Sobemoviruses: Genomic Organization, Potential for Recombination and Necessity of P1 in Systemic Infection

MERIKE SÕMERA
Dissertation was accepted for the defense of the degree of Doctor of Philosophy in Natural and Exact Sciences on January 14, 2010

Supervisor:

Prof. Erkki Truve, Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia

Opponents:

Dr. Denis Fargette, Institut de recherche pour le développement, Montpellier, France
Dr. Andris Zeltiņš, Latvian Biomedical Research and Study Centre, Riga, Latvia

Defense of the thesis: March 12, 2010 at Tallinn University of Technology

Declaration:

I hereby declare that this doctoral thesis, my original investigation and achievement, submitted for the doctoral degree at Tallinn University of Technology has not been submitted for any degree or examination.

Copyright: Merike Sõmera, 2010
ISSN 1406-4723
Sobemoviirused: genoomi organisatsioon, rekombinatsioonipotentsiaal ja valgu P1 vajalikkus süsteemseks infeksiooniks

MERIKE SÕMERA
To Oliver and Kaido
CONTENTS

INTRODUCTION .......................................................................................... 9
ORIGINAL PUBLICATIONS ........................................................................ 11
ABBREVIATIONS ..................................................................................... 12

1. REVIEW OF THE LITERATURE ................................................................
   1.1. Genus Sobemovirus ........................................................................... 14
   1.2. Genome ............................................................................................. 22
   1.3. Gene products and their functions ..................................................... 25
       1.3.1. P1 ................................................................................................ 25
       1.3.2. Polyprotein ................................................................................. 27
       1.3.3. Coat protein and virion structure ................................................ 31
   1.4. Distribution in cells and tissues, pathology ....................................... 35
   1.5 Resistance ........................................................................................... 38
   1.6. Phylogenetic relationships ............................................................... 41

2. AIM OF THE STUDY ............................................................................. 45

3. MATERIALS AND METHODS ................................................................
   3.1. Plants and growing conditions .......................................................... 46
   3.2. Insect cell culture and growing conditions ........................................ 46
   3.3. Viruses ............................................................................................... 46
   3.4. Primers .............................................................................................. 47
   3.5. DNA cloning ..................................................................................... 47
   3.6. Expression and analysis of CfMV P1 in insect cells ......................... 48
   3.7. Expression and analysis of CfMV EGFP:P1 in oat leaves ............... 48
   3.8. RNA isolation and analysis ............................................................... 48

4. RESULTS AND DISCUSSION ................................................................
   4.1. CfMV-like genome organization is common for 
       all sobemoviruses ..................................................................................... 50
   4.2. No recombinants found between CfMV and RGMoV in doubly 
       infected oat plants .............................................................................. 52
   4.3. P1 of Cocksfoot mottle virus is required for 
       systemic infection in oat ...................................................................... 55

CONCLUSIONS .......................................................................................... 58
REFERENCES ............................................................................................. 59
ACKNOWLEDGEMENTS ........................................................................... 82
PUBLICATION I ......................................................................................... 83
PUBLICATION II ....................................................................................... 91
PUBLICATION III .................................................................................... 103
ABSTRACT ............................................................................................... 111
KOKKUVÕTE ........................................................................................... 113
CURRICULUM VITAE ............................................................................. 115
ELULOOKIRJELDUS .............................................................................. 117
INTRODUCTION

A type member of sobemoviruses - *Southern bean mosaic virus* (SBMV) - was the subject of biochemical and physiochemical studies already since 1940-s (Zaumeyer and Harter, 1943a; Zaumeyer and Harter, 1943b; Choe, 1955; Diener, 1965; Price, 1965; Ghabrial *et al*., 1967; Weintraub and Ragetli, 1970; Sehgal, 1973). Subsequently, it served as a prototype for small angle x-ray diffraction and neutron scattering applications (Abad-Zapatero *et al*., 1980; Abad-Zapatero *et al*., 1981; Krüse *et al*., 1982) in scrutinizing organization of icosahedral virions. Also, SBMV was the model of virion stability investigations (Wells and Sisler, 1969; Erickson and Rossmann, 1982).

Consequently, the first fully sequenced sobemovirus was a cowpea strain of SBMV (SBMV-CP) - later classified as an independent species - *Southern cowpea mosaic virus* (SCPMV; Wu *et al*., 1987; Hull and Fargette, 2005). Soon after, a similar genomic organization was found to be characteristic to *Rice yellow mottle virus* (RYMV; Ngon A Yassi *et al*., 1994; Pinto and Baulcombe, 1995), *Lucerne transient streak virus* (LTSV, Jeffries *et al*., 1995) and the bean strain of *Southern bean mosaic virus* (SBMV-B, later known as SBMV; Othman and Hull, 1995; Lee and Anderson, 1998). At the same time, the sequence analysis of *Cocksfoot mottle virus* (CfMV) showed substantial sequence similarity but different genome structure in the middle part of the genome when compared to the others (Mäkinen *et al*., 1995b; Ryabov *et al*., 1996). In contrast to SBMV, SCPMV, LTSV and RYMV sequences, no individual ORF capable of directing the synthesis of a long (ca 100-kDa) protein was found in CfMV genome (Mäkinen *et al*., 1995a). However, *in vitro* translations of the CfMV genomic RNA revealed a 100-kDa protein, characteristic to all sobemoviruses (Mäkinen *et al*., 1995a). Analysis of the genome sequence information revealed a -1 ribosomal frameshifting signal that leads translation from one reading frame (ORF2a that encodes a serine protease, Pro, and a viral genome-linked protein, VPg) into an overlapping reading frame (ORF2b encoding a RNA dependent RNA polymerase, RdRp) enabling generation of the 100-kDa polyprotein. Surprisingly, similar frameshifting signals were also found in long ORF2 sequences (encoding Pro, VPg and RdRp) of SBMV, SCPMV and RYMV (Mäkinen *et al*., 1995a). Later, re-sequencing of RYMV indicated that the genome of RYMV is actually “CfMV-like” (Fargette *et al*., 2004). Afterwards, several new sobemoviruses were sequenced and announced as “SCPMV-like” (Lokesh *et al*., 2001; Zhang *et al*., 2001) and several as “CfMV-like” (Dwyer *et al*., 2003; Callaway *et al*., 2004; Sérémé *et al*., 2008; McGavin and MacFarlane, 2008).

All the other evolutionary related virus groups (polero-, enamo-, luteo-, tombus-, diantho-, panico- and umbraviruses) use -1 ribosomal frameshift to control the amount and expression of RdRp (Hull, 2002). Thus, “the SCPMV-like” organization turns out as unusual. The first objective of the current thesis was to re-sequence the middle part of the genome of SCPMV-like sobemoviruses to clarify their genomic organization.
Sobemoviruses are defined as an unclassified genus (Hull and Fargette, 2005). The reason for that is a modular nature of sobemovirus genomes – sequence comparisons and phylogenetic analyses have identified no similarities with other viruses at ORF1 of sobemoviruses, whereas the middle part of the sobemovirus genome (encoding Pro-VPg-RdRp) has similarities with that of the genera Polerovirus and Enamovirus belonging to the family Luteoviridae, and the 3’ part of the sobemovirus genome encoding the coat protein (CP) is related to the genus Necrovirus belonging to the family Tombusviridae (Hull and Fargette, 2005). Moreover, there exists a potential natural hybrid between polero- and sobemovirus. Poinsettia cryptic virus (suggested to be renamed as Poinsettia latent virus, PnLV) has been described as a virus showing a close relationship to poleroviruses within its first part of the genome encoding the non-structural proteins, whereas its last part of the genome that encodes a viral capsid protein is rather similar to sobemoviruses. The 5’ and 3’ UTR-s of PnLV are characteristic to poleroviruses (aus dem Siepen et al., 2005). Due to the modularity, i.e. the shuffling of genes and gene blocks, the key mechanism in the evolution of “the supergroup” luteo-sobemo-tombusviruses is supposed to be RNA recombination (Martin et al., 1990; Gibbs, 1995). For CfMV, five different viral defective interfering RNAs (DI RNAs) corresponding to 35-40 nucleotides of the 5’-proximal end of genomic RNA linked with 850-950 nucleotides of the 3’ terminus have been identified. That is considered to be a proof of the replicase-driven template switching mechanism needed for creation of the recombinant RNA molecules (Mäkinen et al., 2000a). However, the phylogenetic analyses of sequenced sobemoviruses do not assure recombination events inside Sobemovirus genus (Lokesh et al., 2001; Fargette et al., 2004; Zhou et al., 2005; Chare and Holmes, 2006; Stuart et al., 2006; Fargette et al., 2008; Sérémé et al., 2008). Therefore, the second objective of the current study was to experimentally look for potential recombinants between two sobemoviruses – CfMV and Ryegrass mottle virus (RGMoV) – under little or no selection pressure (i.e. non-transgenic plants infected with wild-type viruses).

The third objective of this study was to start unraveling the functions of CfMV P1 – a highly divergent protein encoded by 5’-proximal ORF1 – that is not related to any other known protein.
ORIGINAL PUBLICATIONS

The present dissertation is based on the following publications, which will be referred to in the text by their Roman numbers.


## ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM</td>
<td>arginine rich motif</td>
</tr>
<tr>
<td>BSSV</td>
<td>Blueberry shoestring virus</td>
</tr>
<tr>
<td>CAYMV</td>
<td>calopo yellow mosaic virus</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CfMV</td>
<td>Cocksfoot mottle virus</td>
</tr>
<tr>
<td>CfMV ε</td>
<td>CfMV 5’ translation element ε</td>
</tr>
<tr>
<td>CfMV-No</td>
<td>Norwegian isolate of CfMV</td>
</tr>
<tr>
<td>CfMV P1(-)</td>
<td>P1-defective variant of CfMV-No icDNA</td>
</tr>
<tr>
<td>CfMV RdRp(-)</td>
<td>RdRp-defective variant of CfMV-No icDNA</td>
</tr>
<tr>
<td>CMMV</td>
<td>Cocksfoot mild mosaic virus</td>
</tr>
<tr>
<td>CnMoV</td>
<td>Cynosurus mottle virus</td>
</tr>
<tr>
<td>CP</td>
<td>coat protein</td>
</tr>
<tr>
<td>crTMV</td>
<td>crucifer-infecting Tobacco mosaic virus</td>
</tr>
<tr>
<td>cv</td>
<td>cultivar</td>
</tr>
<tr>
<td>DI RNA</td>
<td>defective interfering RNA</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dpi</td>
<td>days post infection</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double-stranded DNA</td>
</tr>
<tr>
<td>eIF(iso)4G</td>
<td>isoform of the eukaryotic translation initiation factor 4G</td>
</tr>
<tr>
<td>GCFV</td>
<td>Ginger chlorotic fleck virus</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>icDNA</td>
<td>infectious cDNA</td>
</tr>
<tr>
<td>ICTV</td>
<td>International Committee on Taxonomy of Viruses</td>
</tr>
<tr>
<td>IRES</td>
<td>internal ribosome entry site</td>
</tr>
<tr>
<td>IYMV</td>
<td>Imperata yellow mottle virus</td>
</tr>
<tr>
<td>LTSV</td>
<td>Lucerne transient streak virus</td>
</tr>
<tr>
<td>LTSV-Can</td>
<td>Canadian isolate of LTSV</td>
</tr>
<tr>
<td>MOI</td>
<td>moiety (or multiplicity) of infection, shows the number of virus particles per target cell</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-N-morpholino propane sulfonic acid</td>
</tr>
<tr>
<td>MP</td>
<td>movement protein</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>P1</td>
<td>protein encoded by ORF1</td>
</tr>
<tr>
<td>P2</td>
<td>protein encoded by ORF2</td>
</tr>
<tr>
<td>P2a</td>
<td>protein encoded by ORF2a</td>
</tr>
<tr>
<td>P2b</td>
<td>protein encoded by ORF2b</td>
</tr>
<tr>
<td>P3</td>
<td>protein encoded by ORF3</td>
</tr>
<tr>
<td>PLYV</td>
<td>Papaya lethal yellowing virus</td>
</tr>
<tr>
<td>PnLV</td>
<td>poinsettia latent virus</td>
</tr>
<tr>
<td>Pro</td>
<td>protease</td>
</tr>
<tr>
<td>PTGS</td>
<td>post-transcriptional gene silencing</td>
</tr>
<tr>
<td>QTL</td>
<td>quantitative trait locus</td>
</tr>
</tbody>
</table>
R-domain  random domain
RdRp   RNA-dependent RNA polymerase
RGMoV  *Ryegrass mottle virus*
RGMoV-Jap Japanese isolate of RGMoV
RoMoV  *Rottboellia yellow mottle virus*
rms    root mean square
rpm    revolutions per minute
RT-PCR reverse transcriptase PCR
RuCMV  *Rubus chlorotic mottle virus*
RYMV   *Rice yellow mottle virus*
RYMV-Mg1 Madagaskar isolate 1 of RYMV
RYMV-Nig Nigerian isolate of RYMV
RYMV-Tz3 Tanzaniam isolate 3 of RYMV
satRNA satellite RNA
SBMV   *Southern bean mosaic virus*
SBMV-ALM Almerian isolate of SBMV
SBMV-Ark Arkansas isolate of SBMV
SBMV-B bean strain of SBMV (now: SBMV)
SBMV-Col Colombian isolate of SBMV
SBMV-CP cowpea strain of SBMV (now: SCPMV)
SBMV-Mor Moroccan isolate of SBMV
SBMV-SP São Paolo isolate of SBMV
SCMoV  *Subterranean clover mottle virus*
SCPMV  *Southern cowpea mosaic virus*
SCPMV-WI Wisconsin isolate of SCPMV
S-domain surface (or shell) domain
SeMV   *Sesbania mosaic virus*
sgRNA  subgenomic RNA
siRNA  small interfering RNA
SMAMV  snake melon asteroid mosaic virus
SNMoV  *Solanum nodiflorum mottle virus*
SoMV   *Sowbane mosaic virus*
ssRNA  single-stranded RNA
TLS    tRNA-like structure
TNV    *Tobacco necrosis virus*
TRoV   *Turnip rosette virus*
UTR    untranslated region
VPg    viral genome linked protein
VTMoV  *Velvet tobacco mottle virus*
wt     wild-type
1. REVIEW OF THE LITERATURE

1.1. Genus Sobemovirus

In 1969, single-component-RNA beetle-transmitted viruses were proposed to classify into a southern bean mosaic virus group (Walters, 1969). Since 1995, this group was recognized as a genus Sobemovirus (sigla from Southern bean mosaic virus) by the International Committee on Taxonomy of Viruses (ICTV) (Hull, 1995). The establishment of the genus was based on similarities in particle morphology, thermal stability, sedimentation coefficient and sizes of their coat protein subunits, size and type of their genomic RNA, distribution of virus particles within the cell, features in mode of vector transmission and their rather narrow host range. Hitherto, the genus Sobemovirus is not assigned to any family (Hull and Fargette, 2005).

At this time, 13 viruses are accepted as definite species and 4 viruses as tentative species for sobemovirus group by the ICTV (Hull and Fargette, 2005). The list of definite species involves completely sequenced viruses such as Cocksfoot mottle virus (CfMV), Lucerne transient streak virus (LTSV), Rice yellow mottle virus (RYMV), Ryegrass mottle virus (RGMoV), Sesbania mosaic virus (SeMV), Southern bean mosaic virus (SBMV), Southern cowpea mosaic virus (SCPMV), Subterranean clover mottle virus (SCMoV), and Turnip rosette virus (TRoV), but also several extensively studied but non-sequenced or partially sequenced viruses such as Blueberry shoestring virus (BSSV), Solanum nodiflorum mottle virus (SNMoV), Sowbane mosaic virus (SoMV) and Velvet tobacco mottle virus (VTMoV) (Table 1, p. 16). The list of tentative species involves Cocksfoot mild mosaic virus (CMMV), Cynosurus mottle virus (CnMoV), Ginger chlorotic fleck virus (GCFV) and Rottboellia yellow mottle virus (RoMoV) (Table 1). However, according to the recent sequencing data, CMMV is not a sobemovirus but a panicovirus (Ziegler et al., 2009). CnMoV, GCFV and RoMoV have not yet been sequenced.

In addition, two recently fully sequenced viruses should be classified as sobemoviruses. Firstly, Imperata yellow mottle virus (IYMV) was found to be consistent with all criteria to assign it into the genus Sobemovirus (Sérémé et al., 2008). Secondly, Rubus chlorotic mottle virus (RuCMV) was found to be a typical sobemovirus according to its genomic sequence (McGavin and MacFarlane, 2008). The partial sequence of SoMV (Gratsia et al., 2006) shows 94 % identity with the corresponding region of RuCMV RdRp. Moreover, three other viruses presently not fully sequenced probably belong to the genus Sobemovirus. The physical and chemical properties of Calopo yellow mosaic virus (CAYMV) are similar to those reported for the sobemovirus group. CAYMV has been found to be antigenically related to SBMV and SCPMV but its host range partially differs from previous ones. A 609 bp fragment amplified from the region encoding virus coat protein has 81.8 % of similarity to the corresponding region of SBMV and 66.1 % to that of SCPMV (Morales et al., 1995). The partial sequence of Papaya lethal yellowing
virus (PLYV) shows considerable similarity (about 44-51%) to the polymerase, VPg and coat protein genes of sobemoviruses (Lima et al., 2001). The 71% of amino acid sequence similarity has been found between the RYMV RdRp and a putative protein-encoding fragment of Snake melon asteroid mosaic virus (SMAMV) (Lecoq et al., 2005).

Some sobemoviruses are distributed throughout the world (CfMV, LTSV, RGMoV, SBMV, SCPMV, SoMV) whereas some are limited to only one continent (BSSV, RYMV, SNMoV, SCMoV, TRoV, VTMoV) or even to just one endemic region (SeMV) (Table 1, p. 16). Distribution is directly related to their host range which is relatively narrow, i.e. individual viruses (except SoMV) naturally infect plants from one family only (Table 1, p. 16). In some cases, global exchange of infected material and introduction of novel crops in existing or new agricultural areas have expanded virus areal. For example, SCMoV may have been introduced to Australia following European colonisation. The argument for its Mediterranean origin is that SCMoV has a beetle vector there but not in Australia (Jones, 2004). Similarly, detection of CfMV in New Zealand is most probably of a foreign origin as its host plant cocksfoot is introduced there (Campell and Guy, 2001). In Spain, the first infections of SBMV are most probably introduced via seeds from infected plants (Verhoeven et al., 2003). Similarly, SoMV has been found to be recently imported with seeds from Netherns to Greece (Gratzia et al., 2006). An outbreak of RYMV epidemic reported in last 40 years is related with intensification of rice cropping in Africa (Traoré et al., 2009).

