulist kontsentratsiooni vedelikus C*O₃L. Tulenevalt massiläbikandevõrrendist (21) sõltub tasakaalukontsentratsioonist liikumapanev jõud ja seeläbi ka massiläbikandekiirus. Massiläbikanne omakorda mõjutab reaktsiooni-kiirust.

Sarnaselt on ka osooni kontsentratsioonil vedelikus mõju liikumapanevale jõule ning seeläbi massiläbikandele. Kõll aga mõjutab osooni kontsentratsioon vedelikus otseselt ka
reaktsioonikiirust (seda käsitletakse põhjalikumalt peatükis 1.2). Kiired reaktsioonid omakorda suurendavad liikumapanevat jõudu ja seeläbi paraneb ka massivahetus.

Osoonimise seisukohast on oluline, et osooni kontsentratsioon vedelsaasis ei limiteeriks oksüdatsiooniprotsessi. Asjaolu, et osoonimisel võivad toimuda nii kiired kui aeglased reaktsioonid, muudab osooni massiläbikande optimeerimise väga oluliseks.

Tabelist 5 on näha, et pH mõjutab otseselt reaktsioonikiirust. Kõrgete pH väärustse (pH>9) juures toimuvad põhiliselt kiired radikaalilised reaktsioonid. Kiire reaktsiooni toimumise eelduseks on aga, et ei tekiks osooni defiitsiiti vedelsaasis, mistõttu on vajalik tagada kiire massivahetus. Teisest küljest kui vee pH väärus on madal (pH<4), toimuvad eelkõige aeglased otseved reaktsioonid, mistõttu ei oma kiire massivahetus enam nii suurt tähtsust, sest osooni kogus vees on ka aeglasemass massivahetuse korral piisav.

Sarnast olukorda võib kohata ka saasteainete kontsentratsiooni osas. Protsessi alguses on saasteainete kontsentratsioon vees kõrge, sellest tulenevalt toimuvad reaktsioonid kiiresti ning vajalik on kõrge osooni kontsentratsioon vedelsaasis. Seega on vaja tagada kiire massivahetus. Protsessi lõppfaasis on aga saasteainete kontsentratsioon väike, reaktsiooni kontrollib saasteainete kontsentratsioon ning osooni kiire massiläbikanne ei ole enam osoonimise efektiivsemaks muutmiseks oluline.


Osoonimise protsessi optimeerimisel tuleb seetõttu leida optimaalsed parameetrite väärtused, et tagada kiirete reaktsioonide korral hea lahustuvus ja sobiv massiläbikanekirus.
3. Viimaste aastate uuringud massivahetuse ja reaksioonikineetika mõjust osoonimisele

Käesoleva peatüki eesmärk on anda ülevaade viimaste aastate uurimustest ning arengutest osoonimise valdkonnas, mis on seotud massivahetuse ja reaksioonikineetikaga – massivahetuse ja reaksioonikineetika mõjuga osoonimisele, sealhulgas ka massivahetust ja reaksioonikineetikut mõjutavate teguritega.

Arvestades, et osooni loetakse vees halvasti lahustuvaks gaasiks, kuid osoonimise läbiviimiseks on vajalik gaasilise osooni viimine vedelfaasi, kus järgnevate otsese või kaudsete reaktsioonide käigus toimub saasteainete oksüdeerimine, võib öelda, et nii massiläbikandekiirus kui reaktsioonikiirus on osoonimise protsessis määrava tähtsusega. Sellest tulenevalt on oluline välja selgitada, millised on olulised osoonimise parameetrid ja mis suunas need massivahetust ning reaksioonikiiirust mõjutavad.

3.1. Veefaasi ning gasifaasi kontsentratsiooni ja voolamise kiiurse mõju massivahetusele, reaksioonikineetikale ja osoonimise efektiivsusele

jõud. Selle tulemusena suureneb osooni kontsentratsioon vedelfaasis, suureneb vabade radikaalide teke ning oksüdatsiooni kiirus. (Zhao jt, 2016)

Samas artiklis (Zhao jt, 2016) tõid autorid välja, et kõrged osooni kontsentratsioonid omavad osoonimisele positiivset mõju eelkõige protsessi algetapis, kus saasteaine kontsentratsioon on kõrge. Kui osooni kontsentratsioon vedelfaasis suureneb teatud väärtuseni, mis on ekvivalentne (stöhhiometricaline) saasteaine kontsentratsiooniga, tekib saasteainete kontsentratsiooni edasisel vähenemisel osooni jääk ning reaktsiooni kiirust kontrollib saasteainete kontsentratsiooni, mistõttu osooni kontsentratsiooni kasv omab väga väikest mõju lagundamisele.

