Lõhketööde ohualade määramise metoodikate võrdlev analüüs

Juhendaja: Tõnu Tomberg, MSc
Lõhketööde ohualade määramise metoodikate võrdlev analüüs

Sisukord

Tudengitöö ülesanne ... 8

Abstract ... 9

Eessõna .. 10

1 Sissejuhatus .. 11

1.1 Lõhketööde seismiline efekt .. 11

1.1.1 Seismilised lained ... 12

1.1.2 Seismiliste lainete mõju ehitistele .. 13

1.2 Õhulööklaine .. 13

1.2.1 Õhulööklaine kahjustav mõju inimestele .. 14

1.2.2 Õhulööklaine kahjustav mõju ehitistele ... 14

1.3 Kivimi kildude laialipaiskumine .. 15

1.4 Töö eesmärk .. 15

2 Metoodika .. 15

2.1 Eesti .. 15

2.1.1 Seismiliselt ohutu laengu määramine ... 15

2.1.2 Õhulööklaine poolest ohutu kaugus ... 17

2.1.3 Ohutu kaugus kildude laialipaiskumise järgi .. 18

2.2 USA .. 19

2.2.1 Vibratsiooni standardid .. 20

2.2.2 Õhulööklaine .. 22

2.2.3 Purunenud kivimi kildude laialipaiskumine .. 22
Lõhketööde ohualade määramise metoodikate võrdlev analüüs

2.3 Kanada .. 23
 2.3.1 Purunenud materjali kildude laialipaiskumine ... 23
 2.3.2 Vibratsioon ja ülerõhk .. 23

2.4 Austraalia .. 23
 2.4.1 Vibratsiooni arvutamine ... 23
 2.4.2 Õhulööklaine arvutamine ... 24
 2.4.3 Purunenud kivimi kildude laialipaiskumise arvutamine ... 25

2.5 Soome .. 26
 2.5.1 Vibratsioon .. 26
 2.5.2 Õhulööklaine ... 28
 2.5.3 Purunenud materjali kildude laialipaiskumine .. 28

2.6 Rootsi .. 29
 2.6.1 Ehitiste suurimad lubatud võnkekiirused ... 29
 2.6.2 Õhulööklaine ... 30
 2.6.3 Purunenud materjali kildude laialipaiskumine .. 31

2.7 Norra .. 31
 2.7.1 Ehitistele suurima lubatud võnkekiiruse arvutamine ... 31

2.8 Saksamaa .. 32
 2.8.1 DIN 4150, osa 1 – vibratsiooni parameetrid ... 32
 2.8.2 DIN 4150, osa 2 – mõju inimestele hoonetes .. 33
 2.8.3 DIN 4150, osa 3 – mõju ehitistele .. 33
Lõhketööde ohualade määramise metoodikate võrdlev analüüs

3 Tulemused .. 34

3.1 Võnkekiiruse määramine .. 34

3.2 Õhulööklaine määramine .. 36

3.3 Purunenud kivimi kildude laialpaismise arvutamine ... 38

4 Tulemuste analüüs .. 39

5 Kokkuvõte ... 41

6 Viited ... 42

7 Lisad ... 44

Graafikud

Graafik 1 Suurimad lubatud võnkekiirused ehitistele eri riikide valemite järgi arvutades 36

Joonised

Joonis 1. Kolm ohufaktorit lõhkimisel [1]... 11

Joonis 3 Seismiliste lainete levik maapõues [3] ... 12

Joonis 5 Rõhu/aja seos õhulööklainel [5] ... 14

Joonis 6 Ohutu ala määramine suurima lubatud võnkekiiruse ja sageduse järgi [8] 21

Joonis 7 Purunenud materjali kildude laialpaismise variandid [16] ... 25

Joonis 8 Maksimaalne kildude lennu kaugus sõltuvalt laenguaugu diameetrist erinevate laengute korral [1] ... 28
Lõhetööde ohualade määramise metoodikate vördlev analüüs