The main transmission source of sobemoviruses is mechanical wounding of host plants. The transmission study of RYMV shows that it is efficiently transferred from plant to plant by farming operations and by grazing donkeys, cows and grass rats. It can also spread by wind-mediated leaf contacts and via soil (Sarra, 2005). For SCMoV, it has been shown that the main source of transmission is grazing and trampling by livestock, crushing under vehicle wheels and by mowing for hay production, i.e. contact-transmission (Jones, 2004). In addition, insects, mostly the different species of leaf-eating beetles, transmit sobemoviruses in a semi-persistent manner. Also, aphids, leafminers, leafhoppers, or mirids can transmit sobemoviruses (Table 1, p.16). Several but not all sobemoviruses are seed-transmissible (Table 1, p.16).

Several sobemoviruses are economically important pathogens. RYMV causes one of the most damaging and rapidly spreading diseases of rice in Africa. As a result of RYMV infection, yield losses fluctuate between 10 and 100%, depending on plant age prior to infection, susceptibility of the rice variety, and environmental factors (Traoré et al., 2009). PLYV, causing serious chlorosis, is responsible for severe disease of papaya in Northeast Brazil. SCMoV decreases clover seed and herbage production in Australia. Over time, SCMoV-infected pastures will become weedy and unproductive (Jones, 2004). A severe outbreak of CfMV was observed in the cocksfoot fields in Norway in the middle of 1980’s (Rognli et al., 1995).
Table 1. Viruses of the genus *Sobemovirus* and their biological properties (modified from Meier *et al.*, 2008).

<table>
<thead>
<tr>
<th>Virus</th>
<th>Abbr.</th>
<th>Distribution</th>
<th>Natural host</th>
<th>Insect vector</th>
<th>Transmission</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seed</td>
<td></td>
</tr>
<tr>
<td><strong>Definitive species</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocksfoot mottle virus</td>
<td>CfMV</td>
<td>Europe (Denmark, France, Germany, Norway, Russia, UK), New Zealand, Japan</td>
<td><em>Chionochloa rubra, Dactylis glomerata, Festuca novae-zelandiae, Poa aniceps, P. cita, Triticum aestivum</em></td>
<td><em>Lema melanopus, L. lichensis</em> (beetles)</td>
<td>Yes</td>
<td>Serjeant, 1967; Upstone, 1969; Catherall, 1970; A’Brook and Benigno, 1972; Engsbro, 1978; Rabenstein and Schmidt, 1979; Mohamed 1980; Tonyama, 1982; Munthe, 1988; Ryabov <em>et al.</em>, 1996; Campell and Guy, 2001; Delmiglio, 2008</td>
</tr>
<tr>
<td>Lucerne transient streak virus</td>
<td>LTSV</td>
<td>Australia (Victoria, Tasmania), New Zealand, Canada</td>
<td><em>Medicago sativa</em></td>
<td>ND</td>
<td>Yes</td>
<td>Blackstock, 1978; Forester and Jones, 1979; Paliwal, 1983</td>
</tr>
<tr>
<td>Virus Type</td>
<td>Hosts</td>
<td>Vector</td>
<td>Yes</td>
<td>No</td>
<td>Reference(s)</td>
<td></td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>----------------------------------------------------------------------</td>
<td>---------------------------------</td>
<td>-----</td>
<td>----</td>
<td>--------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Rice yellow mottle virus (RYMV)</td>
<td>Echinochloa colona, Ischameum rugosum, Oryza barthii, O. glaberrima, O. longistaminata, O. sativa, Panicum repens</td>
<td>Chaetocnema spp., Dactylispa gestroi, Dactylispa spp., Monomolepta spp., Oulema dunbrodiensis, Sesselia pusilla, Trichispa sericea (beetles), Conocephalus merumontanus (grasshopper)</td>
<td>Yes</td>
<td>No</td>
<td>Bakker, 1974; Okioma et al., 1983; Konaté 1997, 2002; Banwo et al., 2001; Traoré et al., 2001; Sarra 2005</td>
<td></td>
</tr>
<tr>
<td>Ryegrass mottle virus (RGMoV)</td>
<td>Dactylis glomerata, Lolium multiflorum</td>
<td>ND</td>
<td>Yes</td>
<td>No</td>
<td>Toriyama et al., 1983; Zhang et al., 2001</td>
<td></td>
</tr>
<tr>
<td>Sesbania mosaic virus (SeMV)</td>
<td>Sesbania grandiflora</td>
<td>ND</td>
<td>Yes</td>
<td>ND</td>
<td>Singh and Srivastava, 1985</td>
<td></td>
</tr>
<tr>
<td>Southern bean mosaic virus</td>
<td>SBMV</td>
<td>USA (Arkansas, California, Louisiana, Maryland), Central and South America (Brazil, Colombia, Mexico), Africa (Ivory Coast, Morocco), Europe (France, Lithuania, Spain), Asia (Iran)</td>
<td>Phaseolus vulgaris</td>
<td>Ceratoma trifurcata, Epilachna variestis, Diabrotica undecimpunctata howardii (beetles)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Southern cowpea mosaic virus</td>
<td>SCPMV</td>
<td>USA (Wisconsin), Africa (Botswana, Ghana, Kenya, Nigeria, Senegal, Togo), Asia (India, Pakistan)</td>
<td>Cassia toria, Pism sativum, Vigna unguiculata</td>
<td>Ootheca mutabilis, Madurasia obscurella (beetles)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Virus</td>
<td>Location</td>
<td>Hosts</td>
<td>Vector Insects</td>
<td>Reference(s)</td>
<td>Detection</td>
<td>Confirmation</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------------</td>
<td>---------------------------------------------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sowbane mosaic virus (SoMV)</td>
<td>USA (California), Canada, Central and South America, Europe (Bulgaria, Czechia/Slovakia, Croatia, France, Greece, Hungary, Italy, Moldavia, Netherlands), Japan, Australia (Queensland, New South Wales, Victoria, Tasmania)</td>
<td>Chenopodium spp., Atriplex subrecta, Spinacia oleracea, Vitis sp., Prunus domestica, Alisma plantago-aquatica, Danae racemosa</td>
<td>Myzus persicae (aphid), Liriomyza langei (leafminer), Circulifer tenellus (leafhopper), Cyrtopeltis nicotianae, Halticus citri (mirids)</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subterranean clover mottle virus (SCMoV)</td>
<td>Australia (New South Wales, South Australia, Tasmania, Victoria, Western Australia)</td>
<td>Trifolium subterraneum, Trifolium spp.</td>
<td>Not found</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnip rosette virus (TRoV)</td>
<td>UK (England, Scotland), Switzerland</td>
<td>Brassica campestris, B. nigra</td>
<td>Phyllotreta nemorum (beetle)</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velvet tobacco mottle virus (VTMoV)</td>
<td>Australia (Northern Territory, Queensland, South Australia)</td>
<td>Nicotiana velutina</td>
<td>Cyrtopeltis nicotianae (mirid), Epilachna spp. (beetle)</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
- Francki et al., 1983; Wroth and Jones, 1992; Helms et al., 1993; Jones et al., 2001
- Broadbent and Heathcote, 1958; Hollings and Stones, 1973; Thurston et al., 2001
- Randles et al., 1981; Randles and Francki, 1986; Gibb and Randles, 1988; Gibb and Randles, 1991
<table>
<thead>
<tr>
<th>Tentative species</th>
<th>Virus</th>
<th>Region</th>
<th>Hosts</th>
<th>Secondary vectors</th>
<th>Recorded？</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocksfoot mild mosaic virus</td>
<td>CMMV</td>
<td>Europe (Czechia/Slovakia, Denmark, France, Germany, Norway, UK), Canada (Ontario), New Zealand</td>
<td>Agrostis stolonifera, Bromus mollis, B. diandrus, Cynosurus cristatus, Dactylis glomerata, Festuca pratensis, Lolium perenne, L. perenne x L. multiflorum, Phleum pratense, Poa trivialis, Triticum aestivum</td>
<td>Myzus persicae (aphid), Lema melanopus (beetle)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cynosurus mottle virus</td>
<td>CnMoV</td>
<td>Europe (Germany, UK, Ireland), New Zealand</td>
<td>Agrostis tenuis, A. stolonifera, Cynosurus cristatus, Lolium perenne, L. perenne x L. multiflorum</td>
<td>Lema melanopus (beetle), Rhopalosiphum padi (aphid)</td>
<td>Yes</td>
<td>ND</td>
</tr>
<tr>
<td>Ginger chlorotic fleck virus</td>
<td>GCFV</td>
<td>Africa (Mauritius), Asia (India, Malaysia, Thailand)</td>
<td>Zingiber officinale</td>
<td>Not found</td>
<td>Yes</td>
<td>ND</td>
</tr>
<tr>
<td>Rottboellia yellow mottle virus</td>
<td>RoMoV</td>
<td>Nigeria</td>
<td>Rottboellia cochinchinensis</td>
<td>ND</td>
<td>Yes</td>
<td>ND</td>
</tr>
</tbody>
</table>

Species not yet recognized by ICTV

ICTV: International Committee on Taxonomy of Viruses.
<table>
<thead>
<tr>
<th>Virus Name</th>
<th>Host Name</th>
<th>Host Location</th>
<th>Virus Species</th>
<th>Vector</th>
<th>Host Response</th>
<th>Vector Response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calopo yellow mosaic virus</td>
<td>CAYMV</td>
<td>Colombia</td>
<td>Calopogonium mucunoides</td>
<td>Diabrotica balteata (beetle)</td>
<td>Yes</td>
<td>Yes</td>
<td>Morales et al., 1995</td>
</tr>
<tr>
<td>Imperata yellow mottle virus</td>
<td>IYMV</td>
<td>Burkina Faso</td>
<td>Imperata cylindrica, Zea mays</td>
<td>ND</td>
<td>Yes</td>
<td>No</td>
<td>Sérémé et al., 2008</td>
</tr>
<tr>
<td>Papaya lethal yellowing virus</td>
<td>PLYV</td>
<td>Brasil (Pernambuco, Bahia, Rio Grande do Norte, Ceará, Paraíba)</td>
<td>Carica papaya</td>
<td>Not found</td>
<td>Yes</td>
<td>No</td>
<td>Loreto et al., 1983; Lima et al., 2001; Saraiva et al., 2006</td>
</tr>
<tr>
<td>Rubus chlorotic mottle virus</td>
<td>RuCMV</td>
<td>UK (Scotland)</td>
<td>Rubus sp</td>
<td>ND</td>
<td>Yes</td>
<td>ND</td>
<td>McGavin and MacFarlane, 2008</td>
</tr>
<tr>
<td>Snake melon asteroid mosaic virus</td>
<td>SMAMV</td>
<td>Sudan</td>
<td>Cucumis melo var flexuosus</td>
<td>Not found</td>
<td>Yes</td>
<td>Yes</td>
<td>Lecoq et al., 2005</td>
</tr>
</tbody>
</table>
1.2. Genome

All sequenced sobemoviruses have the polycistronic positive sense single-stranded RNA genomes approximately 4.0 - 4.5 kb in size. Sobemovirus genome lacks both 5’-terminal cap and 3’-terminal poly(A) tail (Hull and Fargette, 2005). Eukaryotic mRNAs are usually monocistronic, their untranslated regions (UTRs) are capped at 5’-terminus, and polyadenylated at 3’-terminus. Both are essential for their efficient translation. Lack of cap and poly(A) indicates that the sobemoviral UTRs must somehow compensate these functions. The 5’-proximal end of sobemovirus genomic and subgenomic RNA (sgRNA) bounds covalently a viral genome-linked protein (VPg) that replaces 5’ cap (Ghosh et al., 1979; Ghosh et al., 1981; Ke-Qiang et al., 1982; van der Wilk et al., 1998b; Mäkinen et al., 2000b; Lokesh et al., 2001; Hébrard et al., 2008). The exact roles of phytoviral VPg-s are still unclear although interactions between eukaryotic translation initiation factors and viral VPg-s have been suggested to be involved in protein translation, in RNA replication and in cell-to-cell movement (Sadowy et al., 2001). RYMV VPg was identified as a virulence factor (Hebrard et al., 2006).

Although not much is known about the replication signals required for the initiation of sobemoviral RNA synthesis, a conserved 5’-proximal sequence ACAA is considered to play role in viral RNA replication by promoting or enhancing the binding of viral RdRp (Miller et al., 1995). This motif is characteristic of the 5’-termini of sobemo-, polero-, diantho- and barnaviruses (Xiong and Lommel, 1989; Revill et al., 1994; Miller et al., 1995; Zavriev et al., 1996; Revill et al., 1998; Tamm and Truve, 2000b). It is also present upstream from translation initiation codon of CP in sobemovirus genome, indicating a possible 5’-terminus of sgRNA (Hacker and Sivakumaran, 1997). Differently from other sobemoviruses, such a motif is neither present at the 5’-proximal end nor upstream from the CP translation initiation codon in the genome of CfMV (Mäkinen et al., 1995b) and it is also absent at the 5’-proximal end of IYMV (Sérémé et al., 2008). Hypothetically, the different 5’ sequence might provide a great advantage in certain cereals. Translational enhancer element CfMVε at the 5’ UTR was specifically highly successful in enhancement of the expression of reporter genes in barley suspension cells compared to other viral enhancer sequences (TMVΩ, CrTMV IRES, PVXαβ and 5′UTR of AMV RNA4) (Mäkeläinen, 2006). Notably, all these leader sequences promote efficient translation in wheat germ extract and in tobacco cells (Gallie et al., 1987; Jobling and Gherke, 1987; Browning et al., 1988; Gallie et al., 1989; Smirnyagina et al., 1991; Pooggin et al., 1992; Ivanov et al., 1997; Dorokhov et al., 2002; Gallie, 2002a). TMVΩ has also shown to promote translation in maize and rice (Gallie et al., 1989).

Both genomic and subgenomic RNAs of most of sobemoviruses contain a conserved polypurine tract GAAA shortly after the ACAA motif (Mäkinen et al., 1995a; Ryabov et al., 1996; Hacker and Sivakumaran, 1997; Tamm and Truve 2000b). Interestingly, a polypurine tract is found to be a key element of CrTMV IRES (Dorokhov et al., 2002).
The vicinity of sgRNA transcription start site of SBMV, SCPMV, LTSV, RYMV and CfMV is predicted to fold into a hairpin loop (Hacker and Sivakumaran, 1997; Kokorev et al., 2007). Although the significance of that stem-loop is not known, it or its complement in minus-strand RNA is considered to play a role in sgRNA synthesis. In sequence of CfMV, another potentially stable stem-loop situated in the middle of CP encoding region has been found to be complementary to the one adjacent the transcription site of sgRNA. The hypothetical interaction between these loops has been proposed to be involved in transactivation of sgRNA synthesis (Kokorev et al., 2007).

Almost nothing is known about the signals essential for the initiation of synthesis of the genomic minus strand potentially provided by the 3’-terminus of the genomic RNA. The 3’ UTRs of sobemovirus genomes show only marginal sequence conservation. A potential tRNA-like structure (TLS) has been attributed to the 3’-end of RYMV and CfMV by computer modelling (Ngon A Yassi et al., 1994; Ryabov et al., 1996) but no experimental data is available on that. No such secondary structure has been found at the 3’ end of SBMV, SCPMV or SeMV in computational analysis (Wu et al., 1987; Othman and Hull, 1995; Lokesh et al., 2001). In general, a non-TLS heteropolymeric 3’-termini has been found customary among plant viruses (Dreher et al., 1999).

Interaction of the UTRs is required for efficient translation (Gallie, 1998). However, 5’ and 3’ UTRs of CfMV had no synergistic effect on test mRNA translation in barley suspension cells. The reason of it was presumed to be a lack of the virus encoded proteins or a sequence buried somewhere in the middle part of the genome needed for bringing together the genomic termini (Mäkeläinen, 2006).

The genomic RNA of incoming sobemovirus particles is probably uncoated by the co-translational disassembly mechanism and followed by RNA replication. For example, the particles of SBMV can completely disassemble only after their RNA has initiated translation (Brisco et al., 1985; Shields et al., 1989).

Sobemovirus genome consists of four ORFs (Fig. 1).

![Diagram of CfMV and SCPMV genomic organizations](image)

Figure 1. CfMV-like genomic organization is represented by CfMV genome according to Mäkinen et al., 1995. SCPMV-like genomic organization is represented by SCP MV according to Wu et al., 1987.
ORF1 as well as the downstream ORF2 is translated from the genomic RNA (Salerno-Rife et al., 1980; Ke-Qiang et al., 1982; Wu et al., 1987; Tamm et al., 1999; Zhang et al., 2001). Initiation of translation of the genomic RNA is facilitated at least in case of CfMV by the translational enhancer CfMVε situated at 5’ UTR. Deletion of 3’ terminal part of CfMVε has no effect on translation yield but the first 10 nt-s of CfMVε (possibly forming a stem-loop) together with several downstream 6-23 nt stretches complementary to plant 18S rRNA, might be involved in translation initiation and binding of the 43S ribosomal preinitiation complex (Mäkeläinen, 2006).

Translation of ORF2 occurs by the process termed leaky scanning of 40S ribosomes that can bypass the start codon of ORF1 due to its suboptimal context (Hacker and Sivakumaran, 1997; Dwyer et al., 2003) and initiate translation from subsequent ORF2 (Sivakumaran and Hacker, 1998; Tamm et al., 1999). It was postulated that some sobemoviruses (referred as a “SCPMV-like” genomic organization) express their ORF2-encoded proteins from one in-frame ORF, whereas the others (named as “CfMV-like” sobemoviruses) express predominantly only a part of it whereas they use a –1 translational frameshift mechanism to extend translation for the expression of a “full-length” polyprotein (Fig. 1, p. 23). Studies on CfMV showed that the ribosomal frameshifting takes place with an efficiency of approximately 10-20 % (Luccesi et al., 2000; Mäkeläinen and Mäkinen, 2005). The -1 ribosomal frameshift signal of CfMV consists of the heptameric slippery sequence UUUAAAC, followed by a simple stem-loop structure located 7 nucleotides downstream of it (Tamm et al., 2009). Notably, the ribosomal frameshift signal that was discovered from the sequence of CfMV was found to be conserved for all the sobemoviruses (Mäkinen et al., 1995a; Ryabov et al., 1996; Lokesh et al., 2001; Zhang et al., 2001; Dwyer et al., 2003; McGavin and MacFarlane, 2008; Sérémé et al., 2008; Ozato et al., 2009). In the case of SCPMV-like genomic annotations, the ribosomal frameshift signal was located upstream of the small internal coding region ORF3 having no stops between the –1 frameshift signal and the initiation codon of the putative ORF3. Moreover, the beginning of ORF3/putative P3 of SCPMV-like viruses and the beginning of ORF2b/putative P2B of CfMV-like viruses were found to be similar in sequence comparisons. Therefore it has been suggested that ORF3 may be expressed as a part of a smaller polyprotein via –1 ribosomal shift (Mäkinen et al., 1995a; Dwyer et al., 2003). However, the posterior part of ORF3/P3 sequences has been found to be very divergent (Dwyer et al., 2003). No single protein has been attributed to ORF3 alone (Tamm and Truve, 2000b; Dwyer et al., 2003).