**Wu jt (2008)** uurisid tekstiilivärvi *C.I. Reactive Blue 15* osoonimist eesmärgiga leida massiläbikande sõltuvus värvaine algkontsentratsioonist, kasutatavast osooni doosist (selles töös - osooni massiprotsent konstantes gaasivoos kindlal rõhul) ning temperatuurist. Katsete kestus oli 30 minutit ning gaasivoog ja rõhk olid katsete käigus muutumatud, vastavalt 0,52 L/min ja 82,73 kPa.

Täheldati, et *K_La* kasvas lineaarsetel nii värvaine kontsentratsiooni, osooni doosi kui temperatuuriga. Sellest lähtuvalt järeldati, et *K_La* on tugevas sõltuvuses kolmest paraametrist ning autorite poolt kasutatud reaktsioonitingimustel väljendab seda regressioonvõrrand:

\[
K_{La} = -0.170 + 2.491 \cdot 10^{-2} \text{C}_{värv} + 5.310 \cdot 10^{-3} \text{D}_{O3} + 5.866 \cdot 10^{-3} \text{T} \quad (38)
\]

kus

- \( \text{C}_{värv} \) – värvi algkontsentratsioon,
- \( \text{D}_{O3} \) – osooni doos gaasifaasis,
- \( \text{T} \) – temperatuur.

Sarnaselt Zhao jt (2016) tulemustele leidsid ka Wu jt (2008), et *K_La* kasv värvi kontsentratsiooni tõustes oli põhjustatud sellest, et reaktsioonis tarbiti rohkem lahustunud osooni ning osooni kontsentratsioon vees vähenes. Seetõttu massiläbikande liikumapanev jõud gaasifaasist vedelfaasi kasvas, tänult millele kasvas ka massiläbikande kiirus. Värvaine kontsentratsiooni tõstmisel aga alanes KHT vähem (osooni doosi 26,1 mg/(L·min) ja temperatuuri 20°C juures tõstes kontsentratsiooni 0,5g/L kuni 3,0 g/L, vähenes KHT vastavalt 81,9% ja 51,7%).

Ka nende katsetes suurendas osooni doosi tõstmine gaasifaasist massiläbikande kiirust. See massiläbikande suurenemine oli otseselt seotud kemosorptsiooniga – keemiline reaktsioon kiirendas massiläbikannet. Massiläbikande ja keemiline reaktsiooni kiirendemist kinnitas ka asjaolu, et suurema osooni doosi juures vähenes KHT rohkem (tõstes värvi kontsentratsiooni...
1,0 g/L ja T = 20°C juures osooni doosi 16,7 mg/(L·min) kuni 69,7 mg/(L·min), muutus KHT vähenemine 72,4%-lt 84,6%-ni).

**Wu jt (2008)** töös uuritud temperatuuri mõju massivahetusele käsitletakse edaspidi peatükis 3.5.


![Joonis 9. PCP kontsentratsiooni mõju osooni massiläbikandekiiurile ja kiirendustegurile erinevate gaasilise osooni kontsentratsioonide juures tingimustel pH=7,0; gaasi voog = 0,5 m/s; vedeliku kiirus = 0,3 m/s; T=273K (modifitseeritud Ren jt, 2012)](image_url)

**Joonis 9.** PCP kontsentratsiooni mõju osooni massiläbikandekiiurile ja kiirendustegurile erinevate gaasilise osooni kontsentratsioonide juures tingimustel pH=7,0; gaasi voog = 0,5 m/s; vedeliku kiirus = 0,3 m/s; T=273K (modifitseeritud Ren jt, 2012)

**Ren jt (2000)** teostasid katsed ka erinevate vedeliku ja gaasi kiiruste juures (vastavalt U_L ja U_G). Katsetulemused on esitatud Joonisel 10 ning katsetest järeldati, et hoides vedeliku kiirust konstantsena ning suurendades gaasi kiirust, suureneb mahuline massiülekandetegur k_L.a. Toodi välja, et k_L.a suurenemine on seotud faasiddevahelise piirpinna suurenemisega. Suurendades gaasi kiirust 0,5 m/s – 2,5 m/s (vedeliku kiiruse 0,5 m/s juures), suurenes piirpind 82,33%. Katsed teostati ka vastupidiselt, st hoides gaasi kiirust konstantsena ning
suurendades vee kiirust. Ka nende katsete käigus käigus suurenes $k_{La}$. Täheldati, et vee kiiruse suurendades on massiläbikandekiiruse suurenemine seotud vedelikupoolse massiülekandeteguri suurenemisega.

