Masinaehituse instituut
Autotehnika õppetool

MEA70LT

Marion Meius

KOMBAINI HEEDRI KAKSIKTEO
REMONDITEHNOLOGIA

Autor taotleb
tehnikeaduse magistri
akadeemilist kraadi

Tallinn
2016
AUTORIDEKLARATSIOON

Deklareerin, et käesolev lõputöö on minu iseseisva töö tulemus.
Esitatud materjalide põhjal ei ole varem akadeemilist kraadi taotletud.
Töös kasutatud kõik teiste autorite materjalid on varustatud vastavate viidetega.

Töö valmis lektor Janek Luppin juhendamisel

“11” jaanuar 2016 a.

Töö autor

.................................. allkiri

Töö vastab magistritööle esitatavatele nõuetele.

“......”.................201….a.

Juhendaja

.............................. allkiri

Lubatud kaitsmisele.

......................... eriala/öppekava kaitsmiskomisjoni esimees

“......”...............201… a.

.............................. allkiri
MAGISTRITÖÖ ÜLESANNE

2015 aasta sügissemester
Üliõpilane: Marion Meius, 124453MATMM
Õppekava: MATM02/11 - Tootearendus ja tootmistehnika
Erial: Transporditehnika
Juhendaja: lektor, Janek Luppin

MAGISTRITÖÖ TEEMA:
Kombaini heedri kaksikteo remonditehnoloogia
Auger repair technology of combine header

Löputöös lahendatavad ülesanded ja nende täitmise ajakava:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Ülesande kirjeldus</th>
<th>Täitmise tähtaeg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Teostada turuanalüüs</td>
<td>10.06.2015</td>
</tr>
<tr>
<td>2</td>
<td>Anda ülevaade remonditava detaili ehitusest</td>
<td>05.08.2015</td>
</tr>
<tr>
<td>3</td>
<td>Kaardistada deformatsiooni ulatus ja üldised kujuhälbed</td>
<td>05.08.2015</td>
</tr>
<tr>
<td>4</td>
<td>Selgitada välja remondivõimalused ja kriteeriumid</td>
<td>20.09.2015</td>
</tr>
<tr>
<td>5</td>
<td>Töötada välja õgvendusabinõu</td>
<td>15.10.2015</td>
</tr>
</tbody>
</table>

Lahendatavad insenertehnilised ja majanduslikud probleemid: selgitada probleemi aktuaalsus, määrama kohaliku turu suurus ja tõenäoline majanduslik mõõde. Uurida õgvendamise võimalusi ja määrama selle piirid.

Täiendavad märkused ja nõuded: -

Töö keel: eesti keel

Üliõpilane Marion Meius /allkiri/ kuupäev
Juhendaja Janek Luppin /allkiri/ kuupäev

Konfidentsiaalsusnõuded ja muud ettevõttepoolset tingimused formuleeritakse pöördel
SISUKORD

MAGISTRITÖÖ ÜLESANNE ... 3
SISUKORD .. 4
EESSÕNA ... 6
1. SISSEJUHATUS .. 7
2. TURUANALÜÜS .. 11
 2.1. Eesti kombainipark .. 11
 2.2. Kahjujuhtumite sagedus .. 14
 2.3. Kahjujuhtumite näited .. 15
 2.3.1. Teraviljakombain Claas .. 15
 2.3.2. Teraviljakombain New Holland .. 18
 2.3.3. Teraviljakombain Rostselmash .. 20
 2.4. Senine remondipraktika Eestis ... 21
 2.5. Olemasolevad remonditehnoloogiad mujal maailmas .. 24
 2.6. Huvigrupp uuele remonditehnoloogiale .. 27
 2.7. Kindlustusseltside osa remondiprotsessis .. 27
3. REMONDIPROTSESS .. 29
 3.1. Ettevalmistus ... 31
 3.2. Ehitus .. 32
 3.3. Plastsed deformatsioonid .. 34
 3.4. Remonditehnoloogia ... 38
 3.5. Mõõtmistööd ... 42
4. REMONDIVÕIMALUSED .. 51
 4.1. Koormusolukord ... 51
 4.2. Materjali omadused .. 53
 4.3. Remontimise kriteeriumid ... 54
 4.4. Remondiaeg ... 56
5. ÕGVENDUSABINÕU VÄLJATÖÖTAMINE .. 59
 5.1. Prototüübid ja nõuded .. 59
 5.2. Koormusolukord ... 62
 5.3. Materjali valik ... 69
6. FINANTSARVESTUS .. 71
7. OHUTUSTEHNNIKA ... 73
8. KVALITEEDIKONTROLL, GARANTII, KINDLUSTUS ... 75
KOKKUVÖTE .. 76
SUMMARY ... 80
KASUTATUD KIRJANDUS .. 84
LISAD .. 86
Lisa 1. A1 formaadis joonis Õgvendustald 1. .. 86
Lisa 2. A1 formaadis joonis Õgvendustald 2. .. 86
Lisa 3. A1 formaadis joonis Tugitald 1. .. 86
Eesti teraviljasektori tootmiskulude vähendamine, energia- ja keskkonna säästmine, äritegevuse efektiivsemaks muutmine läbi väiksemate kulude on need märksõnad, mis sai määravaks käesoleva töö valikul.

Teraviljakombaini heeksevõimalus kasvub eeskutsevate pestimisvõimade jaoks kiire-, alternatiivne- ja madalamat finantsressursi nõudujate tõttu. Nimetatud kasv spontaanselt, kuna sealt tuleb võimalik tõsta tootmist, publikus elu ja energiakonservatsiooni nõudumises.

Teraviljakombaini heedri kaksikteole ekspluatatsiooni käigus võõrkehade poolt tekitatud deformatsioonide õgvendamise remonditehnoloogia väljaarendamine ja selle praktikas rakendamine tõusis ideena päevakorda kuna see oleks kombainiomanike jaoks kiire-, alternatiivne- ja madalamat finantsressurssi nõudev remondivõimalus. Nimetatud remonditehnoloogia tähendab kaksikteo korpusse taastamist selliselt, et oleks võimalik selle edasine kasutamine.