A sobemovirus coat protein (CP) is encoded by the genome 3’-proximal ORF but translated from its copy in subgenomic RNA (Rutgers et al., 1980; Ghosh et al., 1981; Chu and Francki, 1983; Morris-Krsinich and Forster, 1983; Morris-Krsinich and Hull, 1983; Kiberstis and Zimmern, 1984; Tamm et al., 1999). The

---

1 In this thesis, we will demonstrate that all sequenced sobemoviruses possess a common genomic organization characteristic of CfMV-like viruses (publication I).
sgRNA has been detected both in sobemovirus-infected tissues and in virus particles (Rutgers et al., 1980; Salerno-Rife et al., 1980; Weber and Sehgal, 1982; Mäkinen et al., 1995b; Ryabov et al., 1996; Bonneau et al., 1998; Tamm et al., 1999). In addition to the genomic and sgRNA, some sobemoviruses (LTSV, RYMV, SCMoV, SNMoV, VTMoV) can also encapsidate a viroid-like circular satellite RNA (satRNA) (Gould et al., 1981; Gould and Hatta, 1981; Randles et al., 1981; Tien et al., 1981; Francki et al., 1983; Jones et al., 1983; Paliwal, 1983; Jones and Mayo, 1984; Dall et al., 1990; Davies et al., 1990; Sehgal et al., 1993; Collins et al., 1998). The sizes of sobemovirus-associated satRNAs range from 220 to 390 nt (Haseloff and Simons, 1982; Keese et al., 1983; AbouHaidar and Paliwal, 1988; Davies et al., 1990; Collins et al., 1998). The 220 nt-s satRNA of RYMV is the smallest of all discovered satRNAs (Collins et al., 1998; Pinel et al., 2003). In addition, CfMV is reported to encapsulate DI RNA molecules (Mäkinen et al., 2000a). The preliminary studies on CfMV DI RNA suggest that it could favour accumulation of CP (Kokorev et al., 2007). Also, it has been suspected that a sequence lacking nt 231-509 amplified from RNA derived from SeMV particles was most probably arose from DI RNA (Lokesh et al., 2001).

1.3. Gene products and their functions

1.3.1. P1

P1 is encoded by the 5’-proximal ORF1 of the genomic RNA of sobemoviruses. Translation of P1 occurs with poor efficiency due to the suboptimal context for ORF1 initiation (Dwyer et al., 2003). Surprisingly, no considerable homologies have been found at nucleic acid as well as amino acid sequence levels between different sobemovirus P1s, making this region the most variable one in the genome of sobemoviruses (Ngon A Yassi et al., 1994; Mäkinen et al., 1995b; Othman and Hull, 1995; Tamm and Truve, 2000b). The molecular masses of sobemoviral P1s range between 12-kDa and 25-kDa (Tamm and Truve, 2000b).

P1s of RYMV and SCPMV are required for systemic infection but not for virus replication (Bonneau et al., 1998; Sivakumaran et al., 1998). SCPMV P1 has been also shown to be non-essential for viral assembly (Sivakumaran et al., 1998). RYMV P1 was first described as a pathogenicity determinant (Bonneau et al., 1998). Later, it was shown to act as a suppressor of RNA silencing in Nicotiana benthamiana, a non-host species for sobemoviruses. P1 of RYMV-Nig prevents a systemic spread but not a short-range movement of the silencing signal (Voinnet et al., 1999; Hamilton et al., 2002; Himber et al., 2003; Sarmiento et al., 2007). Differently, P1s of RYMV-Tz3 and RYMV-Mg1 isolates have been shown to affect also the spread of local silencing signal (Lacombe et al., 2010). The suppression of silencing was associated with slight reduction in 21 nt siRNA and severe reduction in 24 nt siRNA accumulation (Lacombe et al., 2010). Comparison of P1s of these two isolates revealed contrasting suppression strength. Interestingly, in addition to the ability to suppress silencing RYMV P1 was found to enhance the
short distance movement of silencing signal and even to increase the efficiency of the systemic spread of silencing (Lacombe et al., 2010). Therefore, it was suggested that the dual functions to suppress and activate silencing by RYMV P1 has a key role for a successful RYMV infection by maintaining equilibrium between efficient virus multiplication and preservation of the host integrity.

Recently, it was shown that also CfMV P1 acts as a silencing suppressor both at local and systemic levels in N. benthamiana as well as in N. tabacum (Sarmiento et al., 2007). When expressed transgenically in N. benthamiana, RYMV P1 affected the normal plant phenotype whereas CfMV P1 did not. Concurrently, both suppressors enhance the spread but not the accumulation of crucifer-infecting Tobacco mosaic virus (Siddiqui et al., 2008). P1 of CfMV binds ssRNA in a sequence-independent manner (Tamm et al., 2000a) but it does not bind double-stranded small interfering RNAs (siRNAs; Sarmiento et al., 2007). RYMV P1 nucleic acid binding activity remains to be demonstrated.

It was demonstrated that RYMV P1 acts as the suppressor also in rice. However, it was observed that P1 proteins originated from different RYMV isolates had a wide range in their ability to suppress silencing (Siré et al., 2008). The investigations on the functional diversity of silencing suppression of a set RYMV isolates elucidated that an ability to suppress silencing is not linked to RYMV pathogenicity or phylogeny but rather to the cell-to-cell movement ability of P1 (Siré et al., 2008). Variations in silencing suppression were correlated with a sequence variation of P1. Mutagenesis of P1 demonstrated a strong link between some amino acids and silencing suppression features – some conserved amino acids of the putative zinc-finger motif of RYMV P1, C64(X)2C67(X)24C92(X)2C95, were involved in cell-to-cell movement and in the strength of the silencing suppression. In addition, one non-conserved position in RYMV P1 in the sequence of the isolate Tz3 (that shows the strongest silencing suppression of all isolates tested) was involved in determination of the strength of the silencing suppression (Siré et al., 2008).

Transgenic rice expressing P1 originated either from RYMV-Tz3 or RYMV-Mg1 displayed inflorescence developmental defects comparable to those previously described in a dcl4-1 mutant2 (Lacombe et al., 2010). Similarly to dcl4-1 mutant, further analysis showed down-accumulation of the Os TAS3 siRNA (21-nt conserved siRNA) and up-regulation of Os ARF genes that were previously described as Os TAS3 siRNA targets. Also, as in dcl4-1 mutant, there was no accumulation of transitional small RNAs generated from the AK120922 transcript (process dependent on OsDCL4). No effect was observed to other endogenous small RNA pathways (miRNA and ca-siRNA) as well as in case of dcl4-1 mutant.

---

2 Dcl4-1 is a mutant rice line generated and studied by Liu et al., 2007. It has a deletion in the 5’ extremity of OsDCL4, a gene encoding the Dicer-like protein 4 (which is the major Dicer responsible for 21 nt transitional siRNA synthesis playing a key role for normal plant development in rice).
earlier (Lacombe et al., 2010). It was concluded that the expression of RYMV P1 in rice specifically affects a pathway required for reproductive development.

The 5’-proximal half of the genome of sobemoviruses is similar to that of poleroviruses in their organization (Hull and Fargette, 2005). Considerably, although P0 of poleroviruses (encoded by the 5’-terminal ORF0) is the most divergent protein of the viral genome and shares no homology with any other known proteins (Mayo and Miller, 1999), P0s of poleroviruses have features common with sobemoviral P1s. Despite of their divergence, P0s of Beet western yellows virus (BWYV), Potato leafroll virus (PLRV), Cucurbit aphid-borne yellows virus (CABYV) and Sugarcane yellow leaf virus (SCYLV) all operate as suppressors of PTGS in 16c N. benthamiana model system (Pfeffer et al., 2002; Mangwende et al., 2009). However, P0s of poleroviruses have a conserved F-box-like3 motif essential for a suppressor activity of P0 (Pazhouhandeh et al., 2006; Baumberger et al., 2007; Bortolamiol et al., 2007). F-box-like motifs have not been identified for sobemovirus P1 proteins.

1.3.2. Polyprotein

Although the presence of two different types of genomes has been postulated amongst the sobemoviruses, in vitro translation products of these viruses have similar molecular weights. This phenomenon has been explained by different translation strategies of the polyprotein both involving a –1 ribosomal frameshift event (Mäkinen et al., 1995a; Tamm et al., 1999; Dwyer et al., 2003). A shorter, ca 70 kDa polyprotein was supposed to correspond to P2a or to frameshifted partial P2-P3, in case of CfMV-like or SCPMV-like viruses, respectively. A longer, ca 100-kDa polyprotein was supposed to correspond to frameshifted P2a-2b of CfMV-like viruses or to the full-length P2 of SCPMV-like viruses. Consequently, two different polyproteins with identical N-terminal part but dissimilar C-terminal part are translated from different sobemoviral genomic RNAs (Fig.1, p. 23).

According to in silico analysis, the N-termini of the sobemoviral polyproteins (except LTSV that lacks this region according to the sequence analysis) show the presence of strongly predicted transmembrane helixes (Ryabov et al., 1996; Satheshkumar et al., 2004b; McGavin and MacFarlane, 2008). This N-terminal hydrophobic region was proposed to target the polyprotein into cellular membranes that can possibly serve as a proteolytic processing site for polyprotein maturation. Alternatively, the membrane-anchoring domain of N-terminus is suggested to target the Pro-VPg-RdRp polyprotein into membranous structures for viral minus strand synthesis (Nair and Savithri, 2010).

---

3 The F-box protein family is the largest protein superfamily. F-box proteins are involved in plant hormone response and their related signal transduction pathways. F-box proteins are also involved into ubiquitin-mediated protein degradation complexes; they regulate lateral root formation, light signalling, circadian system and floral development. They probably also participate in stress response and regulation of leaf senescence (Yu et al., 2007).
The N-terminal part of the polyprotein consists of a serine protease (Pro) and a viral genome-linked protein (VPg). The C-terminal part of full-length polyprotein consists of an RNA-dependent RNA polymerase (RdRp). The position of the VPg in between of the viral Pro and RdRp is unique for sobemo-, polero-, enamo- and barnaviruses (Revill et al., 1998; van der Wilk et al., 1998a; van der Wilk et al., 1998b; Wobus et al., 1998). It has demonstrated that sobemoviral polyprotein undergoes a proteolytic processing carried out by sobemovirus-encoded Pro itself (Satheshkumar et al., 2004b).

During proteolytic processing, protease catalyzes the hydrolysis of specific peptide bonds located between two specific amino acid residues. The N-terminal sequencing of VPg-s of sobemoviral VPg-s attached to viral genomes indicated that the polyprotein must be processed between E/T for SBMV, between E/N for CfMV, and between E/S for RYMV (van der Wilk et al., 1998; Mäkinen et al., 2000; Hébrard et al., 2008). No proteolytic processing of CfMV polyprotein(s) happens in vitro or in E. coli (Tamm et al., 1999). Conversely, SeMV full-length polyprotein was shown to undergo proteolytic processing when expressed in E. coli. Analysis of cleavage site mutants confirmed the cleavage of E/T between Pro-VPg at E325/T326 and VPg-RdRp at E402/T403. A third, less efficient cleavage site of E/S at E498/S499 was found downstream (Satheshkumar et al., 2004b). Comparison of ΔN70-Pro and ΔN92-Pro crystals identified identical parameters even though ΔN70-Pro was 22 amino acids longer than ΔN92-Pro. On mass spectroscopic analysis, both had the same mass of ~20,000 Da suggesting an internal cleavage at N-terminus (Gayathri et al., 2006). Initially, a possible non-specific cleavage at the residues A134/V135 in both the mutants was suggested (Gayathri et al., 2006). However, recent study on SeMV polyprotein processing has proven cleavage at E132/S133 (Nair and Savithri, 2010). Besides, it was observed that cleavage at E132/S133 is crucial for an efficient processing of polyprotein, in particular for the cleavage at E498/S499 (Nair and Savithri, 2010). The trans-cleavage experiments of all the four cleavage sites of SeMV polyprotein suggested that cleavages at E132/S133 and E498/S499 did not occur in trans, i.e. these sites are only accessible in cis by auto-proteolysis (Nair and Savithri, 2010). All these four SeMV polyprotein cleavage sites were demonstrated to be utilized also in SeMV-infected sesbania plant (Nair and Savithri, 2010).

The analysis of CfMV-infected plant material showed that also the polyprotein(s) of CfMV is processed at several additional sites besides the verified E/N cleavage site between Pro-VPg (Mäkinen et al., 2000b). Unexpectedly, the mature 12-kDa VPg was not detected with the antisera generated against VPg or P2a. Instead of that, a 24-kDa protein was observed. It was suggested that it represents either the N-terminal (Pro-VPg) or the C-terminal fragment (VPg-P2a C-terminus) of P2a, as the discrimination between these two was not possible with the antisera used. Also, a portion of potential cleavage intermediates with sizes of 18-kDa to 24-kDa was detected by P2a-antisera. Notably, the only protein detected with antisera generated against RdRp had the size of 58-kDa (instead of 100-kDa full-length translation product) indicating that the cleavage between RdRp and the
N-terminal part of full-length polyprotein must happen in vivo. A computational analysis identified a conserved site similar to the one found at the N-terminal cleavage site of VPg between the hydrophobic N-terminal region and Pro domain. No suitably positioned E/N site was identified downstream of VPg N-terminus (Mäkinen et al., 2000b).

The structure of crystallized protease domain has been determined for SeMV at resolution of 2.4 Å. Remarkably, a comparison of the 3D-structure of SeMV protease domain with all the available entries in the Protein Data Bank (http://www.rcsb.org/pdb/home/home.do) indicated that it is closer to the non-viral proteases than to the viral ones (Gayathri et al., 2006). The structure of SeMV protease exhibits the characteristic features of trypsin fold with a well-formed active site and an oxyanion hole. SeMV Pro domain consists of two β barrels connected by a long inter-domain loop. Both active site and the substrate-binding cleft of SeMV Pro occur in between the two barrels and are fairly exposed to solvent (Gayathri et al., 2006). The studies on sequence alignments have observed the similarities between the sobemoviral proteases and their relatives of polero-, enamo-, and barnaviruses (Gorbalenya et al., 1988). The proposed consensus sequence for them all is H(X32-35)[D/E](X61-62)TXXGXSG, where H, D/E and S constitute a catalytic triad and X denotes any amino acid (Gorbalenya et al., 1989; Koonin and Dolja, 1993). Also, the glycine and histidine residues downstream from the putative catalytic residues are suggested to be the site of substrate binding (Gayathri et al., 2006). Mutation analysis of the active site residues H181, D216, and S284 of SeMV Pro verified their crucial role in protease activity (Satheshkumar et al., 2004b). Mutation analysis of primary substrate-binding pocket called S1 binding pocket also showed the importance of downstream residues H298, T279, and N308 for protease activity (Gayathri et al., 2006).

In vitro studies on SeMV Pro activity demonstrated that the uncleaved C-terminal VPg is crucial for both the cis and trans catalytic activity of SeMV Pro (Satheshkumar et al., 2005a). Tryptophan at position 43 of VPg was identified to mediate aromatic stacking interaction with the W271 of Pro domain (Satheshkumar et al., 2005a; Nair et al., 2008). Interestingly, also H275 of Pro was shown to be essential for protease activity. H275 is not a part of exposed aromatic stack in Pro but it lies close to the W271 and it faces the substrate-binding pocket (Nair et al., 2008). It was concluded that most probably a release of free Pro domain from Pro-VPg during the proteolytic self-processing is changing the conformation of the protease in a way that it cannot cleave the substrate any more. Consequently, this would lead to the temporal regulation of the processing of the polyproteins (Nair et al., 2008).

Although the region encoding VPg is similarly located in the genomes of sobemo-, polero-, enamo-, and barnaviruses, no significant similarity has been reported for the amino acid sequence or for the size of the VPg-s. The only conserved sequence element observed among them is a WAD or WGD or WNK motif followed by a D- or E-rich region (Mäkinen et al., 2000b; McGavin and MacFarlane, 2008). VPg of RYMV has been identified as a virulence factor
It was shown to interact directly with rice eIF(iso)4G that mediates resistance against RYMV (Hébrard et al., 2008). Further studies have identified five positions within a stretch of 15 amino acids in the central region of VPg to be associated with virulence. Amino acids 26 and 49 are major candidates to modulate the virulence among strains and variants of RYMV (Pinel-Galzi et al., 2007). The residues 48 and 52 located at the C-terminus of RYMV VPg were proposed to participate in the interaction with two antiparallel helices of the eIF(iso)4G central domain. In avirulent isolates of RYMV, position 48 is occupied by conserved arginine whereas this site is polymorphic in virulent isolates (Hébrard et al., 2006; Pinel-Galzi et al., 2007). Interestingly, a reduced translation in the eIF4G depleted lysates indicated that translation from internally positioned CfMVε was eIF4G-dependent (Mäkiläinen, 2006).

The studies on VPg of SeMV indicated that it tends to be a disordered protein. It resembles the “natively unfolded” proteins lacking both secondary and tertiary structures (Satheshkumar et al., 2005a). Differently, the secondary structure predictions of RYMV VPg have suggested a high proportion (35%) of α-helices (Hébrard et al., 2009). However, the regions with a propensity to be disordered are predicted in all sobemoviral VPg-s. Sobemoviral VPg-s can be distinguished according to their possible phylogenetic relationships. The group of VPg-s of RYMV/CfMV/RGMoV has been predicted to be disordered at the N- and C- termini. In the inner region, the consensus secondary structure prediction indicates the presence of α-helix followed by two β-strands and another α-helix whereas the disorder prediction shows a disordered state as well. For the group of VPg-s of SeMV/SBMV/SCPMV, the predicted disordered regions were shorter and a consensus for three β-strands was identified (Hébrard et al., 2009). According to the in silico studies of sobemo-, poty- and caliciviral VPg-s, it was proposed that intrinsic disorder is a common feature of VPg-s and it confers on them the ability to bind to many different partners and to fulfill different functions in viral life cycle (Hébrard et al., 2009). Their functions may imply interactions with eIF-s to enhance viral translation (calici- and potyviral VPg-s), they may contribute to host RNA shutoff due to a ribonuclease activity (potyviral VPg-s), they can be involved in viral replication via priming complementary strand synthesis (picorna- and polioviral VPg-s), they may have a role in plant cell-to-cell movement via interactions with eIF and microtubules (potyviral VPg-s), and they may be crucial in the processing of viral polyproteins (sobemoviral VPg-s) (Hébrard et al., 2009).