Joonis 10. $k_{La}$ sõltuvus gaasi ja vedeliku kiirustest (osooni kontsentratsioon gaasifaasis 0,8334 mM; pH = 7,0; $T=273K$) (Ren jt, 2012)


Joonis 11. Osooni mahtkulu mõju osooni lahustuvusele (modifitseeritud Matheswaran ja Moon, 2009)


Vedelfaasi madal massiülekandetegur võrreldes membraani massiülekandeteguritega näitas, et põhiline massiläbikandetakistus oli vedelfaasis. Leiti, et tänuse massiläbikandetakiruse suurenemisele vedelfaasi kiiruse tõstmisel paranes ka värvilahuse osoon massiülekandetakistus.


**Kasutatud osooni kogus (mmol)**

<table>
<thead>
<tr>
<th>Oksüdeeritud aine kogus (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kasutatud osooni kogus (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

**Joonis 13.** Tarbitud osooni koguse ja oksüdeeritud aine suhe foraadi oksüdatsioonil erinevate osooni kontsentratsioonide juures (modifitseeritud Ku jt, 2007)

**Bamperng jt (2010)**

*Kasutatud osooni kogus (mmol)*

<table>
<thead>
<tr>
<th>Oksüdeeritud aine kogus (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kasutatud osooni kogus (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

Gaasi voolukiirus = 18 ± 1 L/h
Temp = 25 ± 1 °C
Segamiskiirus = 500 ± 10 1/min
pH = 9,0 ± 0,1

- C<sub>O3,G</sub> = 5,0 ± 0,1 mg/L
- C<sub>O3,G</sub> = 10,0 ± 0,1 mg/L
- C<sub>O3,G</sub> = 15,0 ± 0,1 mg/L
- C<sub>O3,G</sub> = 20,0 ± 0,1 mg/L
Järeldus

Eelpool kirjeldatud tööde põhjal saab teha järgmised järeldused:

1) **Kõrgemad osooni kontsentratsioonid gaasifaasis** parandavad nii massiläbikannet kui reaktsioonikiirust, seega suureneb ka saasteaine osoonimise efektiivsus.

Arvestada tuleb aga asjaoluga, et madalate saasteaine kontsentratsioonide juures ei oma kõrged osooni kontsentratsioonid lagundamisele märkimisväärset efekti. Järelikult saab gaasifaasis oleva osooni kontsentratsiooni positiivsest mõjust rääkida eelkõige protsessi algetapis, kus saasteaine kontsentratsioon on kõrge.

2) **Saasteaine algkontsentratsiooni suurendamine** mõjutab positiivselt massiläbikannet (mida praktikistes lahestades ei teha). See on tingitud suurenenud reaktsioonikiirusest, mille tõttu väheneb lahustunud osooni kontsentratsioon ning seeläbi suureneb liikumapanev jõud gaasifaasist vedelfaasi. Kõrgema saasteaine algkontsentratsiooniga reovee korral peab aga arvestama, et teatud osoonimise kestvusel lagundatuse protsentuaalselt saasteaineid vähem, seega peaks osoonimise aeg olema pikem.


4) Autorid olid ühel meelel, et vedeliku kiiruse suurendamine parandab massiläbikannet. See on tingitud vedelikupoolse massiülekandeteguri suurenemisest.

3.2. Kavitatsiooni kombineerimine osoonimisega

Üks protsess, mida rakendatakse veepuhastuses on kavitatsioon. On leitud, et kui rakendada vee osoonimisel samaaegselt ka kavitatsiooni, võib see avaldada mõju nii osooni massiläbikandekiirusele kui osoonimise efektiivsusele.

3.2.1. Kavitatsioon

Kavitatsiooni defineeritakse kui nähtust, mille käigus moodustuvad vees gaasimullid. See juhtub, kui vedelikus langeb lokaalne staatiline rõhk aurustumise kriitilisest punktist.