Lõputöö teema on välja pakutud autori poolt. Töötades If P&C Insurance AS-is, kahjukäsitlusosakonna ekspertgrupi juhi ametikohal, puutub autor oma igapäeva töös tihedalt kokku raskete tehnikaga toimunud kindlustusjuhtumite lahendamisega, mille käigus tuleb välja selgitada põhjendatud remondimaksumus ja hinnata põhjust, mis saab tagajärg-vahelisi seoseid. Tavapärane on olukord, kus masina osa saab töö käigus kahjustuse, mille kõrvaldamine on tehnoloogiliselt võimalik, kuid väljaarendatud remonditehnoloogiad ja võimalused selleks Eestis puuduvad ning ainsaks lahenduseks on vahetamine kõrge hinnaga uue varuosa vastu.

Eriti piiratud on pöörlevate masinaosade remont, kuna remondi teostamine on keerukas ja vahelises tingimuses toimimata. Töö koostamine ja algandmete kogumine toimus koostöös kumbainide maaletoojatega, remondieteeteajutega, kumbaini omanikega ning masina operatooritega.

1. SISSEJUHATUS

Käesolev teema on fookusseeritud kombainide kaksiktigude remondi võimaluste leidmisele, kuna uue varuosa maksumus on kõrge ja tihti on vahetamisele kuuluva kaksikteo vigastused kõrvaldatavad. Kaksiktigu on üks enim haavatavamaid masinaosasid teraviljakombainil, mille puhul võib töö seiskuda (vt sele 1.1.).

Sele 1.1. Vaade kombaini heedrile, tähistatud on kaksiktigu [1]

Eestis oli eelmisel aastal rasketehnika müüjate andmetel 18 kaksiktigude vahetamise juhtumit, mis on põhiliselt põhjustatud kivide sattumisest teo korpusse ja heedri vanni plaatide vahele. Kuivõrd Eestis kivide rohkus pöldudel on teada kui igipõline probleem, siis võib sellest järeldada, et heedrite kaksiktigude kahjustumine on suure tõenäosusega jätkuv trend.

Intervjueerides kombainide maaletoojaid ja masinaomanikke, siis selle tulemusena on remondivajadus olemas ning nemad on potentsiaalsete klientidena asjast huvitatud juhul, kui tööle garantii antakse. Maaletoojaid motiveerib huvi pakkuda oma klientidele taskukohast ja
laiade võimalustega teenust ning omanike huvi on hoida madalal masinate remondile ja hooldusele kuluvaid summasid.

Töö käigus vaadeldakse Eesti kombainiturugu ja selle dünaamikat, et teada kuhu suunas liigutakse ning milline on enimlevinud tootja.

Autori üldine soov on arendada remonditehnoloogiaid, mis aitavad säästa energiat ja keskkonda, leides lahendused suurte tootmiskulusidega masinaosade taastamiseks, et kasutada lõpuni nende potentsiaalne ressurss. Töös uuritakse, millised võimalused kehtestab kaksikteo ehitus ja deformatsioonide olemus. Kindlasti tuleb teostada võimalikult täpsed mõõtmised nii deformeerunud kui ka uute kaksikrigude korputega, et aru saada korpuse geomeetria hälvetest ja hinnata remondi käigus saavutatavaid tõu.

Terase tootmine on väga energiamahukas tootmisharu, mis tekitab palju aherainet, saastab õhu ja keskkonda. Kaevandused muudavad piirkondades kasutuskõlbmatuks nii loomadele kui ka inimestele, tootmisprotsess mõjutab põhjavee kvaliteeti. Ainuüksi terase taaskasutamisega saab säästa 80% energiat, mis kulku rauamaagist terase tootmisele. Ühe kaksikteo tootmiseks vajaliku terase kogu tootmiseks kulub energiat sama palju kui ühe 160 m² eramu külmiku juures.[2]

Töö eesmärk on uurida võimalikke remonditehnoloogiaid, et vigastatud kaksikteoga oleks peale kiiret remonti võimalik jättata koristamist või peale väljavahetamist seda remontida nii, et oleks

Kaksiktegu remonditeenuse tuleb läbi viia kaksiktegu õgovendamiseks, milleks võib lugeda saavutatud praktiliselt väärtuslikuks vii misa masinast uuesti töökorda oluliselt ressursse säästvamalt ja väiksema ajakuluga. Arvesse võttes kombineeritavate õことができる info kohaselt eelmisel aastal vahetatud kaksiktegu õegovendamise hulka ja keskmist kaksiktegu maksumust, siis ainuüksi vahetatud kaksiktegu maksumus oli kokku 145000.- eurot koos käibemaksuga. Siin ei arvestata vahetamise maksumust ja neid juhtmeid, millest masinaomandikud maailmatalajate esindajaid ei informeerinud. Selleks, et hinnata remonditehnoloogia tasuvust tuleb läbi viia finantsanalüüs ja arvestada kokku tööd ja materjali, mis kuluvad kaksiktegu taastamiseks.

Täna kaksiktegu remonditeenust Eestis ei pakuta, siis on see käepäraste vahendite remonditav omaani poolt, kuid spetsiaalse tehnooloojilise seadmestiku puudumise tõttu on remonditegevus vaevaline. Tihti ei ole tulemus olud rahuldav, remonditav teo korpusesse tekivad ekspluatatsiooni jooksul praod ning hiljem on kaksiktegu ikkagi uue vastu vahetatud. Põhiliseks probleemiks tigude remondi juures on väidetavalt selle terves pikkuses sirgeks rihtimine ja viskumise kõrvaldamine. Samuti on olud probleemiks väntmehhanismi tugilaagrite perekonna kui kasutatakse lõplikult taastamise tekuks.

Sama probleemi ees nagu kombainiomanikud on ka autor käesolevat tööd koostades, kuna puudub tehnooloojilise seadmestiku, millega kaksiktegu korput õgovendada. Sellest tulenevalt on vaja töö käigus lahendada ka see ülesanne ja leida lahendus suurt töötmetega õovesvolliga opereerimiseks ning selle seina õgvendamiseks.