Joonis 9 Lõhkamisel tekkiv võnkekiirus erinevate kivimitüüpide korral [22]..................33

Joonis 10 Rõhu ja helirõhu suhet näitav graafik [1]..37

Tabelid

Tabel 1 Ehitise suurim lubatav võnkekiirus sõltuvalt kaugusest ja aluspinnast [7].......16

Tabel 2 Ehitise liigist sõltuv parandustegur [7]..16

Tabel 3 Pinnase seismilisuse tegur [7]..17

Tabel 4 Õhulööklaine poolt tekitatavad kahjustused [7]..17

Tabel 5 Ohutu kaugus kildude laialipaiskumise järgi [7]..18

Tabel 6 Minimaalsed ohutud kaugused kildude laialipaiskumise järgi [7]....................19

Tabel 7 Suurim lubatud võnkekiirus sõltuvalt kaugusest [8]......................................20

Tabel 8 Minimaalne lubatud taandatud kaugus sõltuvalt kaugusest lõhkamiskohani [8]...21

Tabel 9 Õhulööklaine piirid [3]..22

Tabel 10 Suurimad lubatud võnkekiirused ehitistele [15]...24

Tabel 11 Lõhkamisel lubatud õhulööklaine piirmäärad [15]......................................24

Tabel 12 Ehitise klassist sõltuv parandustegur [1]...27

Tabel 13 Suurim lubatav võnkekiirus sõltuvalt ehitise kaugusest ja tema aluspinnast [1]....27

Tabel 14 Ehitise aluspinnast sõltuv suurim lubatav võnkekiirus [17].....................29

Tabel 15 Ehitise klassist sõltuv parandustegur [17]..29

Tabel 16 Ehitusmaterjali klassist sõltuv parandustegur [17].................................30

Tabel 17 Lõhkamiskohu kaugusest sõltuva parandusteguri leidmine [17]...................30

Tabel 18 Lõhketööde iseloomust sõltuv parandustegur [17]..30
Lõhketööde ohualade määramise metoodikate võrdulev analüüs

Tabel 19 Rõhu tagajärjel tekkivad ohud [5]...31
Tabel 20 Ehitise tüübist sõltuv parandustegur [18]...31
Tabel 21 Ehitusmaterjalist sõltuv parandustegur [18]..32
Tabel 22 Ehitise seisukorragast sõltuv parandustegur [18]......................................32
Tabel 23 Lõhketööde tüübist sõltuv parandustegur [18]...32
Tabel 24 Ehitise suurima lubatud vönkekiiruse määramine [22]............................34
Tabel 25 Valemid vönkekiiruste määramiseks erinevates riikides35
Tabel 26 Erinevad faktorid, mida arvestatakse vönkekiiruse määramisel35
Tabel 27 Eri riikides arvutatud vönkekiirused ...36
Tabel 28 Õhulööklaine ohualade määramise metoodikad erinevates riikides37
Tabel 29 Eri riikide arvutatud rõhud teisendatud kilopaskalitesse38
Tabel 30 Purunenud kivimi kildude laialipaiskumise ohualade määramise viis erinevates riikides ..38
Abstract

Comparative analysis of methods for determining the parameters of hazard areas in surface blasting

Surface blasting is one of the most important parts in mining. In Estonia blasting is one of the main ways of rock crushing. Its advantages are speed, low cost and lack of need for labor. But there are also different risks surrounding surface blasting, these are seismic effect, air shock wave and flyrock. These risks can cause damage to buildings, machines and humans. Therefore it is important to identify the risk areas properly to avoid accidents.

This Bachelor’s degree thesis analyzes existing methods in different countries to determine the risk areas. The aim of this study is to find the optimal ways to unify Estonian standards with other countries. I analyzed methods in countries like United States, Canada, Australia, Germany, Sweden, Finland, Norway and Estonia. Subsequent analysis showed that:

All countries considered that the most serious threat is the maximum allowed peak particle velocity. Scandinavian countries determine the danger zone depending on the distance of the building and adding variety of correction factors. In the United States and Canada, only limits not to be exceeded are set at the federal level. The lowest maximum allowed peak particle velocity is set in German and Australian formulas, because those count in site-specific constants.