None of the sobemoviral RdRp-s has molecularly characterized yet. The RdRp has been identified in silico through a highly conserved GDD motif (SGSYCTSSTNX19-35GDD) that is conserved amongst the RdRp-s of positive-strand ssRNA viruses (Gorbalenya et al., 1988). According to sequence similarities, RdRp-s of sobemo-, polero-, enamo- and barnaviruses are classified as

4 “Natively unfolded” proteins (also called intrinsically disordered proteins) form a unique class of proteins that exhibit their function in the absence of the ordered structure. These proteins are believed to adopt a rigid conformation stabilized in vivo upon interaction with natural substrates (Uversky, 2002).
a “sobemo-lineage” in the supergroup I of plus sense plant RNA viruses. RdRp-s of this group, as well as some of supergroup II (luteoviruses and viruses from the family Tombusviridae), apparently lack the conserved NTP-binding elements characteristic for viral helicases (Koonin, 1991; Buck, 1996). Antibodies generated against the putative RdRp of CfMV recognized a 58-kDa protein instead of a single large 100-kDa protein in CfMV-infected plants indicating that it must be cleaved out from the full-length polyprotein in vivo. The size of RdRp indicates that the cleavage must occur in the vicinity of the -1 ribosomal frameshifting site (Mäkinen et al., 2000b).

1.3.3. Coat protein and virion structure

The virions of sobemoviruses have an icosahedral capsid with approximate diameter of 30 nm. The capsid consists of 180 molecules of a single 26-34 kDa CP which is encoded by 3’-proximally located ORF but is translated from sgRNA (Hull and Fargette, 2005). The 3D structures of SCPMV (Abad-Zapatero et al., 1980), SeMV (Bhuvaneshwari et al., 1995), RYMV (Qu et al., 2000), CfMV (Tars et al., 2003) and RGMoV (Plevka et al., 2007) virions have been determined utilizing X-ray crystallography. Despite the fact that primary sequences of sobemoviral CP-s are quite different (the sequence similarities between the CP-s of previously mentioned sobemoviruses are 12-30 % with exception of 63 % similarity between SeMV and SCPMV) their 3D structure is nearly identical. Actually, it is a general observation that 3D structures of structural proteins are better conserved than their amino acid sequences (Rossmann and Johnson, 1989). The root mean square (rms) deviations between superimposed coordinates of Ca atoms of the respective sobemoviral CP residues are in general 1.4-1.5 Å (Plevka et al., 2007). The structures of CP-s of SCPMV and SeMV are even closer (0.6 Å) and RGMoV seems to be slightly different from other sobemoviruses (1.8-1.9 Å). Instead, the 3D-structure of CP of RGMoV appears to be slightly more similar to CP of Tobacco necrosis virus (TNV from the family Tombusviridae, genus Necrovirus) than to these of sobemoviruses (Plevka et al., 2007). According to the sequence similarities, CP-s of sobemoviruses are most closely related to those of necroviruses (Dolja and Koonin, 1991; Tamm and Truve, 2000b; Saeki et al., 2001; Hull and Fargette, 2005). The sequence similarity between TNV CP and previously mentioned sobemoviral CPs is 15-27 % and rms deviation between the superimposed coordinates of Ca atoms of the respective residues of sobemoviral CPs is 1.4-1.5 Å (Plevka et al., 2007). TNV is the only necrovirus that has been crystallized (Oda et al., 2000).

A sobemovirus capsid is assembled according to T=3 icosahedral lattice symmetry (Fig. 2, p. 32). The CP monomers are chemically identical but they exist in three slightly different conformations, denoted as A, B and C subunits. The A, B and C subunits construct one icosahedral subunit. Altogether, there are 60 icosahedral subunits per sobemoviral T=3 particle. The A subunits interact at the icosahedral fivefold axes to form 12 pentamers while the pairs of B and C subunits
meet at icosahedral threefold axes to form 20 hexamers. The pentamers and hexamers differ significantly in shape — hexamers are generally planar and pentamers are substantially bent. The combination of hexamers and pentamers gives the particle its characteristic shape (Fig. 2).

Figure 2. The structure of the sobemovirus particle. Chemically identical but structurally slightly different subunits are marked as follows: blue (A), red (B) green (C). On the left: 180 copies of CP monomers arranged in T=3 quasi-equivalent symmetry. On the right: Zoomed view to icosahedral subunit. Pictures representing CfMV capsid have been adapted from website: http://viperdb.scripps.edu.

Studies on TRoV, SCPMV, SeMV and RYMV particles demonstrate that the stability of the virions depends greatly on pH and the availability of divalent cations, Ca\(^{2+}\) and Mg\(^{2+}\) (Hsu et al., 1976; Hull, 1977; Krüse et al., 1982; Satheshkumar et al., 2004a). Upon alkaline pH or removal of the cations, the virus particles swell and become less stable. A radius of RYMV and SCPMV particles increases about 7 % during the swelling process (Hull, 1977; Tama et al., 2005). As the result of particle swelling, prominent protrusions are observed at the 5-fold axis, and small protrusions are also revealed at the quasi-3-fold axis. It is proposed that removing the Ca\(^{2+}\) ions results in electrostatic repulsions that trigger the swelling (Opalka et al., 2000). Indeed, modeling of that process shows that separations between proteins interacting at the quasi-3-fold axis increase by 2 Å for RYMV and by 2.3 Å for SCPMV (Tama et al., 2005). Calcium binding sites are located between the subunits AB, BC and CA. Sobemoviral particles have been shown to bind three Ca\(^{2+}\) ions per icosahedral subunit ABC, i.e. 180 Ca\(^{2+}\) ions per particle (Hermondson et al., 1982). A structure-based alignment of the sobemoviral CP sequences has identified eight invariant amino acid residues – three of these (e.g. Asp 139, Asp 142 and Asn 234 for RGMoV CP) have involved binding of the
Ca\(^{2+}\) ions. Other five conserved amino acid residues have been suggested to be important for the backbone conformation (Plevka \textit{et al.}, 2007). Mutation analysis of SeMV CP calcium binding sites demonstrates that cation-mediated interactions are mainly needed for particle stability but not for assembly (Satheshkumar \textit{et al.}, 2004a). The binding of calcium contributes in rigid packing of protein subunits into the viral particle (Sangita \textit{et al.}, 2004; Satheshkumar \textit{et al.}, 2004a). Depending on the pH and the presence or the absence of calcium, RYMV particles have been demonstrated to exist in three forms. The unstable swollen form is present in the cytoplasm from where it is proposed to move into the vacuoles for compaction. It is proposed that a swollen particle might be an intermediate state before disassembly and after assembly of virions \textit{in vivo} (Opalka \textit{et al.}, 2000; Satheshkumar \textit{et al.}, 2004a). In infected rice plants, transitional and swollen forms were abundant during early infection (2 weeks post infection), whereas compact forms increased during later stages of infection (Brugidou \textit{et al.}, 2002).

The assembly of SBMV and SeMV virions was proposed to be initiated by pentamer of dimeric units or 10-mer at the icosahedral 5-folds (Rossmann \textit{et al.}, 1983; Lokesh \textit{et al.}, 2002; Satheshkumar \textit{et al.}, 2005b). A single mutation W170K in SeMV has been found to result in stable dimers not assembling into particles (Anju \textit{et al.}, unpublished results, referred by Pappachan \textit{et al.}, 2008). It is presumed that packing of viral nucleic acid requires recognition of a specific region within a virus genome by viral CP. In case of SCPMV, a putative stem-loop sequence (mapped to the position corresponding to nt 1410–1438) within a conserved region encoding serine protease has been reported to bind CP (Hacker, 1995). However, it has not been demonstrated to nucleate SCPMV assembly.

In addition to external factors such as pH and divalent metal ions, sobemovirus particles are stabilized by protein-protein interactions between subunits and by CP-RNA interactions (Hull, 1977).

The monomers of sobemovirus CP possess an eight \(\beta\)-strand anti-parallel twisted sheet conformation known as a jellyroll \(\beta\)-sandwich or \(\beta\)-barrel topology, common in most non-enveloped icosahedral viruses (Richardson, 1981). In general, sobemoviral CP has two domains: N-terminal R (random) domain that is found to be completely disordered in subunits A and B but partially ordered in subunit C; and C-terminal S (shell) domain, which is the core building block of the virion (Abad-Zapatero \textit{et al.}, 1980; Hermodson \textit{et al.}, 1982; Rossmann \textit{et al.}, 1983). It has been proposed that the disordered beginning of R domain interacts with RNA in the interior of the virus particle (Abad-Zapatero \textit{et al.}, 1980; Erickson and Rossmann, 1982). The partially ordered N-terminal arm of C subunit is inserted between the interacting sides of subunits, making the contacts between subunits flat (i.e. tensed state). The contacts between the subunits that lack the inserted arms are bent (i.e. relaxed state). In that manner, the N-terminal arm acts as a molecular switch regulating the curvature of viral capsid and the assembly of T=3 particles. The removal of the R domain from CP results in formation of T=1 particles (composed of 60 identical monomers) only, with all of the bent contacts between subunits (Savithri and Erickson, 1983; Lokesh \textit{et al.}, 2002).
The first half (ca 30-35 aa residues) of R domain contains a conserved arginine-rich motif (ARM) whereas the following region (the next 35 aa residues) is responsible for the formation of structure called β-annulus (which realizes only in case of partially ordered N-terminal arms of C-subunits). The analysis of SeMV CP has shown that deletion of the first part involving ARM results in formation of T=1 and pseudo T=2 particles (Lokesh et al., 2002; Sangita et al., 2004). On the contrary, deletion of the amino acid residues that constitute the β-annulus do not affect T=3 capsid assembly or stability (Satheshkumar et al., 2005b). Moreover, the assembly of such kind of SeMV particles takes place without the formation of the β-annulus that, therefore, may be formed only as a consequence of the particle assembly (Pappachan et al., 2008). However, SCPMV, SeMV and RGMoV have been found to be more sensitive to pH elevation than RYMV and CfMV. The difference is associated with the slight differences observed in the arrangement of β-annuli of the N-terminal arms of C-subunits (Opalka et al., 2000; Qu et al., 2000; Tars et al., 2003; Plevka et al., 2007). Amino acid residues forming the inter-subunit contacts are not conserved among sobemoviral CPs (Opalka et al., 2000; Tars et al., 2003).

R domain is rich in basic amino acid residues as arginine, lysine, proline, and glutamine, which have been considered to be responsible for coat protein contacts with RNA (Hermodson et al., 1982; Rossmann et al., 1983). It has been shown that the first 30 aa residues (including ARM) of CP are determinant for a nonspecific in vitro RNA binding activity (Lee and Hacker, 2001). The overall charge of the ARM but not the arginine residues at specific positions is responsible for RNA binding in SCPMV and SeMV (Lee and Hacker, 2001; Satheshkumar et al., 2005b). If only the arginine residues of ARM are replaced with glutamic acid residues, formation of empty T=3 particles (but with reduced stability) takes place. Hence, ARM is prerequisite for RNA interaction and encapsulation (Satheshkumar et al., 2005b). The presence of RNA has been shown to enhance the overall stability of the virion (Satheshkumar et al., 2005b). Studies on sobemoviral CP-RNA interactions do not demonstrate the requirement for specific interactions. Similarly to viral RNA, RNA of bacterial origin (23S rRNA or its degraded variants) is packed into SeMV particles when expressed in E. coli (Lokesh et al., 2002). CP of CfMV shows rather a general affinity to bind any kind of ssRNA as well (Tamm and Truve, 2000a). Interestingly, it has been postulated that nonspecific electrostatic interactions might control both the genome length and conformation of all ssRNA/ssDNA viruses with highly basic peptide arms. As the result of mathematical modeling, a genome length was found to be linear in the net charge of CP peptide arms but not with the geometry and volume of the virion (Belyi and Muthukumar, 2006). Albeit the calculated genome packing density is similar within sobemovirus group, it varies significantly among different families of small single-stranded RNA viruses (Plevka et al., 2007).

In addition to RNA-binding properties, the highly basic region of the N-terminus of SCPMV CP (involving ARM) withholds a potential to form α-helix and it has been shown to interact with artificial membranes in vitro (Lee et al.,
Although the actual biological relevance of this membrane interaction is not known, several steps in the viral life cycle might be involved. Firstly, it is expected that a virus particle expands after the entry to the cell. This results in the externalization of R-domain that is believed to be essential for membrane-docking of the viral particle at the site of replication. Secondly, it has been speculated that viral movement depends on interactions with membranes (Lee et al., 2001). The studies on RYMV (Brugidou et al., 1995) and SCPMV (Sivakumaran et al., 1998) prove that systemic virus movement is completely abolished in the absence of CP. CPs of CfMV (Fedorkin et al., 2001) and TRoV (Callaway et al., 2004) can complement the systemic movement of taxonomically distinct plant viruses. Systemic movement of SCPMV (Fuentes et al., 1993) and RYMV (Opalka et al., 1998) has been observed to be dependent on correct particle formation. Our studies on CfMV show that ARM is responsible for virus systemic movement (Olspert et al., unpublished data). Thirdly, interaction with membranes may be also important for beetle transmission. It has been demonstrated that SCPMV enters the hemocoel of its beetle vector Diabrotica undecimpunctata howardi through the peritrophic membrane-lined midgut but not via the cuticle-lined foregut or hindgut (Wang et al., 1994).

Based on sequence similarity with known amino acid motifs responsible for nuclear localization (Dingwall and Laskey, 1991), it has been supposed that the N-terminal region of CP contains a bipartite nuclear targeting signal (Ngon A Yassi et al., 1994; Mäkinen et al., 1995a) largely overlapping with ARM.

1.4. Distribution in cells and tissues, pathology

All sobemoviruses are found in cytoplasm. SBMV (De Zoeten and Gaard, 1969), SoMV (Lombardo et al., 1971), BSSV (Hartmann et al., 1973), CfMV (Chamberlain and Catherall, 1976; Mohamed and Mossop, 1981), LTV (Forster and Jones, 1979), VTMoV (Randles et al., 1981), CNMoV (Mohamed and Mossop, 1981), SCMoV (Francki et al., 1983), GCFV (Thomas, 1986) and RoMoV (Thottapilly et al., 1992) virions have been detected in vacuoles. Studies with RYMV suggest that vacuoles become the storage compartments for virions in the course of infection. It is proposed that swollen and less compact virions exist in the cytoplasm, whereas vacuoles with acidic pH and higher Ca^{2+} concentration contain compact virions (Opalka et al., 1998; Opalka et al., 2000).

Sobemovirus particles accumulation into vacuoles is followed by the appearance of virus crystals and inclusions in cytoplasm (Opalka et al., 1998, 2000). SBMV (De Zoeten and Gaard, 1969), SCPMV (Weintraub and Ragetti, 1970), SoMV (Lombardo et al., 1971), BSSV (Hartmann et al., 1973), CfMV (Mohamed and Mossop, 1981), SNMoV (Greber, 1981), VTMoV (Randles et al., 1981), SCMoV (Francki et al., 1983), GCFV (Thomas, 1986), PLYV (Kitajima et al., 1992a; Kitajima et al., 1992b), RoMoV (Thottapilly et al., 1992), CAYMV

5 There is no data available on cellular or tissue distribution of SeMV, IYMV and RuCMV.
(Morales et al., 1995), RYMV (Opalka et al., 1998, Brugidou et al., 2002), RGMoV (Yao et al., 2002) and SMAMV (Lecoq et al., 2005) have been described to constitute crystalline arrays containing mature virions or cytoplasmic fibrils, some of which are enveloped in endoplasmic reticulum-derived vesicles. No inclusions have been found in cells infected with TRoV (Hollings and Stones, 1973), LTSV (Forster and Jones, 1979) or CnMoV (Mohamed and Mossop, 1981). However, aggregation of virus particles is considered to be a common characteristic of plant viruses. A formation of inclusions can be dependent on tissue type invaded. For example, crystalline arrays of RYMV have been observed in vascular tissues but not usually in mesophyll (Opalka et al., 1998; Brugidou et al., 2002). Inclusions may be small and difficult to detect in the beginning of infection. Also, both abiotic (environmental conditions like light and temperature) and biotic (e.g. tolerance or sensitivity of host) factors can greatly influence inclusion development (Christie et al., 1995). In case of CfMV, it has been reported that a formation of crystalline or paracrystalline arrays is in positive correlation with the amount of virus particles and the severity of symptoms (Chamberlain and Catherall, 1976).

Nuclear targeting signal of CP probably accounts for the presence of sobemovirus virions in the nuclei of mesophyll cells infected with SBMV (De Zoeten and Gaard, 1969), BSSV (Hartmann et al., 1973), LTSV (Forster and Jones, 1979), SNMoV (Greber, 1981), CfMV (Chamberlain and Catherall, 1976; Mohamed and Mossop, 1981), VTMoV (Randles et al., 1981), SCMoV (Francki et al., 1983) and RYMV (Brugidou et al., 2002). CnMoV has been occasionally found in the nuclei of its experimental host (wheat and oats) but not in naturally infected grasses (Mohamed and Mossop, 1981). It has been suggested that sobemoviruses can move into the nucleus as virions because SBMV can be visualized in the cytoplasm of young cells before being seen in nuclei. Virions of SBMV have been observed in cross-sections of nuclear pores in fixed blocks of infected tissue (De Zoeten and Gaard, 1969).

Sobemovirus particles are usually not detected in mitochondria and chloroplasts. However, BSSV particles have been observed to be associated with chloroplast membranes (Hartmann et al., 1973). The chloroplasts of SBMV-infected (Weintraub and Ragetli, 1970) or RYMV-infected (Opalka et al., 1998) cells have been reported to form occasionally finger-like extrusions. Further studies on RYMV showed that cytoplasmic integrity and structure of chloroplast and mitochondria are not affected in infected xylem parenchyma cells whereas in mesophyll cells the degenerative changes occur within chloroplasts when particles are not stored in vacuoles but appear in large quantities in cytoplasm (Brugidou et al., 2002). Other cellular changes include proliferation of tonoplast membranes bulging into the vacuole in SoMV-infected (Lombardo et al., 1971) or CfMV-infected (Chamberlain and Catherall, 1976) host cells. Organelle membranes, tonoplast and plasmalemma were destroyed and the remaining cytoplasm formed finger-like extrusions extending into the vacuole in cells severely affected by CfMV. In case of mild CfMV infection, increase in endoplasmic reticulum and
vacuolisation of cytoplasm was characteristic (Chamberlain and Catherall, 1976). RYMV infection results with disorganization of the middle lamellae of the cell walls of parenchyma and mature xylem cells (Opalka et al., 1998).

Nothing is known about the subcellular localization of the nonstructural sobemovirus proteins.

Studies on tissue distribution of sobemovirus particles have revealed them in leaf mesophyll, epidermis and palisade cells, in guard cells of stomata, in vascular tissues (both in xylem and phloem) and in bundle sheath cells surrounding them, and even in meristem cells. Differently, sobemoviruses have been observed to be restricted to vascular tissues in roots (Hartmann et al., 1973; Opalka et al., 1998; Otsus, 2005). Distribution patterns of individual sobemoviruses differ to some extent.