Kombainiomanik sõnul oli kunagi remonditeenust pakkunud Türi EPT, mis seisnes deformeerunud kaksiktegu osa asendamises, kuid täna seda teenust enam ei pakuta. Tolleaegsete
kombainide põhiline vaenlane oli purunenud kaksikteo sõrm, mis purunes suvalise kohapealt ja kaksikteo pöörlemisel lõikas murdunud sõrme jäänus sisuliselt korpuse pooleks. Kombainide maaeteojuate esindajate sõnul pakutakse kaksiktegude remonditeenust deformeerunud osade väljavahetamise teel Poolas ja Saksamaal, kuid konkreetseid ettevõtteid nimetada ei osatud. Internetis teostatud uuringu tulemusena pakutakse kaksiktegude remonditeenust USA-s, Kanadas ja Austraalias, kus samuti vahetatakse välja deformeerunud piirkond. Lisaks pakutakse USA turul abinõud, millega saab õgvendada sõrme avade deformatsioone ja kiiremondivõimalust, et pikendada võimalusel kaksikteo eluiga mingi aja võrra.
Analoogilisi töid ega projekte autor ei leidnud ja seega puudusid ka allikad, mida käesolevas töös vahetult kasutada.
2. TURUANALÜÜS

2.1. Eesti kombainipark

Kaksiktegude ehitusest on saadetud kombaini tootjate lõikes ja sellepärast on remonditehnoloogia väljaarendamisel oluline teada milliste markide vahel turg põhiliselt jaguneb.

kaheksa aasta taguse ajaga kui oli arvel 1235 kombaini. Kaheksa aastaga on tõusnud kombainide arv 3-5 ja 6-10 aasta vanuste kombainide segmendis ning langenud on oluliselt üle kümme aasta vanuste kombainide osakaal. Kuni kümne aasta vanuseid kombainide arv on suurenenud 270 tüki ehk 68% võrra ja üle kümme aasta vanuste kombainide hulk on vähenedud 231 tüki ehk 28% võrra. Vanuse poolest valitakse potsensiaalseks sihtgrupiks kuni viie aasta vanused kombainid, kuhu kuulub Maanteeameti statistika põhjal 420 kombaini.

Tabel 2.1. Eesti registreeritud kombainide arv markide ja ehitusaastate lõikes seisuga 01.01.2015. Värvidega on tähistatud kaks põhilist turuliidrit. Punase joonega on märgitud sihtgruppi kuuluvad masinad [3; 4]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Holland</td>
<td>11</td>
<td>11</td>
<td>20</td>
<td>48</td>
<td>25</td>
<td>17</td>
<td>19</td>
<td>43</td>
<td>48</td>
<td>28</td>
<td>270</td>
</tr>
<tr>
<td>Claas</td>
<td>19</td>
<td>12</td>
<td>16</td>
<td>25</td>
<td>17</td>
<td>21</td>
<td>22</td>
<td>45</td>
<td>55</td>
<td>31</td>
<td>263</td>
</tr>
<tr>
<td>John Deere</td>
<td>13</td>
<td>3</td>
<td>13</td>
<td>24</td>
<td>7</td>
<td>8</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td>28</td>
<td>142</td>
</tr>
<tr>
<td>Don/Rostselmash</td>
<td>20</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>Case</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>Sampo</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Fendt</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Laverda</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>kokku</td>
<td>65</td>
<td>32</td>
<td>64</td>
<td>119</td>
<td>64</td>
<td>48</td>
<td>66</td>
<td>122</td>
<td>133</td>
<td>96</td>
<td>809</td>
</tr>
</tbody>
</table>

Sele 2.2. Kombainituru jagunemine tootjate lõikes viimase kümne aasta andmete põhjal [3; 4]
2.2. Kahjujuhtumite sagedus

Kivi sattumine kombaini heedrisse 2014 aastal on autori poolt teostatud küsitluse põhjal Eesti kombainimüüjate vahel viinud kaksikteo vahetamiseni 18 korral. Kui võtta aluseks eelmisel aastal Eestis registreeritud vastavat marki kombainide kogus, siis vahetati 30% registreeritud kombainide heedritel kaksiktigu (vt tabel 2.2).

Tõenäosus, et kombaini heedrisse satub kivi ja see seal kahju tekitab on Eesti oludes väga suur. Siinjuures tuleb arvestada asjaoluga, et küsitluse põhjal kogutud andmete puhul on tegu nende juhtumitega, mis on kombainimüüjatele teada. Kindlasti on ka neid juhtumeid, millest ei teatatud ja mis remonditi kasutajate endi oskuste ning vahenditega.

Kivi sattumist heedrisse mõjutavad põhiliselt järgmised asjaolud:

1. Eesti kliimale omast kergitab talvised miinuskraadid kivid põllu seest välja. Eriti ohtlik on lumevaesed talved kui põllu pind külmub sügavamalt läbi, siis on ka külmakerked tõenäolisemad. Olukord tekivad ka juhul, kui kivide koristamisega on aktiivselt tegeletud.

Tabel 2.2. Tabelis on toodud 2014 aastal registreeritud kombainide hulk ja samal aastal vahetatud kaksiktigude hulk. Võrdlusena on välja toodud on prootsentuaalselt vahetatud kaksikteod registreeritud kombainide kohta.

<table>
<thead>
<tr>
<th></th>
<th>Claas</th>
<th>New Holland</th>
<th>Rostselmash</th>
<th>Fendt</th>
<th>kokku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registreeritud 2014</td>
<td>31</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>Vahetatud kaksiktigu</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

Kaksiktigude vahetamise osakaal 30%
2.3. Kahjujuhtumite näited

Alljärgnevad kolm näidet annavad ülevaate toimunud reaalsetest kahjujuhtumitest, mille käigus on kahjustatud kaksikteod välja vahetatud. Esimesel kahel juhul on tegu suhteliselt uude kaksiktigudega, millede korpuised on remonditavad. Esimesel juhul asub vigastus ühel pool servas, teisel juhul teo keskmises piirkonnas. Kolmas on kauem kasutuses olnud ja selle vigastused ning sellele eeline tehniline seisukord on nii halb, et remont ei tule kõne alla. Lisaks on remondi teostamise mõtekuse mõjul määrav ka uue analoogse varuosa maksumus, mis seab piirid remondimaksumusele.

2.3.1. Teraviljakombain Claas

Sele 2.3. Vaade kombainile Claas Tucano 320 [6]
Kahjujuhtumi tagajärgede kõrvaldamiseks vajalik remondikalkulatsioon on toodud tabelis 2.3.