3.2.2. Kavitatsiooni mõju osoonimisele ja massivahetusele

Karamah jt (2013) uurisid osoonimisel toimuva massiläbikande parandamise võimalust kasutades selleks akustilist ja hüdrodünaamilist kavitatsiooni. Jõuti järeldusele, et hüdrodünaamiline ja akustiline kavitatsioon suurendavad osooni massiläbikannet lahusesse ning nendel on sünkõrgiline mõju. Kavitatsiooni mõju hindamiseks võeti aluseks osooni massiläbikanne ilma kavitatsiooni (määratud $K_{L,a} = 1,53 \cdot 10^{-4} \,1/s$). Osoonimise kombineerimisel akustilise ja/või hüdrodünaamilise kavitatsiooni leiti, et massiläbikandekiirus suurenud järgnevas järjekorras: osoonimise kombinatsioon hüdrodünaamilise kavitatsiooni (K$_{L,a} = 5,16 \cdot 10^{-4} \,1/s$) < osoonimise kombinatsioon ultrahelikavitatsiooni (K$_{L,a} = 11,4 \cdot 10^{-4} \,1/s$) < osoonimise, hüdrodünaamilise kavitatsiooni ja ultraheli kombinatsioon (K$_{L,a} = 31,0 \cdot 10^{-4} \,1/s$). Olulisika tähenduseks on, et massiläbikannet suurendasid pigem kavitatsiooni keemilised efektid kui mehaanilised efektid, nimelt ligikaudu kaks korda rohkem.

Yargeau ja Danylo (2015) võrdlesid osoonimise ning osoonimise ja ultrahelikavitatsiooni kombinatsiooni efekti ibuprofeeni (IBP) eemaldamisel veest. Osoonimisel ja osoonimise-ultrahelitöötluse kombineerimisel olid sarnased KHT vähenemise näitajad, kuid osoonimise-ultrahelitöötluse kombinatsioon lagundas IBP-d efektiivsemalt. Reaktsioonitingimusteks oli neutraalne pH, 15°C ning 16 mgO$_3$/L ning katse viidi läbi 900mL poolperioodilises jahutussäärgiga klaasreaktoris. Autorid leidsid, et IBP lagundamise efektiivsus kombineeritud protsessiga (66%) oli tunduvalt kõrgem kui see oleks olnud summaarselt osoonimise (41%) ja ultrahelitöötluse (10%) eraldi rakendamisel. See näitab kombineeritud protsessis kahe oksüdatsioonimeetodi sünergilist efekti. Ka selles töös leiti, et ultrahelitöötluse kombineerimine osoonimisega parandab massiläbikannet. Autorid selgitasid, et IBP
lagundamise kõrgem efektiivsus kombineeritud töötlemisel võib olla tingitud kõrgemast osooni difusioonikoefiitsiendist gaasifaasis ja/või võimalikust vesinikperoksidi tekkest.


**Järeldus**

Kokkuvõtteks saab öelda järgnevat:


2) Osoonimise ja kavitatsiooni kombineerimine omab sünergilist efekti, mis tähendab, et nende samaaegne rakendamine on efektiivsem kui järjestikune kasutamine.

**3.3. Faasidervahelise piirpinna suuruse mõju massivahetusele ja osoonimisele**

Massivahetust mõjutab ühe faktorina massivahetuspinnas suurus. Massivahetuspinda on võimalik suurendada muutes läbi puhastatava vee barboteeritavate gaasimullide suurust. Chu jt (2007) uurisid asovärvainet sisaldava sünteetilise reovee osoonimist kasutades mikromullide. Mikromullide keskmine läbimõõt oli väiksem kui 58 µm ning mullide tiheus suurem kui 2,9·10⁴ (mulli/mL) gaasivoo <0,5 (L/min) juures. Autorid täheldasid, et mikromullidega süsteemis oli võrreldes talvaliste barboteeritud mullidega suurem faasidervahelise piirpinna ja vedeliku mahu suhe ning suurem mullide tiheus. Joonisel 14 on toodud lahustunud osooni ning väljuva osooni kontsentratsioonide muutus ajas mikromullidega ja talvaliste mullidega süsteemis. On näha, et mikromullidega süsteemis on massiläbikanne efektiivsem. Võrreldes talvaliste barboteeritud mullidega oli mikromullide kasutamisel massiläbikandetegur 1,8 korda suurem ning vastavalt oli ka orgaanilise süsiniku hulga muut ühe grammi tarbitud osooni kohta mikromullidega süsteemis 1,3 korda suurem kui barbotaazreaktoris.
Joonis 14. Lahustunud ja väljuva osooni kontsentratsiooni muutus ajas gaasivoo 0,5 L/min juures (○, ● – mikromullidega süsteem, Δ, ▲ – tavaliste mullidega süsteem)
(modifitseeritud Chu jt, 2007).


Järeldus


3.4. pH mõju massivahetusele, reaktsioonikineetikale ja osoonimisele


**Khuntia et al. (2013)** käsitlesid samuti pH mõju massivahetusele. Määraati K_{L,a} väärused erinevate masskulude ning pH vääruste juures (Tabel 6). Lisaks sellele, et K_{L,a} suurenes osoon massiku suurenemisega, leiati, et massiläbikandetegur mahu kohta suureneb tõstes pH-d. See tuleneb osoon kiiremast iselagunemisest kõrge pH juures, mis kiirendab osooni massiläbikannet.