SoMV has been reported to localize into mesophyll and xylem elements but not into phloem of infected quinoa leaves. In xylem tissue, it was found in parenchyma cells, in young tracheids and in differentiated tracheids of minor veins (Lombardo et al., 1971).

The initial studies on BSSV detected it in leaf palisade cells and in xylem parenchyma, but not in mature xylem vessels or in phloem of highbush blueberry leaf and root tissues. In root tissues, BSSV was seen in varying amounts in almost all xylem parenchyma cells examined, usually in greater concentrations than in leaf xylem parenchyma (Hartmann et al., 1973). Further studies have shown that BSSV localizes both in xylem and phloem although it was observed to be mainly related with xylem tissues (Urban et al., 1989).

Similarly, RYMV particles have predominantly been detected in leaf mesophyll, bundle sheath cells, xylem parenchyma and vessels in rice (Opalka et al., 1998; Brugidou et al., 2002). In late infection stadia, RYMV particles have been occasionally observed also in phloem parenchyma cells and in sieve elements. It is suggested that the virus is transported between xylem cells by binding calcium from pit membranes into the composition of virion (Opalka et al., 1998; Opalka et al., 2000). In general, the high stability of virions is required for translocation via xylem because of the action of proteases during programmed cell death of tracheary element (Gergerich, 2002; Kozela and Regan, 2003).

SBMV and SCPMV have been found in bean or cowpea leaf epidermis, mesophyll and phloem companion cells mostly (Worley and Schneider, 1963; Fuentes and Hamilton, 1993). Similarly, CAYMV (presently considered as a strain of SBMV) has been reported to accumulate mainly in mesophyll and phloem of calopo leaf tissue (Morales et al., 1995). When SBMV particles have been introduced directly into the xylem of bean stems, they migrated through the tracheids (and they were also able to traverse steam-killed parts) causing systemic symptoms (Schneider and Worley, 1959a; Schneider and Worley, 1959b; Gergerich and Scott, 1988). Systemic spread through xylem has been suggested to be characteristic for beetle-transmissible viruses (Gergerich and Scott, 1988).

CfMV has been reported to localize in cocksfoot leaf mesophyll and in phloem (Chamberlain and Catherall 1976; Rabenstein and Stanarius, 1984). Our results
demonstrate that both xylem and phloem are involved in CfMV infection (Otsus, 2005). However, the presence of CfMV in xylem occurs only during the late stadia of infection and CfMV is preferentially moving systemically through the phloem (Otsus, 2005). Interestingly, CfMV was always detected in few phloem-sided bundle sheath cells of minor veins during the first week of infection. By the end of the second week, when the first visible symptoms appear, there were a number of discrete infection loci in mesophyll surrounding vascular bundles. In vascular tissue, CfMV was observed in bundle sheath cells and in phloem parenchyma. In the third week (late stage of infection), CfMV had spread all over the inoculated leaf – it was abundantly found in mesophyll and in bundle sheath cells, and it was also localized both in phloem and xylem parenchyma. This pattern repeats in systemic leaves with a delay, except that no xylem localization is usually detected. In some systemic leaves, no virus was detected outside the vascular bundle. In straw and roots, CfMV was mainly detected in phloem companion cells and sometimes also sporadically in xylem (Otsus, 2005). Similarly to CfMV, a phloem spread has been found to be characteristic for a beetle-transmissible cowpea mosaic comovirus (CPMV) in cowpea plants. It has shown that upon beetle transmission, it rapidly reaches into phloem and uses phloem as its vascular movement route whereas upon mechanical inoculation, it moves from cell-to-cell until it loads into phloem minor veins. Subsequently, it unloads from phloem major veins like other viruses that are using phloem-transport (Silva et al., 2002).

Virus infection causes major rearrangements on host physiology. According to the data gained from purification of RYMV-host protein complexes in vivo and in vitro, it is supposed that virus infection interferes in host metabolism (by binding host proteins involved in glycolysis, malate and citrate cycles), defence (by interacting with host proteins involved in elimination of reactive oxygen species but also with some pathogenesis-related proteins) and protein synthesis (by mating with host proteins involved in translation processes) (Brizard et al., 2006). RGMoV has been reported to induce apoptotic cell death in yellow portions but not in green portions of infected oat leaves (Yao et al., 2002).

The external outcome of sobemoviral infections varies from mild to severe chlorosis and mottling; also stunting, necrotic lesions, vein clearing and/or sterility have been documented (Hull and Fargette, 2005). However, some infections have been reported to be symptomless. For example, the infection of TRoV has been reported to be mostly without symptoms both in black mustard and field mustard (Thurston et al., 2001; Pallett et al., 2002). Also, LTSV may be transient or symptomless in lucerne (Blackstock, 1978; Forster and Jones, 1979).

1.5 Resistance

In general, production of reactive oxygen species and antioxidant metabolism are figured to be involved in symptom development and pathogenesis in plant-virus interactions (Riedle-Bauer, 2000; Hernandez et al., 2001; Clarke et al., 2002; Li and Burritt, 2003). Production of increased levels of reactive oxygen species are
thought to be involved in the regulation of localized cell death and the induction of defence genes (Riedle-Bauer, 2000) whereas up- and down-regulation of antioxidant enzyme activities are considered to play a role in generation of hypersensitive response to virus infection in plants (Fodor et al., 1997, Mittler et al., 1998). The measurements of reactive oxygen species and antioxidant enzymes of cocksfoot plants susceptible to CfMV and plants with acquired immunity\(^6\) to CfMV, show completely different patterns in up- and down-regulation after inoculation of CfMV (Li and Burritt, 2003). In susceptible plants, H\(_2\)O\(_2\) levels declined immediately after inoculation with CfMV and then gradually increased. Increase in H\(_2\)O\(_2\) levels induced increased lipid peroxidation and the symptoms development. Conversely, recovered plants resistant to new infection showed only a brief increase in H\(_2\)O\(_2\) levels, immediately after inoculation, with no significant increase in lipid peroxidation. Similarly, a decline in the oxidized forms of ascorbate and glutathione as well as a decline in the total glutathione pool in susceptible plants inoculated with CfMV were observed but no changes in the ascorbate or glutathione pools were observed in recovered plants. In susceptible plants, a decline in antioxidant enzyme activities (with the exception of catalase - its levels increased for the first 5 days after inoculation and then declined) were observed during the early stages of virus establishment, followed by increased activity in response to cellular damage. In recovered plants, only transient increases occurred in activities of some antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase and monodehydroascorbate reductase) whereas the levels of other antioxidant enzymes measured (glutathione reductase, superoxide dismutase and catalase), did not change (Li and Burritt, 2003).

Natural resistance to sobemoviruses has been detected for CfMV in cocksfoot (Engsbro, 1978; Catherall, 1985; Rognli et al., 1995), for CnMoV in Cynosurus cristatus (Catherall, 1985), for RYMV in Oryza sativa (Thottapilly and Rossel, 1993; Ghesquière et al., 1997; Ndjiondjop et al., 1999) and in O. glaberrima (Bakker, 1974; Thottapilly and Rossel, 1993; Paul et al., 1995; Ndjiondjop et al., 1999), for SBMV in beans (Zaumeyer and Harter, 1943), for SCPMV in cowpea (Hobbs et al., 1987), for SCMoV in subterranean clover (Ferris et al., 1996; Wroth and Jones, 1992). RYMV infection was shown to be highly dependent on the viral dose inoculated (Sorho et al., 2005).

The molecular mechanisms conferring resistance have been described only for RYMV in Oryza species. A monogenic recessive resistance trait Rymv-1 (Ndjiondjop et al., 1999) has been mapped on chromosome 4 (Albar et al., 2003). Rymv-1 has been identified to encode eIF(iso)4G (Albar et al., 2006). Rymv1-1 allelic variant is characteristic of susceptible varieties whereas three other allelic variants are related to different levels of resistance against RYMV. Rymv1-2 has been found from O. sativa whereas Rymv1-3 and Rymv1-4 are two distinct resistance alleles in O. glaberrima, indigenous African rice species (Albar et al., 2006).\(^6\) Plants fully recovered from a previous inoculation, have no detectable CfMV present and showed immunity to disease. Susceptible plants were not previously inoculated.

---

\(^6\) Plants fully recovered from a previous inoculation, have no detectable CfMV present and showed immunity to disease. Susceptible plants were not previously inoculated.
All these resistance-conferring allelic variants are suggested to be a result of convergent evolution (Albar et al., 2006; Traoré et al., 2009). The difference between Rymv1-1 and Rymv1-2 lies in one amino acid substitution E309K in the central region of the eIF(iso)4G gene (Albar et al., 2006; Rakotomalala et al., 2008). Interaction of eIF(iso)4G with viral VPg is responsible for the high resistance trait (Hébrard et al., 2006). Breakdown of the resistance conferred by Rymv1-2 has been reported for some RYMV isolates (Traoré et al., 2006; Pinel-Galzi et al., 2007) due to non-synonymous mutations in RYMV VPg (Hébrard et al., 2008). However, substitutions in RYMV VPg that were observed to enable overcoming of the Rymv1-2 resistance did not operate in Rymv1-4 plants (Albar et al., 2006; Hébrard et al., 2008). The interaction mechanisms involved in the rice/RYMV pathosystems are still unknown (Hébrard et al., 2008). However, the 3D topology and the biochemical properties of virulence mutations both suggest a direct interaction between RYMV VPg and rice eIF(iso)4G encoded by Rymv1. It is proposed that the interaction domain of eIF(iso)4G with RYMV VPg is far from the domain interacting with eIF(iso)4A and therefore the functions of eIF(iso)4G have not been affected (Hébrard et al., 2008). Besides Rymv1 that expresses high resistance against RYMV infection but in limited number of cultivars, there are several other quantitative trait loci (QTLs) associated with partial resistance against RYMV mapped on chromosomes 1, 2, 7 and 12 (Ghesquière et al., 1997; Albar et al., 1998; Ahmadi et al., 2001). Expression of QTL12 has been reported to confer partial resistance via delayed movement of RYMV into mestome (bundle sheath cells) (Ioannidou et al., 2000). Evaluation of genes from eIF4E and eIF4G multigenic families as potential candidates for partial resistance QTLs to RYMV in rice identified three other members of the eIF4G as good candidates while members of the family eIF4E seemed not to be involved in conferring resistance unlike described in several other studies on plant-virus interactions (Boisnard et al., 2007).

Pathogen-derived transgenic resistance against RYMV has also been achieved by transforming plants with constructs expressing either RdRp (Pinto et al., 1999) or CP (Kouassi et al., 2006) sequences of the virus. Transgenic rice containing a large fragment of highly conserved region of RYMV RdRp has been reported to be moderately resistant to infection. Analysis of the most resistant line indicated that resistance was derived via posttranscriptional gene silencing (Pinto et al., 1999; Voinnet et al., 1999). Similarly, transgenic lines that were transformed with RYMV CP constructs producing untranslatable or antisense mRNA to trigger PTGS-mediated defense mechanisms were moderately resistant against RYMV (Kouassi et al., 2006). Different results were gained when full-length CP or CP without the putative nuclear localization signal was expressed in transgenic plants. It appeared that expression of both these RYMV CP variants enhanced virus accumulation (Kouassi et al., 2006). The mechanism underlying that process is unknown. It is supposed that RYMV CP can either suppress PTGS, enhance virus replication and cell-to-cell movement, or it may recruit specific host factors needed to enhance infection (Kouassi et al., 2006).
Recently, it has been noticed that constitutive expression of $AtNPR1$ (protein that is a key regulator of salicylic acid-mediated systemic acquired resistance in $Arabidopsis$) that confers resistance against fungi and bacterial pathogens, leads to a higher susceptibility to RYMV infection and higher sensitivity to salt and drought stress in rice (Quilis et al., 2008). Remarkably, several viral RNA silencing suppressors have been shown to interfere with SA-mediated resistance (Ji and Ding, 2001; Alamillo et al., 2006; Love et al., 2007). Despite of higher susceptibility of $AtNPR1$ transgenic rice to RYMV, no correlation between virus concentration and disease severity was observed. This phenomenon was explained by overreaction in defense response to viral infection due to $AtNPR1$ overexpression and/or by lowered movement of RYMV into vascular tissues. Also, the increased expression of $OsRDR1$ (that encode an RNA dependent RNA polymerase in $O. sativa$) in $AtNPR1$ transgenic rice was suspected to reduce the accumulation of viral RNAs through the activation of RNA-silencing pathways (Quilis et al., 2008). RDR1 proteins are known to mediate RNA silencing pathways regulating the defense against viruses (Baulcombe, 2004).

1.6. Phylogenetic relationships

The phylogenetic analyses have indicated that three sobemovirus species – SeMV, SBMV and SCPMV – which were earlier considered as the strains of SBMV are indeed very closely related to each other (Lokesh et al., 2001; Zhou et al., 2005; Stuart et al., 2006; Fargette et al., 2008; McGavin and MacFarlane, 2008; Meier et al., 2008; Sérémé et al., 2008). Nucleotide identity shared between SeMV and SBMV is the highest one (71.5 %) within genus Sobemovirus (Sérémé et al., 2008). Also, LTV and SCMoV form a closely related pair (Zhou et al., 2005; Stuart et al., 2006; Fargette et al., 2008; McGavin and MacFarlane, 2008; Meier et al., 2008; Sérémé et al., 2008) with 61 % identity between their genomic sequences (Sérémé et al., 2008). Recently sequenced RuCMV is clustered with these two according to the comparison of CP sequences (McGavin and MacFarlane, 2008). CfMV and RYMV have always been clustered together (Lokesh et al., 2001; Zhou et al., 2005; Stuart et al., 2006; Fargette et al., 2008; McGavin and MacFarlane, 2008; Meier et al., 2008) sharing 46 % of nucleotide identities (Sérémé et al., 2008). However, a newly sequenced IYMV is more close to RYMV (with 56.5 % identity) than CfMV (Sérémé et al., 2008). Nucleotide identity between IYMV and CfMV is 45.4 % (Sérémé et al., 2008). In general, phylogenetic trees show a split between sobemoviruses infecting monocots (RYMV, IYMV and CfMV) and those that infect dicots (SBMV, SCPMV, SeMV, LTV, SCMoV, RuCMV, TRoV). The only exception is RGMoV which is a monocot virus grouping together with dicot viruses in genome trees (Zhou et al., 2005; Fargette et al., 2008; McGavin and MacFarlane, 2008; Sérémé et al., 2008). However, RGMoV resembles the other monocot-infecting sobemoviruses on the bases of their codon usage patterns (Zhou et al., 2005).
A set of 253 CP sequences of RYMV isolates has provided an approach to date virus diversification in sobemovirus group. The divergence time of RYMV has been found to be ca 200 years which spans the period of extension of the rice culture in Africa (Fargette et al., 2008). The divergence time among sobemoviruses has been calculated to be approximately 500 - 3000 years. The divergence with related viruses has been calculated using RdRp sequences and it has been considered to be around 4000 years for sobemoviruses and MBV (Mushroom bacilliform virus, a sole member of the family Barnaviridae), 5000 years for sobemo-, barna- and poleroviruses, and 9000 years for sobemo-, barna- and luteoviruses (Fargette et al., 2008). This timeline spans the domestification and spread of cultivated plants raising a hypothesis that the emergence of plant viruses is linked to the development of agriculture (Fargette et al., 2008).

RdRp sequences instead of CP sequences have been used in divergence calculation studies between sobemoviruses and their related viruses because of a mosaic structure of the sobemovirus genome. The 5’-terminal part of the sobemoviral genomes encoding non-structural proteins resembles those of enamo- and poleroviruses in its genomic organization. However, sobemoviral P1 sequences are not related to enamo- or poleroviral P0 sequences or to any other known sequences (Tamm and Truve, 2000b). While sobemoviral polyprotein (Pro-VPg-RdRp) shows sequence similarity to that of enamo- and poleroviruses (from the family Luteoviridae), sobemoviral CP is related to those of necroviruses (from family Tombusviridae) (Coutts et al., 1991; Koonin and Dolja, 1993; Miller et al., 1997; Tamm and Truve, 2000b; Stuart et al., 2004). MBV, a single member of the family Barnaviridae has a genomic organization similar to sobemoviruses (except that its ORF1 is not situated at 5’ position characteristic to sobemoviruses but it largely overlaps with ORF2 in alternate frame). Its polyprotein (Pro-VPg-RdRp) sequence is related with those of sobemoviruses but its CP is distantly related to that of carmoviruses (from family Tombusviridae).

The viruses of the genera Polerovirus and Enamovirus are classified into the family Luteoviridae according to their homology with genus Luteovirus at the 3’ parts of their genomes, whereas their 5’ parts are related to sobemoviruses and clearly distant from luteoviruses. At the same time, the products of ORF1 (Pro) and ORF2 (RdRp) of viruses from genus Luteovirus are most similar to those of the viruses of the genus Dianthovirus but also to those of the genera Carmovirus and Umbravirus, all from the family Tombusviridae (Miller et al., 1997). An extreme dichotomy in polymerase sequences indicates that possibly early recombination events have played an important role during the evolution of these genera (Martin et al., 1990; Gibbs, 1995; Miller et al., 1997). The most likely model suggests that recombination arose by strand switching near the subgenomic RNA start sites during RNA replication in cells co-infected with two parental viruses (Mayo et al., 1989; Martin et al., 1990; Mayo and Jolly, 1991; Gibbs and Cooper, 1995; Mayo and Ziegler-Graff, 1996; Miller and Rasochova, 1997; Miller et al., 1997; Moonan et al., 2000; Moonan and Mirkov, 2002; aus dem Siepen et al., 2005; Silva et al., 2008). Inconsistency between polero- and luteoviruses has been proposed to be a
result of ancient recombination between a polerovirus that was replacing its sobemovirus-like 5’ part of the genome with the one of dianthovirus-like (Miller et al., 1997) as the subgenomic mRNA start sites of dianthoviruses and poleroviruses are known to be homologous (Miller et al., 1995; Zavriev et al., 1996).

Notably, the recombination seems to be intrinsic for the members of the family Luteoviridae, in which one can find lots of recombinant species (Mayo and Jolly, 1991; Rathejen et al., 1994; Gibbs and Cooper, 1995; Miller et al., 1995; Mayo and Ziegler-Graff, 1996; D’Arcy and Mayo, 1997; Miller and Rasochova, 1997; Moonan et al., 2000; Smith et al., 2000; Domier et al., 2002; Miller et al., 2002; Moonan and Mirkov, 2002; Liu et al., 2007; Robertson and French, 2007; Silva et al., 2008). Yet, there exists also a putative polerovirus-sobemovirus hybrid having a CP gene similar to the sobemoviruses but the rest of its genome being more similar to poleroviruses (aus dem Siepen et al., 2005).