Tabel 2.3. Kombaini Claas Tucano 320 5,4m heedri remondikalkulatsioon [5]

<table>
<thead>
<tr>
<th>Nimetus</th>
<th>Kogus</th>
<th>Hind</th>
<th>Summa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaksiktigu 5,4m komplektne</td>
<td>1</td>
<td>10201,95</td>
<td>10201,95</td>
</tr>
<tr>
<td>Laager</td>
<td>1</td>
<td>39,76</td>
<td>39,76</td>
</tr>
<tr>
<td>Laagrikomplekt</td>
<td>1</td>
<td>30,77</td>
<td>30,77</td>
</tr>
<tr>
<td>Laagriflants</td>
<td>2</td>
<td>8,79</td>
<td>17,58</td>
</tr>
<tr>
<td>Sõrm kaksikteole</td>
<td>1</td>
<td>8,30</td>
<td>8,30</td>
</tr>
<tr>
<td>Juhtplekk</td>
<td>1</td>
<td>145,24</td>
<td>145,24</td>
</tr>
<tr>
<td>Juhtplekk</td>
<td>1</td>
<td>429,29</td>
<td>429,29</td>
</tr>
<tr>
<td>Kõrretõstja</td>
<td>5</td>
<td>9,65</td>
<td>48,25</td>
</tr>
<tr>
<td>Sõidukilomeeter</td>
<td>213</td>
<td>0,50</td>
<td>106,50</td>
</tr>
<tr>
<td>Kahjud hindamine</td>
<td>1</td>
<td>47,50</td>
<td>47,50</td>
</tr>
<tr>
<td>Sõidukilomeeter</td>
<td>213</td>
<td>0,50</td>
<td>106,50</td>
</tr>
<tr>
<td>Remonditöö</td>
<td>19</td>
<td>47,50</td>
<td>902,50</td>
</tr>
<tr>
<td>Summa kokku</td>
<td></td>
<td>12084,14</td>
<td></td>
</tr>
<tr>
<td>Käibemaks</td>
<td></td>
<td>2416,83</td>
<td></td>
</tr>
<tr>
<td>Summa koos käibemaksuga</td>
<td></td>
<td>14500,97</td>
<td></td>
</tr>
</tbody>
</table>

Sele 2.4. Varuosakataloogi joonis kaksikteo detailide kohta [5]

Kokkupuutes kiviga tekkisid teo korpusse mölgid ja iseloomulikud abrasiivsed kraaped. Kahjujuhtumi järgseid vigastusi iseloomustavad seledel 2.5 ja 2.6 toodud fotod.
Järeldus: Vaatluse all oleva kaksikteo hind on kõrge, kombain on suhteliselt uus ja deformatsioonid on lauged, seega on kaksikteo korpuse remont mõttekas. Deformatsioon asub kaksikteo vasakpoolsest otsast 1/3 kaugusel selle kogupikkusest. Korpuse seinamaterjali paksus on 2,5 mm.
2.3.2. Teraviljakombain New Holland

Sele 2.7. Vaade kombainile New Holland CX8080 Elevation [8]

Kahjujuhtumi käigus tekkinud tagajärvede kõrvaldamiseks vajalik remondikalkulatsioon on toodud tabelis 2.4.

Tabel 2.4. Kombaini New Holland CX8080 Elevation 7.5m heedri remondikalkulatsioon [7]

<table>
<thead>
<tr>
<th>Nimetus</th>
<th>Kogus</th>
<th>Hind</th>
<th>Summa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoidja</td>
<td>5</td>
<td>7,30</td>
<td>36,50</td>
</tr>
<tr>
<td>Kaksikteo sõrm</td>
<td>6</td>
<td>15,00</td>
<td>90,00</td>
</tr>
<tr>
<td>Mutter</td>
<td>10</td>
<td>4,60</td>
<td>46,00</td>
</tr>
<tr>
<td>12 Seib</td>
<td>8</td>
<td>0,05</td>
<td>0,40</td>
</tr>
<tr>
<td>Tigu 7,5 Varifeed</td>
<td>1</td>
<td>4305,00</td>
<td>4305,00</td>
</tr>
<tr>
<td>Teenustasu</td>
<td>20</td>
<td>43,20</td>
<td>864,00</td>
</tr>
<tr>
<td>Remondimaterjalid</td>
<td>2</td>
<td>7,50</td>
<td>15,00</td>
</tr>
<tr>
<td>Summa kokku</td>
<td>5356,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Käibemaks</td>
<td>1071,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summa koos käibemaksuga</td>
<td>6428,28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Järeldus: Vaatluse all oleva kaksikteo hind on kõrge, kombain on suhteliselt uus, deformatsioonide ulatus on suur, kuid siiski on mõttekas kaaluda kaksikteo korpuuse remonti. Deformatsioonid asuvad korpuse keskosa piirkonnas, mis on otsalaagrist kõige kaugemal ja arvukate tehnoloogiliste avadega sõrmede läbiviikudeks. Seega on tegu korpuse üldise jääkuse seisukohalt nõrga piirkonnaga, kuna toetuspunkt on kaugel ja pingekontsentraatoritena töötavaid avasid palju. Korpuse seinamaterjal on 3 mm paksune.
2.3.3. Teraviljakombain Rostselmash

Sele 2.9.Vaade kombainile Rostselmash Vector 420 [9]

Kahjujuhtumi käigus tekkinud tagajärgede kõrvaldamiseks vajalik remondikalkulatsioon on toodud tabelis 2.5.