**Tabel 6. Mahuliste massiläbikandetegurite väärused erinevate pH vääruste ja osooni masskulude juures (modifitseeritud Khuntia et al., 2013)**

<table>
<thead>
<tr>
<th>pH</th>
<th>G_{O3}=5,6\cdot 10^{-7} \text{ kg/s}</th>
<th>G_{O3}=1,1\cdot 10^{-6} \text{ kg/s}</th>
<th>G_{O3}=1,7\cdot 10^{-6} \text{ kg/s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1,7</td>
<td>1,9</td>
<td>2,4</td>
</tr>
<tr>
<td>7</td>
<td>1,9</td>
<td>2,2</td>
<td>2,8</td>
</tr>
<tr>
<td>8</td>
<td>2,1</td>
<td>3,2</td>
<td>3,6</td>
</tr>
<tr>
<td>9</td>
<td>2,6</td>
<td>3,7</td>
<td>4,0</td>
</tr>
</tbody>
</table>

pH mõju massivahetusele kinnitasid ka **Bamperng et al. (2010)**. Nad leidsid samuti, et värvilahuse osoonimisel (täiendav info peatükis 3.1) kõrgema pH vääruste juures on lahuses rohkem OH⁻ ione, mis põhjustavad osooni lagunemist, tänu millele tekib suurem kontsentratsioonigradient gaasi- ja vedelfaasi vahel ning see omakorda soodustab massivahetust.

**Järeldus**

3.5. Temperatuuri mõju massivahetusele, reaktsioonikineetikale ning osoonimise efektiivsusele

Wu jt (2008), kes uurisid tekstiilivärvi C.I. Reactive Blue 15 osoonimist ( täiendav info peatüks 3.1), jälgisid ka K₄,a muutumist temperatuuri muutmisel. Täheldati kahe efekti. Kui temperatuuri tõsteti, vähenes lahustunud osooni kontsentratsioon. Küll aga toimus reaktsioon kõrgematel temperatuuridel kiiremini. Sellest tulenevalt oli temperatuuri kasvu üldine efekt positiivne, tõusis värvi osoonimise kiirus, mis omakorda parandas massivahetust ning lahuse KHT vähenes rohkem (värvi kontsentratsiooni 1,0 g/L ja osooni doosi 26,1 mg/(L⋅min) juures muutes temperatuuri 10°C kuni 40°C vähenes KHT vastavalt 71,6% ja 78,1%).

Sarnaselt eelmistele autoritele, leidsid ka Bamperng jt (2010), et värvilahuse (täiendav info peatüks 3.1) osoonimisel (temperatuurivahemikus 28°C kuni 50°C) oli massivahetuse suurenemine temperatuuri tõstmisel tingitud osooni ja värvaine vahelise keemilise reaktsiooni kiiruse tõusust. Nagu on näha ka Joonisel 15, siis puhta vee kasutamiselt vedelfaasina väheneb osooni massiläbikandekiirus (s.o massiläbikandevoog) temperatuuri tõustes, sest väheneb gaasi lahustuvus vees.

Järeldus

Temperatuuri mõju massivahetusele on vähe uuritud, kuid olemasolevate põhjal saab järeldata, et temperatuuri reguleerimine on osoonimise seisukohast oluline. Teadaolevalt kõrgematel temperatuuridel osooni lahustuvus väheneb, kuid reaktsioonikiiirus suureneb.
Eelpool kirjeldatud tööde põhjal võib järeldada, et temperatuuri tõstes on reaktsioonikiiruse suurenemise efekt võrreldes lahustuvuse vähemisega määravama tähtsusega ning kiired reaktsioonid kõrgematel temperatuuridel kiirendavad ka massivahetust.

3.6. Reaktori ehituse (konfiguratsiooni) mõju massivahetusele, reaktsioonikineetikale ja osoonimise efektiivsusele

3.6.1. Ejektor-tüüpi reaktor


Reovee näitajad olid järgnevad: pH = 5; KHT = 6,4 g/L; lahustumatute osakeste kontsentratsioon 3 g/L. Katse viidi läbi temperatuuril 20°C vedeliku mahtkuluga 0,9 L/h ning gaasi mahtkuluga 0,3 Nm³/h. Osoon kontsentratsioon sisenevas gaasis oli 23 g/Nm³.