Based on the phylogenetic analysis, it has been concluded that sobemoviruses have evolved in the absence of recombination events (Lokesh et al., 2001; Fargette et al., 2004; Zhou et al., 2005; Chare and Holmes, 2006; Fargette et al., 2008; Sérémé et al., 2008). However, a recent exhaustive search for recombinants of RYMV has identified few intraspecies recombination events in eastern Tanzania (Pinel-Galzi et al., 2009). This region is the putative center of origin of RYMV with the highest diversity and a fully mixed spatial distribution of the strains (Traoré et al., 2009). The first putative recombinant segment is a fragment of 300 nt encompassing the intergenic region between ORF1 and ORF2a and the 5’ end of ORF2a. The other putative 350 nt long recombinant segment matches the untranslated 3’ terminus of the genome. However, the number of recombinants was low, the recombinant fragments were short, and they occurred on terminal branches of the phylogeny. Recombinations are not detected in any of the ORFs analyzed individually (Pinel-Galzi et al., 2009). Also, several DI RNA molecules cloned from CfMV-infected plants have been considered as an indication for replicase-driven template-switching mechanism (Mäkinen et al., 2000a).

All the members of the family Tombusviridae cluster into a well supported group in phylogenetic analyses that has been considered as a sign of high homogeneity but also as the result of extensive gene sharing among the genera (Stuart et al., 2006). Different from a previous study, Xi et al. (2008) suggest that Galinsoga mosaic virus (GaMV) might originate from the recombination between a necro- and a carmovirus, as its RdRp gene and all small ORFs of GaMV cluster with necroviruses whereas its CP gene clusters into the carmovirus branch. Melon necrotic spot virus (MNSV), another carmovirus, also has been speculated to be a recombinant between necro- and carmoviruses (Xi et al., 2008). Similarly, Olive mild mosaic virus (OMMV), considered before as a GP isolate of Tobacco necrosis virus D (TNV-D) that was not involved in the study carried out by Stuart et al. (2006), shows high similarity with TNV-D within its CP but with Olive latent virus 1 (OLV-1) within its RdRp thus being a possible example of interspecies recombination in genus Necrovirus (Cardoso et al., 2005).
Despite a weak sequence homology between sobemo-, polero- and necroviruses, it has been speculated that their CPs might have a common ancestor as their 3D-structures are similar (Terradot et al., 2001). This hypothesis bases on a model structure of *Potato leafroll virus* (PLRV) from genus *Polerovirus* assessed by Profiles-3D calculation, which obtained the best hits with SeMV, SCPMV and RYMV (Terradot et al., 2001). Comparisons of their CP sequences show 17 % identity and 33 % similarity between RYMV and PLRV (Terradot et al., 2001), 17 % identity and 33 % similarity between SCPMV and TBSV (Terradot et al., 2001), whereas there is 21 % identity and 41 % similarity between RYMV and SCPMV (Opalka et al., 2000). Sequence alignments between the CPs of sobemoviruses (SeMV, SBMV, LTSV and CfMV) and a CP of *Tobacco necrosis virus* (TNV, a type member of the genus *Necrovirus*) show similarity ranges of 31 - 45 % (Saeki et al., 2001). At the same time, CP similarities in genus *Necrovirus* range between 43 – 65 % and the overall similarity values of CPs of *Tombusvirus* and *Carmovirus* species from the family Tombusviridae ranges of 22 – 28 %. The TNV CP similarities with those of genera *Machlomovirus* and *Dianthovirus* from the family Tombusviridae are under 20 % (Saeki et al., 2001).
2. AIM OF THE STUDY

The aim of this study was to extend our knowledge about the molecular biology of sobemoviruses.

For this purpose the following tasks were carried out:

1. Re-evaluation of the genomic organization of sobemoviruses.
2. Screening for recombinants occurring in plants co-infected by two sobemoviruses – *Cocksfoot mottle virus* (CfMV) and *Ryegrass mottle virus* (RGMoV).
3. Determination of a necessity of P1 of CfMV in virus replication and systemic infection.
3. MATERIALS AND METHODS

The methods used are described in detail in the articles presented in this thesis. Briefly, the methods used were as follows:

3.1. Plants and growing conditions

Oat cv. Jaak and barley cv. Kymppi were grown in a climate chamber (60 % relative humidity, 16 h light at 23 °C, 8 h dark at 16 °C) (publications II, III).

Barley suspension culture line (cv. Pokko, VTT-G-93001) was grown at 22 °C in dark and subcultured weekly onto fresh solid (0.35 % Gelrite) modified B5-medium supplemented with 2,4-D (4 mg/l) (publication III).

3.2. Insect cell culture and growing conditions

Sf9 insect cell culture was grown at 28 °C in Sf900 II serum-free medium as recommended by Life Technologies (publication III).

3.3. Viruses

CfMV-No was in our lab collection. RGMoV (Japanese isolate, PV-307043) was obtained from MAFF GeneBank, SBMV-Col (Colombian isolate, PV-0100) was obtained from German Collection of Microorganisms and Cell Cultures (DSMZ), SCPMV-WI (Wisconsin isolate, PV-114) and LTSV-Can (Canadian isolate, PV-454) were obtained from American Tissue Culture Collection (ATCC).

CfMV-No as well as RGMoV was propagated in oats cv. Jaak or barley cv. Kymppi. Infected plant material was frozen in liquid nitrogen and stored at -70 °C.

The inoculums were prepared by crushing the symptom bearing leaves from the stock of frozen material in a mortar with 1 ml 100 mM phosphate buffer (pH=7.0), supplemented with 0.5 % Celite per 1 g of leaf material. 50 µl of freshly prepared sap was rubbed onto the leaves of 2-leaf stage plants 10 days after sowing (publication II).

For recombination study, co-inoculation of CfMV-No and RGMoV was performed as described in publication II.

In case of engineered viruses, i.e. CfMV icDNA and its derivates, icDNA construct was linearized after the 3’ terminus of viral sequence and used as templates for 5’ capped RNA synthesis. In vitro transcription was carried out with T7 RNA polymerase (Fermentas) and template DNA was thereafter degraded by RQ DNase I (Promega). The viral RNA was purified using RNase kit (Qiagen) or phenol: chloroform extraction and ethanol precipitation (Sambrook and Russell, 2001) (publication I, II). Plant material was infected biolistically with in vitro transcribed 5’ capped viral RNA bound onto 1.0 µm gold particles at 1100 psi using Biolistic PDS-1000 (Bio-Rad) equipment (publication III).
3.4. Primers

Primers used to amplify different sobemoviruses in publication I are described in table 2.

Table 2. The primers used to amplify different sobemoviruses (publication I).

<table>
<thead>
<tr>
<th>Primer sequence</th>
<th>Corresponding to (nt)</th>
<th>Restrictase site added (shown in italics in the primer sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5’-GACGACTCCTTGCCCCC-3’</td>
<td>SBMV 1646-1661</td>
<td>-</td>
</tr>
<tr>
<td>5’-ACAAACCCCTGCAGAAC-3’</td>
<td>SBMV 2333-2317</td>
<td>-</td>
</tr>
<tr>
<td>5’-GACGATGATGATTTACCCCTTC-3’</td>
<td>SCPMV 1707-1729</td>
<td>-</td>
</tr>
<tr>
<td>5’-TCACACAAGCCCATCTCTACC-3’</td>
<td>SCPMV 2407-2387</td>
<td>-</td>
</tr>
<tr>
<td>5’-GGGCTGATGAGGAAACCA-3’</td>
<td>LTV 1716-1733</td>
<td>-</td>
</tr>
<tr>
<td>5’-CCGCACCTTGTGGGC-3’</td>
<td>LTV 2509-2495</td>
<td>-</td>
</tr>
<tr>
<td>5’-GGGACATAGGTAGGCGGGAG-3’</td>
<td>RGBV 3076-3095</td>
<td>-</td>
</tr>
<tr>
<td>5’-GTGACGCGGTACTAAGAGCCA-3’</td>
<td>RGBV 3529-3508</td>
<td>-</td>
</tr>
<tr>
<td>5’-CTCGGCACGCGCTGTCG-3’</td>
<td>RGBV 2157-2141</td>
<td>-</td>
</tr>
<tr>
<td>5’-GGAGATGAGCCACCCCGGC-3’</td>
<td>RGBV 1440-1459</td>
<td>-</td>
</tr>
<tr>
<td>5’-GGGACATAGGTAGGCGGGAG-3’</td>
<td>RGBV 3576-3095</td>
<td>-</td>
</tr>
<tr>
<td>5’-GGGACATAGGTAGGCGGGAG-3’</td>
<td>RGBV 3529-3508</td>
<td>-</td>
</tr>
<tr>
<td>5’-GGGACATAGGTAGGCGGGAG-3’</td>
<td>RGBV 2157-2141</td>
<td>-</td>
</tr>
<tr>
<td>5’-GGGACATAGGTAGGCGGGAG-3’</td>
<td>RGBV 1440-1459</td>
<td>-</td>
</tr>
</tbody>
</table>

All obtained clones were sequenced for validation.

3.5. DNA cloning

CfMV icDNA was engineered as described in publication III. Construction of the P1-deficient CfMV icDNA and the replication-deficient CfMV icDNA are also described in publication III. Construction of artificial viruses containing the elements both from CfMV and RGBV was represented in publication II.

pUbi:EGFP and pUbi:P1:EGFP were constructed to express EGFP or CfMV P1:EGFP under the control of maize ubiquitin gene promoter. Recombinant bacmid bMON:P1 was created to express CfMV P1 under the control of polyhedrin promoter in S9 insect cells. Preparation of these constructs was described in detail in publication III.

All obtained clones were sequenced for validation.
3.6. Expression and analysis of CfMV P1 in insect cells

To gain a recombinant baculovirus stock, Sf9 cells were transfected with bacmid bMON:P1 using CellFECTIN liposome reagent (Life Technologies) following the manufacturer’s instructions. For further studies, Sf9 monolayer cells were infected with recombinant baculovirus stocks at MOI=1. Cells were harvested after 24 to 96 h by mechanical detachment, centrifuged and washed twice with 1 x PBS at 2500 rpm for 5 min at 4 °C. Washed intact cells were homogenized using a loose-fit glass homogenisator on ice. The homogenate was fractionated according to two separate differential centrifugation protocols in parallel (Hockenbery et al., 1990; Schreiber et al., 1989).

30 µg of total protein from each fraction was analyzed on 15 % SDS-PAGE. For Western blot analysis, the primary antiserum against CfMV P1 (Tamm et al., 1999) was used in 1:5000 dilution and goat anti-rabbit IgG conjugated to HRP (Calbiochem) was used as a secondary antiserum in 1:5000 dilution. The chemoluminescence reaction was triggered with SuperSignal Chemiluminescent Substrate (Pierce) and detected using Molecular Imager System GS-525 (BioRad) (publication III).

3.7. Expression and analysis of CfMV EGFP:P1 in oat leaves

Oat leaves were used for biolistic delivery of pUbi-EGFP or pUbi-P1:EGFP DNA at 1100 psi. After incubation for 24 to 48 hours in the dark, bombarded plant tissues were mounted into a mixture of 1:1 water and glycerol for microscopical examination. Fluorescence of GFP was visualised with Olympus IMT-2 inverted microscope with reflected light fluorescence attachment using XF-100 filter set (Omega Optical) and 40 x oil objective, NA 1.3. Recording was performed by digital CCD camera (CF 8/1 DX, KAPPA) and KAPPA ImageBase software (publication III).

3.8. RNA isolation and analysis

RNA from plant material was extracted with RNAEasy kit (Qiagen) or according to the protocol adapted from Logemann et al. (1987). The integrity of extracted RNA was checked in 6 % formaldehyde - 0.8 % agarose gel electrophoresis buffered with 1 X MOPS, pH=7 (publications II, III).

For replication analysis of CfMV P1(-) (publication I), RNA was extracted 20 h after bombardment from barley suspension culture cells as well as from oat leaves and analyzed for virus replication by negative-strand specific RT-PCR. To test the infectivity of CfMV P1(-), inoculated leaves and newly emerged systemic upper leaves were collected at 14 days post infection (dpi) for RT-PCR analysis.

For recombination study of CfMV and RGMoV (publication II), RNA was extracted from inoculated leaf material harvested at 7 dpi and from newly emerged
systemic leaves at 21 dpi. Possible recombinants were scouted by RT-PCR analysis.

SuperScript One-Step RT-PCR kit with Platinum Taq Polymerase (Invitrogen) was used for RT-PCR analysis in publications I and II. For virus replication analysis, only a negative-strand specific primer was used to start a reaction. After the synthesis of cDNA, the mixture of negative and positive strand specific primers were directly added into the reaction, followed by heat-activated PCR. For infectivity analysis from systemic leaves, both positive and negative-strand specific primers were supplemented in the beginning of reaction as suggested by the manufacturer.

To evaluate a specificity of primer pairs in RT-PCR analysis, 10-fold serial dilutions of in vitro transcribed RNA were mixed with RNA extracted from non-infected oat leaves (publications II, III).

For sequencing of samples of sobemoviruses obtained from international gene banks (publication I), RNA was extracted directly from lyophilized infectious plant material. First-strand cDNA syntheses were performed using Superscript III reverse transcriptase (Invitrogen). Dynazyme DNA polymerase (Finnzyme) was used for cDNA amplification.

All RT-PCR products were ligated into pTZ57R/T (Fermentas) for amplification and DNA purification. Taq terminator sequencing kit version 3.1 (Applied Biosystems) was used for sequencing reactions. The products were analyzed on Applied Biosystems 3130 sequencer.

Novel sequences obtained in this study were uploaded to the NCBI GenBank.
4. RESULTS AND DISCUSSION

4.1. CfMV-like genome organization is common for all sobemoviruses

Based on the determined structural differences in the central part of the genome, sobemoviruses have been subdivided into SCPMV-like and CfMV-like types of genomic organization.

Historically, the first fully sequenced sobemovirus was SCPMV in 1987. Analysis of sequencing data revealed four ORFs (Wu et al., 1987). Earlier, translation of virion-extracted RNAs in cell-free extracts yielded four major products for SCPMV – 105-kDa, 60-kDa, 28-kDa and a family of 3 proteins (21 to 25-kDa) (Ke-Qiang et al., 1982). Tryptic analysis of 60-kDa protein showed that it is a subset of 105-kDa protein (Ke-Qiang et al., 1982). Wu et al. (1987) suggested that they are encoded by long ORF2 whereas 60-kDa protein is derived from 105-kDa protein by proteolytic processing. 28-kDa protein was not translated from full-length RNA but sgRNA and it was shown to be a capsid protein (Ke-Qiang et al., 1982). 28-kDa protein size was found to be consistent with ORF4 that potentially encodes a 30.3-kDa protein (Wu et al., 1987). Wu et al. (1987) suggested that 21 to 25-kDa proteins might be a single protein that is post-transcriptionally modified – it can be encoded by 5′ small ORF1 consistent with translation of the 21 to 25-kDa protein from both genomic and 3′ degraded RNA. None of the translation products were found to correspond to small ORF3 situated in the middle of ORF2 in alternative reading frame (Wu et al., 1987).

Soon after, sequences of three other sobemoviruses - SBMV (Othman and Hull, 1995), RYMV (Ngon A Yassi et al., 1994; Pinto and Baulcombe, 1995) and LTSV (Jeffries et al., 1995) - followed. These viruses were annotated similarly. In contrast to these sequences, the sequencing data of CfMV indicated no individual ORF capable of directing the synthesis of 100-kDa protein (Mäkinen et al., 1995b). Instead of that, the middle part of the genome contained two overlapping reading frames called ORF2a and ORF2b. However, in vitro translations of the CfMV genomic RNA revealed four major products of 100-, 71-, 34- and 16-kDa (Mäkinen et al., 1995a). Analysis of sequence information revealed a -1 ribosomal frameshifting signal that leads ribosomes during the translation process from ORF2a into an overlapping reading frame ORF2b generating 100-kDa polyprotein. Moreover, similar frameshifting signals were also found in the sequences of SBMV, SCPMV and RYMV at the beginning of putative ORF3 region (Mäkinen et al., 1995a).

In 2001, two new sobemoviruses – SeMV and RGMoV – were reported to possess SCPMV-like genomic organization (Lokesh et al., 2001; Zhang et al., 2001). In 2003, sequencing of SCMoV indicated the genomic organization similar to CfMV (Dwyer et al., 2003). In 2004, a genomic organization of TRoV was shown to be alike CfMV (Callaway et al., 2004).

In 2004, 14 new isolates of RYMV were sequenced and found to have the CfMV-like genomic organization (Fargette et al., 2004). Moreover, previously
published sequences of RYMV-Nig (Nigerian isolate) and RYMV-CI (Ivory Coast isolate) were re-sequenced. Deletion of an erroneous extra nucleotide U2244 from the former sequences established CfMV-like genomic organization also for those isolates (Fargette et al., 2004).

Later, two novel SBMV isolates were found and partially sequenced (Verhoeven et al., 2003; Segundo et al., 2004). Interestingly, the alignment of these isolates [SBMV-Almerian, (SBMV-Alm) and SBMV-Morocco, (SBMV-Mor)] to previously published SBMV Arkansas isolate (SBMV-Ark; Lee and Anderson, 1998) reveals GG instead of GGG at position 2176-2178. If the putative extra nucleotide were to be removed from the full-length sequence of SBMV-Ark, a CfMV-like genomic organization would be established.

In current study, we re-sequenced the central part of SBMV-Col (Colombian isolate of SBMV), SCPMV-WI (Wisconsin isolate of SCPMV), LTSV-Can (Canadian isolate of LTSV) and RGMoV-Jap2 (Japanese isolate of RGMoV; named as Jap2 to distinguish it from previously published independent sequence that also originates from Japan) genomes. Three clones from each virus isolate were sequenced in forward and reverse directions.

Sequencing of SBMV-Col revealed the presence of GG instead of GGG at position 2176-2178 (publication I, Fig. 1) like in SBMV-Alm and SBMV-Mor when compared with the SBMV-Ark sequence. SBMV-Ark is known to cluster together with SBMV-Alm whereas SBMV-Col, SeMV and SCPMV form different clusters in phylogenetic analysis (Verhoeven et al., 2003). Remarkably, the very recent sequencing data of SBMV Brazilian isolate (SBMV-SP) from São Paolo demonstrate CfMV-like genome organization (Ozato et al., 2009). SBMV-SP clusters together with SBMV-Ark (Ozato et al., 2009).