Tabel 2.5. Kombaini Rostselmash Vector 420 6m heedri remondikalkulatsioon [9]

<table>
<thead>
<tr>
<th>Nimetus</th>
<th>Kogus</th>
<th>Hind</th>
<th>Summa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaksiktigu</td>
<td>1</td>
<td>1895,00</td>
<td>1895,00</td>
</tr>
<tr>
<td>Söötebitter</td>
<td>1</td>
<td>872,00</td>
<td>872,00</td>
</tr>
<tr>
<td>Kaldtransportöör</td>
<td>1</td>
<td>325,64</td>
<td>325,64</td>
</tr>
<tr>
<td>Laager</td>
<td>1</td>
<td>8,80</td>
<td>8,80</td>
</tr>
<tr>
<td>Laagripsesa</td>
<td>1</td>
<td>13,53</td>
<td>13,53</td>
</tr>
<tr>
<td>Tarvikud</td>
<td>1</td>
<td>6,50</td>
<td>6,50</td>
</tr>
<tr>
<td>Söidukilomeeter</td>
<td>44</td>
<td>0,85</td>
<td>37,40</td>
</tr>
<tr>
<td>Töö</td>
<td>7</td>
<td>29,00</td>
<td>203,00</td>
</tr>
<tr>
<td>Summa kokku</td>
<td></td>
<td>3361,87</td>
<td></td>
</tr>
<tr>
<td>Käibemaks</td>
<td></td>
<td>672,37</td>
<td></td>
</tr>
<tr>
<td>Summa koos käibemaksuga</td>
<td></td>
<td>4034,24</td>
<td></td>
</tr>
</tbody>
</table>
Järeldus: Vaatluse all oleva komplektse, koos sõrmede väntmehhanismiga kaksikteo hind on madal, korpust on eelnevalt üritatud remontida, kuid tulemusteta. Kaksiktega on jäänud toonud väsimuspragude tekkimise korpuse materjalis. Nimetatud kaksikteo seina materjali paksus on 1,5 mm, mis on oluliselt väiksem. Korpuse seisukord on äärmiselt halb ja kombain on kaheksa aastat vana, seega ei ole mõttekas kaksikteo korpust remontida.

2.4. Senine remondipraktika Eestis

Korpuseid ja komplektseid kaksikteoeid on alternatiivide puudumise tõttu siani põhiliselt vahetatud.

Põhjus, miks pigem müüakse komplektseid varuosi kohapeal monteerimise asemel on garantiis ja tootjate müügisurves. Tootjatehases komplekteeritud koostu eksimused kuuluvad tehase
vastutusalasse aga kohapeal kokku monteeritud vead peab körvaldamata kohalik töö teostanud töökoda. Tarbimisühiskonnale kohastel on oma osa lootjaemaste müügisurves, et müüdaks võimalikult palju varuosi. Varuosade müüg pealt teenivad kasumit maaletoojad ja vahendajad, kuid põhiline raha liigub Eestist välja, mille kokkuvõttes maksab kinni kohalik rahapuuudes vaevlev pöllumees.

<table>
<thead>
<tr>
<th>Tabel 2.6. Kaksikteo vahetamised maksumised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaksikteo</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Korpus</td>
</tr>
<tr>
<td>Komplektne</td>
</tr>
</tbody>
</table>

Kuivõrd käesoleva töö käigus keskendutakse eelkõige kaksikteo korpus vahetusele, siis tuleb aluseks vötta keskmiselt 8050 eurot maksev vahetus.

Kaksikteo vahetamise kriteeriumid ei ole kombainide tootjate poolt konkreetsett sätestatud. Vahetuse vajadus tuleneb kasutusjuhendidist [10; 11; 12], kus on sätestatud teo keerme kaugus heedri põhjast ja puhastusplaatidest. Kauguse reguleerimine sõltub koristatavast kultuurist. Kaksikteo keermega transporditakse koristatud kultuur mööda heedri põhja teo keskele kokku, kust see edasi kaldtransportöörile ette sõõdetakse. Kui kaksikteo ei ole võimalik selle viskumise tõttu piisavalt ligidale reguleerida heedri põhjale ja puhastusplaatidele, siis mähekub transporditav kultuur ümber teokorpuse ja sellisel juhul ei ole võimalik sellega enam koristamist jätkata. Kaksikteo keerme kaugus heedri põhjast varieerub vastavalt kombainide tootjale, koristatavale kultuurile ja selle mahule 10…20mm ning puhastusplaatid peavad olema reguleeritud kaksikteo spiraalile võimalikult ligidale. Reguleerimise näide on toodud seledel 2.11; 2.12; 2.13.
Kaksiktiugu nimetatakse tootjate lõikes erinevalt nagu sissetõmbetigu, tigu ja kaksiktiugu. Kuna kaksiktiugu on enamlevinud väljend, siis otsustas autor kasutada seda terminit. Samuti nimetatakse erinevalt ümber korpuse kulgevat plekist keeret nagu spiraal, teo laba või teokeere. Kuna keere on samuti leidnud kõige enam kasutust, siis otsustas autor kasutada seda terminit.

Sele 2.11. Väljavõte Claas Varioheedrite kasutusjuhendist, heedri üldvaade [10]

Sele 2.13. Väljavõte Claas Varioheedrite kasutusjuhendist, kaksikteo seadistamine [10]
10.4.2 Sissetõmbeteo asendi muutmine
Vahekaugus (X) peaks sissetõmbeteo kogu pikkuse ulatuses olema umbes 20 mm.
Väga raskete vaalude ja suuremõõtmelise ning murduva pekstava materjali korral seadistage sissetõmbetigu kõrgemale.

2.5. Olemasolevad remonditehnoloogiad mujal maailmas

Käesolevas töös arendatavat või selle sarnast remonditehnoloogiat kasutusest ei leitud. Interneti vahendusel on leitav USA-s, Kanadas ja Austraalias tegutsevaid ettevõtteid, kes pakuvad kaksikteo remonditeenust deformeerunud sektsioonide väljavahetamise teel [13; 14; 15]. Lisaks on saadaval ka patenteeritud abinõu kaksikteo sõrme avade deformatsioonide õgvendamiseks [18], mille kaks joonist on toodud selel 2.14.

Sele 2.14. Vaade patenteeritud abinõu joonistele, millega õgvendatud kaksikteo sõrme ava deformatsioone [18]
Õgvendamise põhimõte seisneb kahe suures seibis, mille raadius on kaksikteo korpuse läbimõõdule vastav. Üks seib paigaldatuse kaksikteo toruseina sisse ja teine välja ning läbi ava paigaldatuse polt, millega seibid keeratakse tihealt üksteise vastu (vt sele 2.15). Sisemise seibi külge on keevitatud ka mutter, mis lihtsustab abinõu paigaldamist ja kasutamist.