Katsetulemused on esitatud Joonisel 17, kus on näha, et fenoolsed ühendid oksüdeeriti juba protsessi alguses. Pärast 15 minutit oli rohkem kui 65% ning pärast 40 minutit oli ligikaudu 80% fenoolühenditest lagundatud. KHT vähenemine oli sarnane: esimese 40 minutiga vähenes KHT ligikaudu 48%. Pärast seda jäi KHT väärtus kontantseks. Ka massivahetuse efektiivsus oli protsessi alguses kõige efektiivsem. Massivahetuse efektiivsus on antud töös defineeritud kui $r_{O_3} = \frac{(C_{O_3,s} - C_{O_3,v})}{C_{O_3,v}} \cdot 100$, kus $C_{O_3,s}$ on osooni kontsentratsioon sisenevas gaasis ning $C_{O_3,v}$ on osooni kontsentratsioon väljuvas gaasis.

![](Image)
Esimese 10 minuti jooksul oli massivahetuse efektiivsus 100%, kogu osoon lahustus vedelikus ning see kasutati täielikult oksüdeerimiseks. Seejärel hakkas efektiivsus vähemena, olles pärast 40 minutit 50% ja 75% vahel ning pärast 90 minutit umbes 50%, näidates, et poolt kontaktorisse juhitud osoonist ei kasutatud oksüdeerimiseks.

Ejektori efektiivne massivahetus protsess alguses oli tingitud fenoolühendite esinemisest, mis reageerisid aktiivselt osooniga ning mille tõttu toimus protsess difusiooni poolt kontrollitud režiimis (Ha>3).

Leiti, et see protsess on väga efektiivne reovee eeltöötluseks, võimaldades eeltöödeldud reovett seejärel juhtida klassikalisesse reoveepuhastusjaama.

Joonis 17. KHT (+) ja fenoolsete ühendite (Δ) vähemise (%) ning osooni massiläbikande efektiivsuse $r_{O3}$ (O) sõltuvus ajast (modifitseeritud Chedeville jt, 2009)

3.6.2. Täiustatud membraanreaktor

Ho jt (2012) viisid läbi kaaliumvesinikftalaadi (KHP) osoonimise täiustatud membraanreaktoris koos selektiivse vee-eemaldusega (Joonis 18) ning võrdluseks ka poolperioodilises reaktoris tavalise klaasist difuusoriga.
Joonis 18. Täiustatud membraanreaktor (modifitseeritud Ho jt, 2012)


Membraaniga osoonimine andis kiirema KHP lagundamise ja parema TOC eemaldamise väärtused poolperioodile reaktoriga. Seda eelkõige parema osooni massivahetuse tõttu tänul poorses terasemembraanis toodetud väikeste mullidele. Selle membraani rõhulang piki membraani on väike ning väikeste mullide tootmine membraanreaktoris nõuab vähem energiat. Lisaks eemaldades selektiivselt membraanreaktorist vett, koondub orgaanika reaktsioonitsooni ning selle tulemusel tõuseb reaktsiooni kiht. Leiti, et membraanreaktor tagab täieliku KHP konversiooni osooni doosi (siin: osooni moolide arv süsiniku mooli kohta) juures 2 (Joonis 19), kui osooni kontsentratsioon on kõrge ning voolukiirus väike, kuna kõrge osooni kontsentratsioon ning väikeste osooni mullide suur piirpind soodustavad kiiret osooni massiläbikandet ja reaktsiooni. Sama doosi juures saavutati ka hea TOC vähenemine. Täielik TOC eemaldamine on komplitseeritud, sest KHP osoonimisel tekivad karbonsüülhapped, mis on osoonile vastupidavad, mistõttu oleks tarvis vett täiendavalt puhastada bioloogilise meetodiga. Võrdluseks, kui poolperioodilises reaktoris oli kogu KHP lagundatud 15 minutiga ning tekkisid vaheproduktid, mis reageerisid edasi, siis membraanreaktoris oli kogu KHP lagundatud 3 minutiga.
3.6.3. Vaheplaatidega ostsillatsioonikolonn


Katsed näitasid, et võnkeamplituudi ja -sageduse suurendamine suurendas ka massiläbikannet. Samuti leiti, et osooni lahustuvus suures vahel Reynolds arvu suurenemisel 0 kuni 1000, kuid märkimisväärne massiläbikandeteguri kasv toimus vahemikus Re_o=3000-4600 (Joonis 20). Selle põhjuseks võis olla mullide lõhkemise kasv, mis oli tingitud võnkuva vedeliku ning vaheplaatide teravate äärte vaheliste kokkupuudete kiiruse ja tugevuse suurenemisest.