Sequencing of SCPMV-WI showed that G2232 (publication I, Fig. 1) was missing when compared with the published SCPMV sequence (Wu et al., 1997). Sequencing of LTSV-Can revealed the extra nucleotides GC after position 2299 (publication I, Fig. 1) when compared with the LTSV sequence available from GenBank (Jeffries et al., 1995). Sequencing of RGMoV-Jap2 revealed the GGGGGG instead of GGGGGGG at position 2203-2209 (publication I, Fig. 1; Balke et al., 2007) when compared with the RGMoV sequence published earlier (Zhang et al., 2001). In accordance with these results, recent data on re-sequencing of SeMV verified the presence of C instead of CC at position 2177-2178 in the previously published sequence (Lokesh et al., 2001; Lokesh et al., 2006).

In all cases, the revision of the genomic sequence revealed a stop codon in the middle of ORF2 shortly after the –1 frameshift signal similarly to ORF2a of “CfMV-like” viruses. Also, the correction indicated a single continous ORF (ORF2b) in –1 frame like in CfMV-like viruses (publication I, Fig. 2). Earlier, considerable similarity was found between the N-terminal part of RdRp proteins encoded by “CfMV-like” viruses and P3 proteins of “SCPMV-like” viruses over the first 150 amino acid residues (Mäkinen et al., 1995a; Dwyer et al., 2003). Downstream from the point where a similarity was lost, it immediately continued between the C-terminal part of RdRp of “CfMV-like” viruses and the C-terminal
part of the RdRp of “SCPMV-like” viruses. Hence, the “similarity shift” was observed at the exact location of previous sequencing errors.

In conclusion, all the re-sequenced viruses previously described as SCPMV-like, exhibit a common, CfMV-like genomic organization (publication I, Fig. 3). We propose that the RdRp-s of all sobemoviruses are translated by a –1 ribosomal frameshift. Argument favoring the common CfMV-like genomic organization is that both the genomic organization and the primary structures of Pro-VPg-RdRp proteins of sobemoviruses are related to those of the polero- and enamoviruses that also exhibit the CfMV-like genome arrangement in the central part of their genome (Hull and Fargette, 2005).

4.2. No recombinants found between CfMV and RGMoV in doubly infected oat plants

Studies on mixed infections are pertinent for understanding the role of recombination in virus evolution. In the current study, the experiments were carried out under little or no selection pressure (i.e. non-transgenic plants infected with two wild-type viruses) selected to gain a varied pool of recombinants and to avoid a positive selection of escape-recombinants which may reflect the results of selective pressure rather than the mechanism of recombination itself (Aaziz and Tepfer, 1999).

To investigate the possibility of RNA recombination occurrence between two sobemoviruses, we co-infected oat and barley plants with CfMV and RGMoV. Although the natural co-infections of RGMoV and CfMV have not been reported, their distribution overlaps at least in Japan. Cocksfoot, wheat, barley and oats are among their common natural and experimental host species (Serjeant, 1964; Toriyama et al., 1983; Mäkinen et al., 2000b).

At first, virus propagation and symptom development of both viruses in barley and oats was examined visually and then tested by RT-PCR using virus-specific primers.

Both viruses generated quite strong infection symptoms in oats. RGMoV was lethal for barley, whereas CfMV infection was nearly symptomless. RT-PCR analysis revealed 100% infection with both viruses in oats but not in barley (Fig. 1, publication II). Therefore, oat plants were chosen for recombination experiments.

In the recombination study, 105 oat plants were co-inoculated with CfMV and RGMoV. Since the length of a replication cycle of CfMV and RGMoV is not known, co-inoculations were performed in five groups within three days (at “day 0”, 25 plants were co-inoculated with both viruses, 40 plants were individually inoculated with RGMoV and 40 with CfMV; half of the individually inoculated plants were inoculated with the other virus at “day 1” and another half at “day 2”) to provide the possibility of simultaneous replication and potential recombination between the two viruses. At “day 7”, the inoculated leaves were collected for RT-PCR analysis to obtain an original pool of possible recombinant molecules and to
avoid loss of those with lower fitness. According to the tests, 99 of the 105 plants contained both viruses. According to the tests, 99 of the 105 plants contained both viruses.

A replicase-driven template switching mechanism is considered to need secondary structures and homologous blocks for priming between the donor and acceptor strands (White and Morris, 1999). The sequence identity between the genomes of CfMV and RGMoV was found to be 48% when aligned pairwisely by NCBI-BLAST2 (publication II).

Regions of the –1 ribosomal frameshifting signal and the putative subgenomic RNA promoter were selected to screen for recombination events as they probably possess secondary structure elements that have been suggested to be potential hot spots for RNA recombination. The –1 ribosomal frameshift signal characteristic of all sobemoviruses consists of a slippery sequence (UUUAAC) and a stem-loop structure several nucleotides downstream from it (Tamm and Truve, 2000b). The position and secondary structure of the sobemoviral subgenomic promoter is not experimentally proven. Ryabov et al. (1996) have postulated that the start position of CfMV sgRNA might be 35 bases upstream from the first AUG codon of CP at position 3057. In this study, the subgenomic RNA promoter was expected to lie in the range of −150 and +150 nt from the CP translation start point, as characteristic of other plant viral subgenomic promoters (Miller and Koev, 2000). The reason for considering sgRNA promoter region as the potential hot spot is the presence of DI RNA molecules corresponding to 35-40 nucleotides of the 5’-proximal end of genomic RNA linked with 850-950 nucleotides of the 3’ terminus in case of CfMV infection (Mäkinen et al., 2000a). That is considered to be proof of a replicase-driven template switching mechanism (White and Morris, 1999). Moreover, evolution of the “supergroup” of luteo-sobemo-tombusviruses indicates a recombinational hot spot between the gene blocks encoding Pro-VPg-RdRp and CP (Mayo et al., 1989; Martin et al., 1990; Mayo and Jolly, 1991; Gibbs and Cooper, 1995; Mayo and Ziegler-Graff, 1996; Miller and Rasochova, 1997; Miller et al., 1997; Moonan et al., 2000; Moonan and Mirkov, 2002; aus dem Siepen et al., 2005; Silva et al., 2008).

The alignment made by BLAST2 tool was used to design virus-specific primer pairs for RT-PCR analysis. The primers were designed to amplify the area between 1535 nt and 1967 nt in the sequence of CfMV (primers were named as Cfs5’ and Cfs3’) and between 1440 nt and 2157 nt in the sequence of RGMoV (primers were named as Rfs5’ and Rfs3’) in case of screening the –1 ribosomal frameshifting signal. In case of screening the putative subgenomic RNA promoter region, the primers were designed to amplify the area between 2818 nt and 3380 nt in the sequence of CfMV (primers were named as Csg5’ and Csg3’) and between 3076 nt and 3529 nt in the sequence of RGMoV (primers were named as Rsg5’ and Rsg3’).

Before using these primers for screening of recombinant molecules possibly arisen in co-infected plants, the specificity of these primers were checked by using RNA extracted from plant material singly infected with CfMV or RGMoV, or the artificial mixture of them both in RT-PCR (Fig. 2, publication II). No unspecific amplification was observed with primer pairs of Cfs5’+Cfs3’, Csg5’+Csg3’,
Unfortunately, the primer combination of Rfs5’+Cfs3’ amplified several non-specific fragments. Therefore, this primer pair was not involved in the recombination study.

To estimate the sensitivity of recombinant primer pairs Csg5’+Rsg3’, Rsg5’+Csg3’ and Cfs5’+Rfs3’, several artificial CfMV-RGMoV chimerical virus templates were cloned (Fig. 3, publication II). These chimerical templates were used for \textit{in vitro} RNA synthesis. The synthesized chimerical RNAs were diluted in tenfold series as low as 0.1 pg per reaction. Every reaction was mixed with 0.5 µg of RNA extracted from uninfected oat leaves to mimic a natural situation providing the diversity of cellular mRNA molecules as possible priming templates. The primer pairs Cfs5’+Rfs3’ and Rsg5’+Csg3’ had very good sensitivity – they detected down to 0.1 pg of the \textit{in vitro} synthesized template RNA from the mixture of 0.5 µg total oat RNA whereas the primer pair Csg5’+Rsg3’ detected the presence of recombinant template RNA in the mixture at a sensitivity level down to 100 pg only.

Next, the recombinant primer pairs Csg5’+Rsg3’, Rsg5’+Csg3’ and Cfs5’+Rfs3’ were used to screen the pool of 105 co-inoculated plants. No recombinant molecules were detected. Altogether, approximately one quarter of the CfMV and RGMoV genomes were monitored for recombination events between two sobemoviruses. It remains unknown whether recombinations occured elsewhere between two genomes.

There can be various reasons for no detection of recombinant virus molecules. After co-infection of the host, the viruses must co-infect the same cell. Also, virus replication must happen at the same time to provide a possibility for template switching (Worobey and Holmes, 1999). The priming between the donor and acceptor strands as well as re-initiation of the dissociated replicase/nascent RNA complex has specific requirements (Suzuki \textit{et al.}, 2003; Cheng \textit{et al.}, 2005; de Wispelaere \textit{et al.}, 2005). Studies on plant virus recombination demonstrate that the properties of the viral replicase and several host factors play a role in RNA recombination (Bousalem \textit{et al.}, 2000; Desvoyes and Scholthof, 2002; Ohshima \textit{et al.}, 2002; Panaviene and Nagy, 2003; Dzianott and Bujarski, 2004; Shapka and Nagy, 2004; Cheng \textit{et al.}, 2005). It has been shown that host genes involved in RNA degradation were suppressing the generation of new viral RNA recombinants whereas the host genes contributing to the intracellular transport of proteins were identified as viral RNA recombination accelerators (Serviene \textit{et al.}, 2005; Serviene \textit{et al.}, 2006; Cheng \textit{et al.}, 2006).

Our findings that no recombinants were identified between two sobemoviruses in doubly infected plants are in accordance with the results gained by phylogenetic analyses of sobemoviral sequences (Lokesh \textit{et al.}, 2001; Fargette \textit{et al.}, 2004; Zhou \textit{et al.}, 2005; Chare and Holmes, 2006; Stuart \textit{et al.}, 2006; Fargette \textit{et al.}, 2008; Sérémé \textit{et al.}, 2008). However, the newest exhaustive search for recombinants has found a few recombinations between close isolates of RYMV in Tanzania (Pinel-Galzi \textit{et al.}, 2009). The short recombinations were detected in the region near/at the
beginning of ORF2a and at the 3’ UTR of RYMV. Unfortunately, these segments were not involved in our screening for putative recombinants between CfMV and RGMoV.

Our study was the first experimental survey of recombinations between sobemoviruses.

4.3. P1 of Cocksfoot mottle virus is required for systemic infection in oat

P1 is encoded by the 5’-terminal ORF of the sobemoviral genomic RNA and it is the most divergent protein of sobemoviruses. Moreover, no sequence similarity has found between P1 proteins neither nucleic acid nor at the amino acid level (Ngon A Yassi et al., 1994; Mäkinen et al., 1995b; Othman and Hull, 1995). There are no conserved regions in P1 sequences offering a hint about their functions. Despite of the sequence difference both RYMV P1 and SCPMV P1 have been shown to be dispensable for viral RNA synthesis (Bonneau et al., 1998; Sivakumaran et al., 1998). Both RYMV P1 and CfMV P1 act as the suppressors of a post-transcriptional gene silencing (PTGS) in non-host species of *Nicotiana benthamiana* and *N. tabacum* (Voinnet et al., 1999; Himber et al., 2003; Sarmiento et al., 2007; Siddiqui et al., 2008). Recently, RYMV P1 has been shown to function as a silencing suppressor in rice, the host plant of RYMV (Siré et al., 2008; Lacombe et al., 2010).

The objective of current study was to start unraveling the functions of CfMV P1 in oats, the experimental host plant of CfMV.

At first, CfMV cDNA was amplified from RNA isolated from CfMV-NO infected oat plants. It was amplified as a cDNA copy and subcloned into a carrier plasmid under the control of T7 promoter. Viral 5’-capped RNA synthesized from cDNA copy was amplified *in vitro* and tested to be infectious in oat plants. CfMV infectious cDNA (icDNA) was used as a template to create a P1-deficient CfMV cDNA clone CfMV P1(-) by introducing a point mutation in order to convert the first AUG codon of ORF1 to UUG. Also, a replication-deficient CfMV cDNA clone CfMV RdRp(-) was generated by raising a stop codon into the beginning of RdRp-coding region. The 5’-capped RNAs were synthesized and biolistically delivered into the cells of barley suspension culture or into the oat leaves. Replication was tested after 24 hours by RT-PCR analysis. Differently from a replicase-deficient virus, it was observed that elimination of the expression of P1 does not abolish a virus replication neither in oat leaves nor in barley suspension culture (publication III, Fig. 1). However, although the P1 of CfMV was not strictly needed for virus replication, the absence of P1 expression lowered the virus accumulation so much that it was not detectable by Northern blot analysis.

Next, 5’-capped transcripts of CfMV P1(-) were biolistically delivered into the oat plants. The presence of CfMV was tested after 14 days by negative-strand specific RT-PCR analysis. It appeared that P1-defective virus was able to replicate as it was still present in inoculated leaves (of 49 plants out of 57). Systemic infection was detected only in case of a spontaneous transversion of mutated ORF1 initiation codon to wildtype (in 3 plants out of 57) that restored expression of P1 (publication III, Table 1). Consequently, the absence of P1 does not abolish CfMV
replication but systemic spread is inhibited. The same is true for RYMV and SCPMV (Bonneau et al., 1998; Sivakumaran et al., 1998).

Despite of a great diversity of sobemoviral P1, it has been speculated to function as a viral movement protein⁷ (Othman and Hull, 1995; Mäkinen et al., 1995b). Numerous studies have demonstrated that one of the functional hallmarks of MPs is their capability to bind single-stranded nucleic acids (Waigmann et al., 2004). Therefore, the ability of CfMV P1 to bind ssRNA but not dsDNA (Tamm and Truve, 2000a) led to the suggestion that it may act as a virus movement protein. To test the movement ability, CfMV P1:EGFP and EGFP alone were expressed in oat leaves under the control of maize ubiquitin promoter independently from the context of other CfMV proteins. Expression was monitored during the next 48 hours using fluorescence microscopy. EGFP alone remained in single cells without detectable cell-to-cell movement whereas P1:EGFP showed limited cell-to-cell movement to neighboring cells within the epidermal tissue in 3 out of 100 individually bombarded cells (publication III, Fig. 2).

In parallel with our experiments, similar results have been gained with SCMoV P1 – the expression of GFP:P1 fusion protein was observed in the nucleus of single cells, cytoplasm and cell periphery of neighboring cells. It was found that there was limited spread of that fusion protein from one cell to another 36-48 hours after transformation. Finally, it was concluded that P1 of SCMoV cannot move independently from cell to cell, probably due to missing viral components (Fosu-Nyarko, 2005).

Both CfMV P1 and RYMV P1 have been shown to act as the suppressors of PTGS (Voinnet et al., 1999; Sarmiento et al., 2007). Interestingly, recent data on RYMV P1 show a connection between the silencing suppression and cell-to-cell movement abilities (Siré et al., 2008). The single amino acid mutation C95S (in putative zinc finger motif) impairs the ability of RYMV P1 to suppress constitutive silencing of uidA in distal part of leaf but not in biolistic delivery spot suggesting that this mutation affects the cell-to-cell movement of RYMV P1 (Siré et al., 2008). Whether PTGS restricts CfMV movement in P1(-) background, is not known at the moment.

Our attempts to localize CfMV P1 in wt CfMV-infected oat leaves by polyclonal antiserum generated against P1 (Tamm et al., 1999) revealed expression of P1 neither by Western blot analysis nor by immunohistochemical staining (Tiismus, 2005). It remained unclear whether P1 was poorly accumulated in infected plants or the P1 antiserum was not suitable for the detection of P1 expressed in plant cells.

⁷ Plant viruses spread from an initially infected cell to neighbouring cells through plasmodesmata. This process is termed as local or cell-to-cell movement. The viral movement proteins (MPs) have a central role in cell-to-cell movement. During local movement, viral MPs either interact with the viral genomes to form nucleoprotein complexes that cross through plasmodesmata into adjacent cells or they become a part of virus-induced tubules that extend through the cell wall (presumably replacing plasmodesmata and serving as a conduit for the spread of virus particles).
Studies on phylogenetically related poleroviruses provide results that may explain that result. It has been shown that despite that BWYV P0 is dispensable for systemic infection (Ziegler-Graff et al., 1996) the amount of P0 has clear effects on virus accumulation. Experiments on BWYV mutant with optimized context for ORF0 revealed deleterious effect to viral RNA accumulation. Moreover, appearance of the spontaneous mutations predicted to lower the efficiency of translation initiation at the P0 start codon was detected (Pfeffer et al., 2002). Also, it was shown for PLRV that although P0 is undetectable in infected plants (van der Wilk et al., 1997) it is necessary for virus accumulation (Sadowy et al., 2001).

In current study, CfMV P1 was expressed at high level in Sf9 insect cell culture for subcellular localization studies using baculovirus vector system. Samples of total protein were collected at 24, 48, 72 and 96 h post infection. All samples were treated in parallel according to two differential centrifugation protocols to obtain subcellular fractions. Western blot analysis showed the presence of 12-kDa CfMV P1 in pellets of cell nuclei and membranes but not in the fraction of soluble cytoplasmic proteins. A further treatment of nuclear pellets with NP-40 or high salt did not dissolve any P1 into nuclear extract (publication III, Fig. 3). Thus, it was obvious that P1 of CfMV is coupled with cellular membranes and/or it is heavily aggregated when expressed in insect cells. Similarly, when recombinant CfMV P1 was expressed in *E. coli* – the majority of it remained aggregated and unsoluble (Tamm and Truve, 2000a) and therefore not appropriate for functional studies.
CONCLUSIONS

1. CfMV-like genomic organization is common for all sobemoviruses. Consequently, the expression and amount of sobemoviral RdRp is regulated by -1 ribosomal frameshifting similar to other evolutionary related viruses.

2. Albeit the phylogenetic analyses show that a recombinational shuffling of genes and gene blocks has played an important role in the formation of contemporary species of “the supergroup” luteo-sobemo-tombusviruses, no recombinations has been found between sobemovirus species. Accordingly, no recombinant virus molecules were found experimentally when 99 oat plants were co-infected with CfMV and RGMoV under no or little selection pressure.

3. P1 of CfMV is not required for virus replication but it is essential for the systemic infection of CfMV.
REFERENCES


ACKNOWLEDGEMENTS

This work has been carried out during the years 1999-2006 at the Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, and at the Department of Gene Technology, Tallinn University of Technology.

First of all, I would like to thank my supervisor Erkki Truve, for his enthusiasm and guidance during all these years. I am really grateful to Erkki for his encouragement to complete my thesis after my long stay-at-home-mom period.