Sele 2.15. Vaade sõrme avasse paigaldatud „Tru Tube“ abinõule [16]

Järgnevatel Seledel 2.16 ja 2.17 on toodud näiteks USA-s tegutsevas ettevõttes Barnes Welding Inc remondis oleva- ja remonditud kaksikteo korpuses

Sele 2.16. Vaade ettevõttes Barnes Welding Inc remonti toodud kaksikteost enne remonti [19]
Sele 2.17. Vaade ettevõttes Barnes Welding Inc väljavahetatud keskmise sektsooniga kaksikteole peale remonti [19]

Järgenval selel 2.18. on toodud näiteks USA ettevõtte Midwest Ag Parts pakutud kiir-remondlahendus kaksikteo korpuse ajutiseks remondiks. Lahendus kujutab endast teo korpusele vastava kumerusega terasplekist perforeeritud plaati, mis kinnitatakse isepeitivate kruvidega kaksikteo korpusse deformeerunud alale. Kiirlahenduse eesmärgiks on tagada kaksikteo korpuust vastupidavus ja vähendada purunemise võimalust ning võimaldada jätkata-või lõpetada viljakoristamine olukorras kus deformatsioonid ei ole takistuseks teo pöörlemisel. Lahendus on sobiv kiirremondiks arvestades viljakoristushooajal piiratud aega.

Sele 2.18. USA ettevõtte Midwest Ag Parts poolt pakutud kiir-remondlahendus kaksikteo korpuuse ajutiseks remondiks [14]
2.6. **Huvigrupp uuele remonditehnoloogiale**

Käesoleva töö remonditehnoloogia põhineb kaksikteo korpusse plastsete deformatsioonide õgvendamises terve korpusse ulatuses selliselt, et oleks võimalik lõpuni kasutada juba toodetud masinaosa potentsiaalne ressurss. Remonditehnoloogia huvigrupp on kombineeritud ja tootjate esinduste kohalikule turuüliidrite remonditöökojad, kes soovivad oma klientidele pakkuda alternatiivseid ning soodsamaid võimalusi kaksikteo remondiks.

Kombineeritud maalegi hulgale läbiviudest õitlustuse ja kombineeritud hulgas pistelise õitlustuse tulemusena võib teha järelprügi, et huvi sellise teenuse vastu on turul olemas juhul, kui pakutava teenuse tulemus on kvaliteetne ja tööle antakse garantii. Omal käel on korpuseid remontida proovitud nii remonditöökokodes kui ka korpuse seas, laupäeval on ühe ettevõtte loikes vähe, siis puudub professionaalselt ja spetsialiseerumine. Remondiprotsessil on põhiprobleemiks väädetavalt viskumise kõrvaldamise korpusse ja korpuse tasakaalustamine. Samuti on probleemiks aeg ja oskustööliste puudumine, kuna hooajal on mölemad ressursid piiratud.

Eestis enamlevinud kombainimüüjate vahel läbiviidud küsitluse põhjal remonditeenust ei pakuta, kuna tegutsetakse tehase esindajatega ja selleks väljatöötatud tehnoloogiat ei ole. Garantitingimuste järgi annavad tootjate esindused oma tööle 6 kuulise garantii, kuid eetistik ehitavaks võib hoida kontrolli all kahjulikude huvi õitlustuse eest, et hoida kontrolli all kahjuväljamaksete suurus ja olla kindlustusturul oma toodetega konkurentsivõimeline.

2.7. **Kindlustusseltside osa remondiprotsessis**

Kindlustusseltside huvi on maksta kahjujuhtumi toimumisel hüvitise põhjendatud remondimaksumuse eest, et hoida kontrolli all kahjuväljamaksete suurus ja olla kindlustusturul oma toodetega konkurentsivõimeline.

Sellega seotud on seltsidel huvi remontida- või äärmisel juhul vahetada korpus ning jätta kahjustamata detailid vähestest. Seltside poolne surutustide teostatud põhjendatud remont kannab endast kokkuvõtte ölist eesmärki jätta remondile kuluva rahaga Eestisse ja pigem maksta mahukama töö eest, mis tuleb ikkagi kokkuvõttes soodsam, kui vahetada kallihinnalisi komplektseid varuosade kooste.

Praktikas on kombaini soetamine seotud suure väljaminekutega, millele on vajalik leida finantseerija. Finantseerija üks kindel tingimus on masina kindlustamine, mis tingib olukorra, et kindlustatakse just uusi ja kahjulikud corpusse muutuvad. Peale finantsasutusega lepingu lõppemist üldjuhul enam omaniku enda initsiatiivil masinaid ei kindlustata.
Eesti kindlustusturul on levinud suhtumine, kus kindlustatud masinaga juhtunud avarii korral nõuab omanik võimalikult suures koguses vigastatud varuosade vahetamist uute vastu. Sellise olukorra võib tingida kindlustusperioodi ajal makstud kõrged kindlustuspreemiat ja kahjujuhtum võib tunduda võimalusena makstud raha tagasi saada. Pikemas perspektiivis on tegu lühinägeliku tegevusega, sest mida kõrgemad on väljamaksed seda kõrgemate hindadega on vastav kindlustustoode. Samas kui tegu on kindlustamata masinaga, mille puhul on remondi eest tasujaks masinaomanik ise, siis pigem kahjustatud varuosad remonditakse kui vahetatakse ja leitakse muu soodsam lahendus. Mittekindlustatud masinate puhul on esinenud olukord, kus kahjustatud varuosa remontimise otsus kvalifitseerub äärmustesse kalduvaks kompromissiks. Pigem aitab igas olukorras mõistlik suhtumine nii remondi kui kindlustuskaitsete hindasid alandada ja muutuda tarbijale rohkem taskukohasemaks. Põhjendatud väljamaksete kontrolli all hoidmisega tegeleb kindlustusseltsis kahjukäsitleusakond kelle tegelikku osatähtsust suures pildis klientide poolt tihti ei mõisteta. Eelpool toodu tingib olukorra, kus soodsamate lahenduste leidmisel on initsiatiiv just kindlustusseltside kahjukäsitleusakondade töötajatel.
3. REMONDIPROTSESS

Väljaarendatava ja reaalsuses kasutatava remonditehnoloogia juures on praktikas läbi vaadatud katsed möödunud ajadest. Selleks, et vältida liigsete tegevusi remondiprotsessil ja leida optimaalseim lahendus on vaja aru saada remonditava varuosa ehitusest, deformatsioonide olemusest ja nende mõjutust selle üldisele geomeetriaile.