Joonis 20. $K_{La}$ sõltuvus Re arvust ($C_{O3,G}=62,0$ mg/L ; $Q_O=1,0$ L/min) (modifitseeritud Al-Abduly jt, 2014)
Joonis 21. Osooni massiläbikandeteguri sõltuvus gaasi mahtkulust ja reaktori tüübist  
(modifitseeritud Al-Abduly jt, 2014)


Kokkuvõttes leiti, et OBR-s oli vastavalt kuni 3 ja 5 korda efektiivsem massivahetus kui vastavalt barbotaaži ja vaheseintega kolonnis.

Kasutades OBR-i atmosfääriröhul ning madalal gaas/vedelik masskulu suhtel, on võimalik OBR-ga saavutada märkimisväärselt hea osooni massiläbikanne.

3.6.4. Rotatsioontäidiskolonn


Ku jt (2008) uurisid o-kresooli osoonimist ning leidisid, et osooni massiläbikanne roteeruvas täidiskolonnis on märkimisväärsetel parem, kui tavalises täidiskolonnis sarnastel töötavimustel. Autorid kasutasid oma katsetes roostevabast terasest kontaktseadet aksiaalkõrgusega 3,5 cm ning sisemise ja välisimise raadiusega vastavalt 20,8 ning 31,8 cm. Täidiseks olid roostevabast terasest röngad eripinnaga 774 m²/m³ ja poorsusega 0,69. Süurendades pöörlemiskiirust 600 l/min kuni 1800 l/min, suurenes KL.a vastavalt 0,56 kuni 0,82 min⁻¹. Madalamatel kiirustel (300-600 l/min) püsib massiläbikandetegur praktiliselt

**Ko jt (2011)** uurisid guaiakooli lahuse osoonist pöörlevas täidiskolonnis, kus täidisena kasutati keraamilisi helmeid. Sarnaselt eelnevalt kirjeldatud tööle leidis ka nemad, et pöörlemiskiiruse kasvamine suurendab massiläbikande kiirust. Lisaks tegid nad kindlaks, et pöörlemiskiiruse mõjutab ka osooni küllastumiskontsentratsiooni (s.o tasakaalukontsentratsiooni) vees. Nimelt kiiruse suurenedes suureneb ka küllastumiskontsentratsioon. Katsed teostati guaiakooli kontsentratsiooni 0,5 mmol/L, osooni kulu 1 g/h ja lahuse pH=7 juures, muutes pöörlemiskiirust 1800 kuni 7200 1/min. Lisaks leidsid nad, et pöörlemiskiiruse suurendamine põhjustab nii guaiakooli, KHT kui ka TOC vähenemist vees.

**Järeldus**

3.7. Järeldused osoonimise massiläbikannet ja reaktsioonikineetikat mõjutavate faktorite toime kohta

Käsoleva magistritöö autorin hinnangul viimaste aastate jooksul osoonimise, massivahetuse ja reaktsioonikineetika seoste uurimises väga tähelepanuväärsed edasiminekuid toimunud ei ole. Põhilised massivahetust ja reaktsioonikineetikat mõjutavad faktorid, mida on uuritud, on vedelfaasi ja gaasifaasi kontsentratsioonid ning kiirused. Põgusalt on käsitletud ka temperatuuri, pH ja faasidevahelise piirpinna mõju.

Analüüsitut töödest saab teha järgmised järeldused:

1) **Gaasi- ja vedelfaasi kiirused ning kontsentratsioonid** on ühed olulisemad parametrid, mida massivahetuse ja reaktsioonikirjuse ning seeläbi osoonimise efektiivsemaks muutmiseks reguleerida. Ainuüksi faaside kiiruste ja kontsentratsioonide reguleerimisega on võimalik massivahetus muuta märkimisväärsetel efektiivsemaks. Tähelepanuta ei saa aga jätta ka teisi parameetreid.


3) Kuna osooni absorptsioon toimub läbi faasidevahelise piirpinna, on autorin hinnangul just **faasidevahelise piirpinna mõju** osooni massivahetuse efektiivsemaks muutmisel üks olulisemaid faktoreid, mida jälgida. Seda tõestavad ka peatükis 3.3 kirjeldatud katsed, kus mõlema töö autorid jõudsid samale järeldusele: piirpinna suurenedes paraneb massivahetus.

4) Huvitavaks valdkonnaks on **kavitatsioon ning selle kombineerimine osoonimisega**. Peatükis 3.2 kirjeldatud katsed tõestasid, et kavitatsiooni ja osoonimise samaaegsel rakendamisel on osoonimisele positiivne mõju. Sellest tulenevalt on kavitatsiooni ja osoonimise kombineerimine perspektiivne protsess, mida tasuks edaspidi uurida.