The majority of countries have determined limits for air shock wave that must not be exceeded. It is assumed that the danger zone for maximum allowed peak particle velocity covers also the damage from air shock wave. Similar limits apply in English-speaking countries, what are known as AUSCANUK.

From all of the risk factors flyrock is the most vaguely defined. In the United States and Canada the safe distances are generally limited at the federal level. In Finland and Sweden the distance depends on the diameter of the blasthole. The most specific handling of flyrock is in Australia, which takes into account various ways of the fragments ejection.

The results show that Estonian methods determine the danger zones clearly enough, but we will be able to specify the maximum permissible levels of vibration velocity model of Sweden to harmonize our standards with Scandinavian countries. A totally new approach for flyrock used in Australia could also be applied in Estonia to harmonize existing standards.
5 Kokkuvõte

Käesolevas bakalaureuse lõputöös uuriti lõhketööde ohualade määramise metoodikaid arenenud riikides nagu USA, Kanada, EU riigid ja Austraalia. Antud uuring on tähtis eelkõige lõhketööde ohutusstandardite ühtlustamiseks teiste riikidega ning leidmaks optimaalseid variante Eesti jaoks. Lõhketöödel tekivate ohufaktoritena käsitleti ühulöökläinet, purustatud kivimi kildude laalipaiskumist ning lõhketööde seismilist efekti.

Võrreldes sarnastel tingimustel ja kaugustel arvutatud suurimad lubatud võnkekiirused erinevate riikide metoodikate järgi (vt Graafik 1), jääb silma, et kõige väiksemad lubatud võnkekiirused on Saksamaal ja Austraalias, vastavalt 1,37 mm/s ja 2,18 mm/s. Seda aga seetõttu, et neis riikides on arvutamisel kasutatud nende riikide geoloogiale omaseid konstante. Neile järgneb Rootsi, arvutatud tulemusega 6,89 mm/s, kelle järel on Eesti ja Soome, mõlemad suurima lubatud võnkekiirusega 16,50 mm/s. USA-s ja Kanadas on võnkekiirus määratud üldise tabeli järgi (vt Tabel 7) ning Norra metoodika ei arvesta sisse kaugust. Seega mida väiksem on suurim lubatud võnkekiirus ehitisele, seda madalam on oht, et ehitis võiks saada kahjustusi.

Õhulöökläine määramiseks kasutab Eesti ainukesena metoodikat, millega arvutatakse ohuala raadius meetrites koheselt välja. Ülejäänud riikides on arvutatud võrreldes mitmekordsetest riikidest. Neile järgneb Rootsi, arvutatud tulemusega 6,89 mm/s, kelle järel on Eesti ja Soome, mõlemad suurima lubatud võnkekiirusega 16,50 mm/s. USA-s ja Kanadas on võnkekiirus määratud üldise tabeli järgi (vt Tabel 7) ning Norra metoodika ei arvesta sisse kaugust. Seega mida väiksem on suurim lubatud võnkekiirus ehitisele, seda madalam on oht, et ehitis võiks saada kahjustusi.

Puurunenud kivimi kildude laalipaiskumine on erinevates riikides kõige ebamäärasemalt määratletud. Eestis arvutatakse välima vastupanujuone valemist kaugus, mille abil määratakse ohuala raadius inimteele ja tehnikale. USA-s on see väga üldiselt määratud föderaalsetel tasemel ja ülejäänud pädevus on jäänud osariikide kätesse. Kanada kasutab vaikimisi teistel inglisekeelsetelt riikidelt laenatud standardite (AUSCANUK). Soomes ja Rootsis arvutatakse lendud laalipaiskunna kaugused vastavalt lõhkeaine kogusest ja distantsist. Austraalias on eelduseks, et vibratsioonile kehtestatud piirmäärad hõlmavad koheselt ka ühulöökläinest tuleneva kahju.