Nimetatud teemadest ülevaate saamiseks alustati praktiklist osa vaatluse ja uurimusega, mille läbiviimiseks valiti katseehakses reaalses kahjujuhtumis vigastatud kaksikteo korpus. Nimetatud korpusest oli eelpool juttu alajaotises 2.3.1. (vt ka sele 3.1).

Uuringu käigu otsustati koguda järgmised andmed:

- korpuse mõõtmed – on vajalikud tööruumi-, abinõude- jms vajalike abivahendite dimensioonimiseks;
- vigastuste asukoht, iseloom ja ulatuse määramine
- kaksikteo korpuse ehitus – aitab parmini mõista deformatsiooni tekkimise ja kõrvaldamise iseloomu;
- remonditehnoloogia ja selle rakendamise tulemused.

Andmete kogumiseks paigaldati kaksikteo ajutistele puidust pukkidel, kus oli võimalik seda mugaval töökõrgusel ümber oma telje pöörata (vt sele 3.1; 3.3).
Sele 3.1. Vaade katsekehaks välja valitud kaksikteole, tähistatud on deformatsiooni asukoht

Kuna kaksiktegu on mõõtmetelt suur, siis modelleeriti programmis Solid Edge kaksikteo mudel, mida kasutatakse töös parema visualiseerimise eesmärgil.

Sele 3.2. Vaade programmis Solid Edge koostatud mudelile, tähistatud on deformatsiooni asukoht
3.1. Ettevalmistus

Sele 3.3. Vaade ajutisele stendile, tähistatud on kujutetavad teljed
3.2. Ehitus

Kaksikteo 5420 mm pikkune korpus koosneb omavahel kokku keevitatud kolmest torust, millest üks 2000 mm pikkune osa paikneb keskel ja kaks 1710 mm pikkust otstes (vt sele 3.4).

Sele 3.4. Vaade programmis Solid Edge modeelitulemusele, nooltega on tähistanud torud

Torud on painutatud 2,5 mm paksusest lehtmaterjalist, mille keskmise läbimõõt on 382,4 mm. Lehtmaterjal on piki toru kokku keevitatud kasutades pökkliidet ja torude omavaheliseks ühendamiseks on kasutatud katteliidet ning korkõmblust (vt sele 3.5).

Sele 3.5. Vaade torude liitekohale väljast, tähistanud on keevisi sildet

Korkõmblus on keevitatud läbi korpuse kahte toru omavahel tsentreeriva liititoruni, mis hõlbustab korpuse tootmisprotsessi (vt sele 3.6; 3.7). Kaksikteo mõlemas otsas on otsasein, mille külge kinnitatakse poltlititega äärivöll ja sisemise väntmehhanismi väljuva völli laagri kinnituskruvi. Äärivöll toetub heedri raami külge kinnitatud laagride, mille peal tigu pöörleb.
Programmis Solid Edge mudelile modeleeriti korpuse mõlemasse otsa lihtsustamise huvides äärikvöll, kuna väntmehhanismile käesolevas töös ei keskenduta. Lisaks otsaseintele on korpuses neli vahe-seina mille külge kinnitatakse poltliitega sõrmede väntmehhanismi laagri kinnitusvörrud. Otsaseinad ja vahe-seinad on toruga ühendatud keevisõmbusega kasutades korkliidet. Eel pool nimetatud korpuuse sisemised detailid on samuti modeleeritud ja toodud sele 3.6.

Sele 3.6. Vaade programmis Solid Edge modeleeritud mudeli detailidele

Sele 3.7. Vaade tsentreerivale liitutorule

Toru ümber on keevis- ja poltliitega paigaldatud teokeere (vt sele 3.8; 3.10). Kaksikteo toru seina sees on tehnoloogilised avad sõrmede juhtpuksidele ja väntmehhanismi paigaldamiseks, hooldamiseks või remondiks (vt sele 3.8; 3.10).
3.3. Plastsed deformatsioonid

Visuaalsel vaatlusel koosneb põhideformatsioon, mille pärast kaksiktiug vahetati, viiest suuremast mõlgist. Üksikuid väiksemaid vigastusi esineb ka mujal piirkondades, mis seisnevad sõrmede murdumise käigus tekkivad avad. Üksikuid väiksemaid vigastusi esineb ka mujal piirkondades, mis seisnevad sõrmede murdumise käigus tekkivad avad ja teokeerme deformatsioonis. Kuna väiksemad vigastused ei põhjusta kaksikpte korpusele olulisi kujuhälbeid, siis nende olemusele selles töös ei keskenduta ja tähelepanu suunatakse põhideformatsioonile.

Põhideformatsiooni ulatus väljendub alljärgnevad:

1. Plastse deformatsiooni keskkoht asub korpuse vasakpoolset otsast 1460mm kaugusel;
2. Plastse deformeerunud piirkond jääb korpuse otsast piki suunas 1240-1670mm vahelisele alale (vt sele 3.9; 3.10);
Kaksikteo korpuse mõõtmine ja vigastuste positsioneerimine süstematiseeriti kahe parameetri järgi:

1. Mõõtepunkt - kaksikteo korpuse otsast kaugus (mm). Selel 3.11 toodud näite puhul märgitud mõõtepunkti number 1.1. liini nr 1 ja mõõtepunkti nr 1.