5) Oluline on **sobiva reaktori valik**. Osoonimise protsessis on üheks levinumaks reaktoriks barbotaažkolonn. Viimastel aastatel teostatud uuringute ja katsete põhjal võib aga järeltada, et barbotaažkolonn ei ole alati parim valik. Arvestades, et massivahetuse ja reaktsioonikirjuse suurendamine parandab osoonimise
tulemuslikkust, võib eelpool analüüsitud tööde põhjal öelda, et nii ejektor, membraanreaktor, OBR kui rotatsioontäidiskolonn on osoonimise teostamiseks efektiivsemad valikud kui tavaline barbotaajkolonn.

6) Kindlasti peab arvestama, et analüüsitud töödes on katsed teostatud laboritasandil, katseseadmetes ning suhteliselt väikeste vedeliku ja gaasi voogude juures. Reaalses puhastusjaamas seavad siseneva reovee kulu ning omadused suured piirangud, mistõttu vedelfaasi kontsentraatsiooni ja mahtkulu reguleerimine massivahetuse ja reaktsioonikiiruse parandamiseks on kompliteeritud.

7) Enamike autorite eesmärgiks oli küll reovee puhastamine, kuid tuleb arvestada, et katsed teostati enamjaolt ühe aine lagundamiseks, mida tuleb arvesse võtta, kui rakendatakse osoonist reoveele, mis sisaldab erinevate omadustega aineid.

8) Katsetes jõuti üldiselt sarnastele tulemustele ja suuri vasturääkivusi erinevate autorite töödes ei olnud.

Auto hinnangul vajavad osoonimise, massivahetuse ja reaktsioonikineetika seosed veel täiendavat uurimist. Kindlasti tasuks teostada rohkem võrdlevaid uuringuid reaktorite ja massivahetuse seoste kohta ning uurida ja hinnata ka teiste parameetrite mõju massivahetusele ja reaktsioonikiirusele, et muuta protsessi võimalikult optimaalseks, efektiivseks ja odavaks.
Kokkuvõte

Käesolevas magistritöös „Massivahetuse ja reaksioonikineetika mõju vee osoonimisele” on käsitletud osoonimist kui kemosorptsiooniprotsessi. Vastavalt töö eesmärgile on kirjanduse põhjal antud ülevaade erinevate tegurite mõjust reaksioonikineetikale ja massivahetusele ning selgitatud massivahetuse ja reaksioonikineetika omavahelist seost ning mõju vee osoonimisele.

Käesoleva magistritöö põhiosa on jaotatud kolmeeks. Töö esimeses osas on selgitatud osooni füüsikalisi, termodünaamilisi ja keemilisi omadusi, eelkõige lahustumise põhimõtteid ja reaksioonimehanisme. Lisaks on käsitletud reaksioonikineetika teoreetilisi aluseid ning antud ülevaade vee osoonimise rakendustest.

Töö teine osa keskendub osoonimisele kui kemosorptsiooniprotsessile. Selgitatud on osooni gaas-vedelik massivahetust ning analüüsitud massiläbikande ja vedelfaasis toimuvate reaksioonide vastastikust toimet.

Kolmas osa annab ülevaate viimaste aastate uurimistest ja edasiminekutest osoonimise valdkonnas, põhirõhuga massivahetuse ja reaksioonikineetika osas – massivahetuse ja reaksioonikineetika mõju osoonimisele, sealhulgas massivahetust ja reaksioonikineetikat mõjutavad tegurid.

Summary

The influence of mass transfer and reaction kinetics on water ozonation

In the present Master’s thesis ‘The influence of mass transfer and reaction kinetics on water ozonation’ an overview of ozonation as a chemisorption process is given.

The aim of this thesis is to determine the relevance of taking mass transfer and reaction kinetics into account in ozonation process.

The current thesis comprises of three parts. In the first part physical, chemical and thermo-dynamical properties of ozone are described and a more complete overview of principles of ozone solubility, ozonation reaction kinetics and mechanisms is given. A brief overview of ozone applications is also provided.

The second part is focused on ozonation as a chemisorption process. Gas-liquid mass transfer is explained and the interaction between mass transfer and liquid phase reactions is analyzed.

In the third part a literary-based overview of recent years studies on ozonation is presented. An overview on the influences of different factors on reaction kinetics and mass transfer is given. It is described how reaction kinetics and mass transfer influence ozonation process and in addition interaction between mass transfer and reaction kinetics is explained.

In the course of the present research it became evident that ozonation efficiency is strongly influenced by mass transfer or reaction kinetics or both. According to the analysis performed it can be concluded that in the recent years the interaction between mass transfer, reaction kinetics and ozonation has been only briefly studied, therefore further studies should be carried out.
Kasutatud kirjandus