My gratitude also belongs to Tiina Tamm who supervised me at the very beginning of this study, teaching me the basic skills needed for work with plant viruses. I want to thank Kristiina Mäkinen for hosting me at the Institute of Biotechnology, University of Helsinki during my two fact-finding trips. I would like to acknowledge Andres Merits for teaching me the handling of insect cell culture and Jimmy Lucchesi for sharing his tricks on how to work with barley suspension culture.

I especially appreciate Merike Kelve, Anne Kuusksalu, Annika Lopp, Tõnu Reintam, Mart Speek, Andres Veske, Lilian Järvekülg, Reet Hunt, Viivi Paalme, Monika Drews and Katrin Vanatalu from the Department of Gene Technology for their encouragement and kindness to share their knowledge, chemical supplies and good words with the younger colleague.

I also would like to take the opportunity to acknowledge all the people worked in Erkki’s groups during these years creating a friendful and relaxed atmosphere. Thank you so much - Cecilia, Eve-Ly, Signe, Allan, Birger, Kristel, Lenne, Marju, Heiti, Maarja, Liivi, Kairi, Jaanus, Mariliis, Liina, Raavo, Ants, Silva, Tiina, and Gabriela!

Gabriela, Angela, Helen, Kristiina, Silva, Leelo, Heili and Margret – thank you for being such good friends and keeping in touch over all these years after our graduation!

I thank Elizabeth and Norman Walsh for their willingness to read my thesis and to make a language check up.

I express my gratitude to my mother Elle and to my grandmother Laine together with her husband Haldur for their support during my undergraduate studies. Only that made the further studies feasible.

Last but most important, I am especially thankful to my husband Kaido and to my son Oliver not only for their endless love but also for their long walks during my thesis writing phase☺.
Sobemoviruses possess a common CfMV-like genomic organization

Meier, M. and Truve, E.


Reprinted with kind permission from Springer Science+Business Media
An attempt to identify recombinants between two sobemoviruses in doubly infected oat plants

Meier, M. and Truve, E.


Reprinted with kind permission from EDP Sciences (www.ebr-journal.org)
P1 protein of Cocksfoot mottle virus is indispensable for the systemic spread of the virus

Meier, M., Paves, H., Olspert, A., Tamm, T. and Truve, E.


Reprinted with kind permission from Springer Science+Business Media
ABSTRACT

Sobemoviruses

The vector and host range of sobemoviruses is quite narrow. Despite of that, some sobemoviruses seriously impact global agriculture – mainly due to their particle stability and effective transmission via mechanical wounding of host plants during farming operations. The best-known example is *Rice yellow mottle virus* (RYMV) that is the main cause for rice failure in Africa. The outbreaks of *Subterranean clover mottle virus* (SCMoV) are the main reason for decreases of herbage production of clover pastures in Australia, whereas *Cocksfoot mottle virus* (CfMV) has been reported to severely affect hay yields in Norway.

A genus *Sobemovirus* consists of small viruses with icosahedral capsids and a single-stranded polycistronic mono-component RNA genome. Their genome 5´ terminus bounds covalently a virus-encoded protein (VPg) and their 3´ terminus has not been polyadenylated. Sobemovirus genome has in size 4000-4500 nucleotides, bearing four ORFs only. The non-structural proteins (P1 and polyprotein) are translated from genomic RNA, whereas capsid protein (or coat protein, CP) is translated from sgRNA. A polypein will be processed at least into three functionally different proteins. To date, there are 11 sobemoviruses which genome has been fully sequenced.

The genus *Sobemovirus* is not assigned to any family. A reason for this is a kind of mosaic nature of sobemovirus genome. The 5’-terminal part of the sobemoviral genomes encoding non-structural proteins resembles those of enamo- and poleroviruses from the family *Luteoviridae* in its genomic organization, whereas sobemoviral genome 3´ terminal part encoding CP is related to those of necroviruses from the family *Tombusviridae*. The reason for that is considered to be early recombination events that happened during the evolution of these genera.

Differently from enamo- and poleroviruses, the middle part of sobemovirus genome has been reported to have two different organizations – either “SCPMV-like” or “CfMV-like”. Similarly to enamo- and poleroviruses, “CfMV-like” viruses can synthesize their polyproteins in two variants – the shorter one (that consists of VPg and Pro only) is translated from ORF2a whereas the longer one (consists of VPg, Pro and RdRp) needs -1 ribosomal frameshifting from ORF2a to ORF2b during translation. The efficiency of that -1 ribosomal frameshift has been measured to be 10-25 % in case of CfMV. “SCPMV-like” genomes were believed to be translated in-frame as long polyproteins (consisted of VPg, Pro and RdRp). Such appearance of two different strategies for RdRp synthesis in one virus family would be exceptional in virus world. However, a signal for -1 ribosomal frameshifting has also been found in genomes of “SCPMV-like” sobemoviruses. Moreover, it has been found to be conserved between all sobemoviruses. One possible function given, proposes that it may lead ribosomes into ORF3 that is shortly translated thereafter until the ribosomes meet stop codon.

The first goal of this thesis was to verify the existence or the non-existence of “SCPMV-like” genomic organization. A reason for that was the sequence homologies found in different reading frames between sobemovirus genomes with
“SCPMV-like” and “CfMV-like” organization. Also, it was known that RYMV that was announced as the virus with “SCPMV-like” genomic organization was recently re-sequenced and appeared to have “CfMV-like” genome. Thus, questionable genomic areas of Lucerne transient streak virus (LTSV), Ryegrass mottle virus (RGMoV), Southern bean mosaic virus (SBMV) and SCPMV were re-sequenced in current study. The results of the sequencing project showed clearly that the “SCPMV-like” genomic annotation is an artefact and it does not exist. Re-sequencing of Sesbania mosaic virus (SeMV) by Dr. Savithri confirmed that view. Thus, all sobemoviruses harbour similar genomic organization, previously known as “CfMV-like”, also common for evolutionarily related enamo- and poleroviruses. Hence, all sobemoviruses regulate the synthesis of RdRp via -1 ribosomal frameshift.

The second goal of this thesis was to estimate recombination ability between two sobemoviruses (CfMV and RGMoV, Ryegrass mottle virus) in co-infected test plants. RT-PCR affirmed the co-infection of 99 test plants. Two possible evolutionary “hot spots” were screened for possible recombination events. Several previous studies have shown that both a strong secondary structure and a sequence homology are required for recombination events. The first possible “hot spot” area was supposed to be localized adjacent to -1 ribosomal frameshift area that has both of these qualities. Secondly, recombination events were screened from sgRNA promter vicinity. The region (encoding non-structural proteins) preceding sobemovirus sgRNA promoter is similar to enamo- and poleroviruses, whereas the subsequent sequence (encoding CP) is more similar to necroviruses. This is considered as a clue to an early evolutionary recombination event. RT-PCR used in the current study was extremely sensitive – it was able specifically amplify 0.1-100 pg of artificially synthesized recombinant template from reaction mixed with 0.5 µg RNA purified from non-infected plants. However, no recombinants were found from doubly infected test plants. We cannot exclude that recombination might have happened between these two viruses in non-screened genomic regions.

Finally, we started unraveling the functions of CfMV P1. As sobemoviral P1 proteins are highly divergent - they are not related to any other known protein – their functions cannot be presumed according to sequence homologies. In this current study, P1 translation initiation codon of infectious clone of CfMV was mutated to abolish P1 translation but not to harm virus RNA structure. Analysis of infected plants showed that P1-deficient virus was able to replicate in inoculated leaves but not able to infect plants systemically. However, 3 of 57 plants that were inoculated showed systemic infection caused by a spontaneous transversion of mutated ORF1 initiation codon to wildtype. Hence, it was concluded that P1 is required for systemic infection.

Recently, it was demonstrated by our group that CfMV P1 functions as a suppressor of systemic silencing. Such knowledge is also gained in studies of RYMV P1 (that however has no sequence homology with CfMV P1). Recent mutation analysis of RYMV P1 showed that cell-to-cell movement ability and the strength of silencing suppression have related to each other and needed for infectivity.
KOKKUVÕTE

Sobemoviirused

Sobemoviirustele on iseloomulik kitsas vektorputukate ja peremeestaimede ring. Sellest hoolimata on mõned sobemoviirused tõsiselt probleemiks globalaselle põllumajandusele – seda põhiliselt tänä viiruspargilde stabiliisusele ja heale edasikandumisvõimele mehaaniliste vigastuste kaudu. Näiteks, riisi kollaiiviruses (RYMV) on põhiline riisisukkaluste põhjustaja Aafrikas. Austraalias ohustab rostiupõlde maaarstikuga laiguvirus (SCMoV) ning Norras on tulnud ette keraheina laiguviiruse ( CfMV) poolt põhjustatud heinasagliga draastilist vähemist.


Sobemoviiruste perekonna süsteematiiline kuuluvas on määratlemata, kuna genoomi osa, mis kodeerib mittestruktuuseid valke (v.e. P1, mis on täiesti unikaalne), on järjestusedlused enamo- ja poleroviirustele luteoviiruste sugukonnast, kuid genoomi osa, mis kodeerib viiruse kattevalgu, on lähedanoolis hoopis nekroviirustele tombusviiruste sugukonnast. Sellise genoomi mosaikus süütuseks avatud on sellel vahel.


Käesoleva töö üheks eesmärgiks oli kontrollida, kas selline unikaalne SCPMV-tüüpi ikkagi eksisteerib, kuna sobemoviiruste genoomsete järjestuste võrdlused ilmutasid märke järjestushomoloogiatest erinevates lugemismoodades. Samuti oli teada, et RYMV, mis algsest arvati olevat SCPMV-tüüpi, osutus üleseksvenee-

Käesoleva töö teises osas nakatati testtaimi samaaegselt kahe sobemoviirusega, et hinnata nende rekombineerumisvõimet. RT-PCR kinnitas 99 taime nakatumist mõlemale viirusele. Rekombinatsioone otsiti kahest oletatavast evolutsioonilisest „kuumast kohast“. Mitmed varasemad tööd on näidanud, et rekombinatsioonide toimumiseks on vajalik nii homoloogne järjestus kui ka tugev sekundaarstruktuur. Esiteks otsiti rekombinatsioone -1 ribosomaalse raamihinke signaali ümbruskonnast, mis sisaldab tüüviaas sekundaarstruktuuri ja on sobemoviiruste seas äärmiselt konservatsioonud, pakkudes võimalust homoloogiliseks rekombinatsiooniks. Teiseks otsiti võimalikke rekombinatsioone sgRNA promootori piirkonnast, kuna sobemoviiruste genoom sarnaneb sgRNA promootorile eelnevalt piirkonnas (mis kodeerib mittlestruktuuris valke) enamo- ja poleroviirustele, kuid sgRNA promootorile järgnevalt piirkonnas (mis kodeerib viiruse kattevaliku) nekrooviirustele. Käesolevas töös kasutatud RT-PCR meetod osutus ülitudlikuks, suutes tuvastada 0.1-100 pg kunstlikult sünteesitud rekombinantset RNA segust, millele oli rekombinantse RNA mimikeerimiseks lisatud 0.5 μg nakatamata taimedest eraldatud RNA. Sellest hoolimata, topeltnakatatud taimedest rekombinantsete viiruseid ei tuvastatud. Ei saa siiski väljendada, et rekombinatsioonid võisid toimuda genoomi piirkondades, mida ei vaadeldud.

CURRICULUM VITAE

Name: Merike Sõmera (born: Meier)
Date of birth: 15-10-1974
Place of birth: Tallinn, Estonia
Citizenship: Estonian

Contact information: Department of Gene Technology, Tallinn University of Technology (TUT), Akadeemia tee 15, 12618 Tallinn
Tel. +372 6204421, e-mail: merike.meier@ttu.ee

Education:
1999-2007 PhD studies, TUT, Faculty of Science, Department of Gene Technology
1999 TUT, Faculty of Chemistry, Department of Gene Technology, MSc
1997 University of Tartu, Faculty of Biology and Geography, Department of Biotechnology, BSc

Language Competence: Estonian, English (fluent)
Russian (average)
German (basic skills)

Special Courses:
2000 “1st Nordic Postgraduate Course in Plant Virology”, Uppsala, Sweden
2000 FEBS Advanced Course on Plant Responses to Biotic and Abiotic Stress, Roscoff, France
1999 FEBS Advanced Course on Animal Cell Culture Techniques, Dublin, Ireland
1998 3rd Nordic Research Course on Plant Molecular Biology, Helsinki, Finland

Professional Employment:
2005- TUT, Department of Gene Technology (research scientist)
2004-2005 TUT, Department of Gene Technology (research assistant)
2001-2004 National Institute of Chemical Physics and Biophysics (NICPB), Tallinn (research scientist)
1997-2001 NICPB (research assistant)

Research training and teaching:
2001-2006 encharged of the practical teaching of “Gene Technology II” course to undergraduate students, TUT
2002-2005 Participation in the EU network (QLG2-CT-2002-01673) “Virus-induced Gene Silencing”
2000-2004 Participation in several international congresses
2001 Training for the transformation of plant callus, University of Helsinki, Finland (K. Mäkinen’s group)
1998 Training for the expression of proteins in insect cell culture, University of Helsinki, Finland (K. Mäkinen’s group)

Supervised theses: Kairi Kärblane, BSc (TTÜ, 2006)
Maarja Otsus, MSc (TTÜ, 2005)
Liivi Tiismus, BSc (TTÜ, 2005)
Silva Sütt, MSc (TTÜ, 2004)
Tiina Talts, BSc (TTÜ, 2004)

Current research topics: Sobemoviruses

Awards: 2009 Estonian Government Science Award in the field of agriculture

Publications:
ELULOOKIRJELDUS

Nimi: Merike Sõmera (sünd. Meier)
Sünniaeg: 15.10.1974
Sünnikoht: Tallinn, Eesti
Kodakondsus: eesti
Kontaktandmed: Geenitehnoloogia instituut, Tallinna Tehnikaülikool (TTÜ), Akadeemia tee 15, 12618 Tallinn
Tel. +372 6204421, e-mail: merike.meier@ttu.ee

Hariduskäik:
1999-2007 TTÜ doktorant, Matemaatika-loodusteaduskond, Geenitehnoloogia õppetool
1999 TTÜ, Keemiateaduskond, Geenitehnoloogia Instituut, MSc
1997 Tartu Ülikool, Bioloogia-Geograafia teaduskond, Biomeditsiini- ja Biotehnoloogia õppetool, BSc

Keelteoskus:
eesti, inglise (kõrgtase)
vene (kesktase)
saksa (algtase)

Täiendusõpe:
2000 „Taimeviroloogia kursus põhjamaade doktorantidele“, Uppsala, Rootsi
2000 Euroopa Biokeemiaühingu kursus “Taime vastused biootilisele ja abiootilisele stressile”, Roscoff, Prantsusmaa
1999 Euroopa Biokeemiaühingu kursus “Loomsete koekultuuride tehnikad”, Dublin, Iirimaa
1998 Põhjamaade uurimiskursus taimede molekulaarbioloogiast, Helsingi, Soome

Teenistuskäik:
2005- TTÜ, geenitehnoloogia instituut (teadur)
2004-2005 TTÜ, geenitehnoloogia instituut (insener)
2001-2004 Keemilise ja Bioloogilise Füüsika Instituut (KBFI), Tallinn (teadur)
1997-2001 KBFI (insener)

Teadustegevus:
2001-2006 “Geenitehnoloogia II” bakalaureuseõppe praktikumide juhendaja, TTÜ, Geenitehnoloogia Instituut
2002-2005 Osalemine EL projektit “Viirus-indutseeritud geenivaigistamine” (QLG2-CT-2002-01673)
2000-2004 Osalenud mitmel rahvusvahelisel konverentsil
2001 Meetodi omandamine kalluskoe biolistiliseks transformatsooniiks, Helsingi Ülikool, Soome (K. Mäkineni labor)
1998 Meetodi omandamine võõrvalkude ekspressiooniks putukarakkude koekultuuris, Helsingi Ülikool, Soome (K. Mäkineni labor)
Kaitstud lõputööd: Silva Sütt, MSc (TTÜ, 2004)
                   Tiina Talts, BSc (TTÜ, 2004)
                   Maarja Otsus, MSc (TTÜ, 2005)
                   Liivi Tiismus, BSc (TTÜ, 2005)
                   Kairi Kärblane, BSc (TTÜ, 2006)

Teadustöö põhisuunad: Sobemoviirused

Tunnustused: 2009 Eesti Riigi Teaduspreemia põllumajanduses

Publikatsioonid:


8. **Anne Paju**. Asymmetric oxidation of prochiral and racemic ketones by using sharpless catalyst. 2001.


15. **Liivi Kluge**. On algebraic structure of pre-operad. 2002.


20. **Mart Viljus**. The microstructure and properties of fine-grained cermets. 2003.


34. Vitali Syritski. Study of synthesis and redox switching of polypyrrole and poly(3,4-ethylenedioxythiophene) by using in-situ techniques. 2004.
40. Olari Ilison. Solitons and solitary waves in media with higher order dispersive and nonlinear effects. 2005.
47. **Maria Kulp.** Capillary electrophoretic monitoring of biochemical reaction kinetics. 2006.


49. **Lyudmila Chekulayeva.** Photosensitized inactivation of tumor cells by porphyrins and chlorins. 2006.

50. **Merle Uudsemaa.** Quantum-chemical modeling of solvated first row transition metal ions. 2006.


52. **Angela Ivask.** Luminescent recombinant sensor bacteria for the analysis of bioavailable heavy metals. 2006.


54. **Kaja Kasemets.** Effect of changing environmental conditions on the fermentative growth of Saccharomyces cerevisiae S288C: auxo-accelerostat study. 2006.

55. **Ildar Nisamedtinov.** Application of $^{13}$C and fluorescence labeling in metabolic studies of Saccharomyces spp. 2006.

56. **Alar Leibak.** On additive generalisation of Voronoï’s theory of perfect forms over algebraic number fields. 2006.


59. **Marit Kauk.** Chemical composition of CuInSe$_2$ monograin powders for solar cell application. 2006.

60. **Julia Kois.** Electrochemical deposition of CuInSe$_2$ thin films for photovoltaic applications. 2006.


63. **Katrin Trummal.** Purification, characterization and specificity studies of metallopeptinases from *Vipera lebetina* snake venom. 2007.

64. **Gennadi Lessin.** Biochemical definition of coastal zone using numerical modeling and measurement data. 2007.


66. **Maria Borissova.** Capillary electrophoresis on alkylimidazolium salts. 2007.


68. **Kristjan Piirmäe.** Long-term changes of nutrient fluxes in the drainage basin of the gulf of Finland – application of the PolFlow model. 2007.
82. Anna Menaker. Electrosynthesized conducting polymers, polypyrrole and poly(3,4-ethylenedioxythiophene), for molecular imprinting. 2009.
84. Kaia Ernits. Study of In$_2$S$_3$ and ZnS thin films deposited by ultrasonic spray pyrolysis and chemical deposition. 2009.