Sele 3.10. Vaade korpuse plastselt deformeerunud alale

Sele 3.11. Vaade mõõtepunktile.
Sel ne 3.12. Vaade kaksikteo korpus otsaplaadile, kuhu on märgitud liini numbrid

Vastavalt kasutatud mõõtmise süsteemile paiknevad korpus põhilised plastsed deformatsioonid järgmiselt:

1. Ristisuunas asub deformatsiooni ala põhiliselt liinide 1 ja 2 vahelisel alal ulatudes üle liini 1 suunaga liini 4 poole 100 mm;
2. Deformatsiooni pindala on 430x620 mm;
3. Deformeerunud alal on viis eristatavat mõlki (vt sele 3.13):
 a. Mõlk nr 1 asub liinist nr 1 suunaga liini 4 poole 100 mm, pindalaga 100x120 mm, sügavusega 16,5 mm;
 b. Mõlk nr 2 asub liinil nr 1, pindalaga 170x110 mm, sügavusega 9 mm;
 c. Mõlk nr 3 asub liinil nr 1, pindalaga 80x100 mm, sügavusega 9,5 mm;
 d. Mõlk nr 4 asub liini nr 1 ja liini nr 2 vahelisel alal, pindalaga 220x130 mm, sügavusega 12 mm;
 e. Mõlk nr 5 asub Liinil 2, pindalaga 200x100 mm, sügavusega 9 mm;
Sele 3.13. Vaade deformeerunud piirkonnale, sirgetega on tähistatud liinid ja ringidega mõlkide numbrid

Mõlkide sügavuse mõõtmiseks valmistati vastav šabloon, mis vastab korpuse välisele kujule (vt sele 3.14)

Eelpool loetletud deformatsioonide poolt tekitatud varjatud kujuhälbeid kaksikteo korpusele kirjeldavad peatükis 3.5 läbiviidud mõõtmise tulemused.
3.4. Remonditehnoloogia

Remonditehnoloogia meenutab oma olemuselt venitusvormimist. Kaksikteo korpuse sisse paigaldatud hüdrauliline silinder, mille otstes on toru sisemisele raadiusele vastavad tallad (vt sele 3.15 ja 5.2). Hüdraulilise silindri väljasurumisel surutakse tallad vastu korpuse seina sisemist pinda. Õgvendustallad erinevad pindala poolest vastavalt, kas tegu on tugitallaga või ögvendustallaga. Tugitall on ögvendustallast kolm korda suurema pindalaga. Kuna hüdraulilise silindri pikenemisel surutakse silinder mõlemas suunas välja täpselt ühesuguse jõuga, siis määrab suuremate pingete tekitamise asukoha väiksema pindala.

Pinge suunamise põhimõte tugineb lihtsal tugevusöpetuses tuntud definitsoonil, mille järgi sõltub pinge materjalis pindalaühikule mõjuva välise jõu suurusest. Antud juhul reguleerimegi taldade pindalade erinevusega hüdraulilise silindri väljasurumisel suuremate pingete tekkimise suunda.

Väiksema pindalaga ögvendustallaga tekitatakse plastse deformatsiooni alas korpuuse seina materjalis painedeformatsioonide suunas seest välja ehk vastupidiselt võõrkehaga kokkupuutel tekkinud suunale. Deformatsioon surutakse seest välja mitme siirdega, järk järkult, et vältida materjali väljavenitamist. Sellest tulenevalt on tugisüsteemi, kannatlikkust- ja kogemusi nõudva tööoperatsiooniga. Õgvendamise eesmärk on taastada korpuse esialgne kuju. Õgvendamise käigus kasutatakse väiksem materiaalide õgvendamiseks plaadlike õgvendustallaga erinevate plastsete deformatsioonide õgvendamiseks ka vasara abi.

Vasaraga õgvendamisel kasutatakse keskmine suuresega õgvendustallada, mis on mõõdetud suurem ja massi poolest raskem, et õgvendustöö oleks efektiivsem. Vasaraga töötades kasutatakse alasile- ja alasilt mõõdalöömise tehnikat [22], kus alas osa täidab õgvendustallad. Tehnika peab õgvendama korpuuse seina painedeformatsioonid, vältida tuleb materjali mahulist vähendamist. Pingule venitatud materjal on õgvendustallast pinnal ja selle körval kergemini õgvendatav. Tuleb olla väga ettevaatlik, et materjali välja ei venitata, sest selle hilisem kahandamine on aeganõudev protsess, mis ei pruugi õnnestuda.

Venituspainutusega sarnaneb remonditehnoloogia selle poolest, et materjal tömmatakse kahe talla vahel pingule, mille käigus toimub soovimatute plastsete deformatsioonide välja surumine. Remonditehnoloogia erineb venituspainutusest selle poolest, et materjali plastset venitamist välitakse igal juhul kuna see toob endaga kaasa soovimatuid üldisi kaksikteo korpuse geometria muutusi.
Sele 3.15. Vaade õgvendusprotsessile, kujutised on paremini visualiseerimise eesmärgil esitatud ülivördes

Sele 3.16. Vaade kujutatud korpuse deformatsiooni põhimõotteskeemile

Selel 3.16 on punasega tähistatud võõrkeha poolt põhjustatud plastne deformatsioon, mis tõi endaga kaasa kaksikteo korpuse üldine elastse deformatsiooni, nooltega on tähistatud deformeerumise suund.

Korpuse üldise geomeetria kujuhälbed seisnevad selle elastses deformatsioonis, mille põhjustab plastsest deformeerunud ala. Kujuhälbed muudavad korpuse pöörlemisel selle raskuskeset ja tekitavad viskumist, sest pöörlemistelg ja raskuskeskme telg on üksteise suhtes nihkes.

Tasakaalustamata kaksikteoga töötamine toob kaasa vibratsiooni ja olulise koormuse tõusu tugilaagrite. Samuti ei saa selliselt deformeerunud kaksikti kasutada sihtmäärade tõhusa ja lihtsama reguleerimiseks.

Tasakaalustatuna korpuse pöörlev kaksikteo korpus plastne deformatsioon on liigseid pulseeriva surve ja tõmbepingeid. Pulseerimine saab toimuda kaksikteo korpuse omakaalu ja tsentrifugaaljõu mõjul.

Vaadeldes deformatsiooni toru läbilõikes, siis selle tagajärjel toimub samuti toru üldine deformeerumine, mille tagajärjel ei ole ristlöike tasapinnas tegu enam kujutletava röövaga vaid see sarnaneb ellipsiga. Toruristlöikekujul φ=1 m võlush on toodud selel 3.17, kus punasega on tähistatud võõrkeha poolt põhjustatud kaksikteo korpuse üldine deformatsiooni ja nooltega on tähistatud deformeerumise suund.
Sele 3.17. Vaade korpusle läbilõike põhimõtteskeemile mölgi asukohas

Sele 3.18. Vaade erinevate deformatsiooni astmete põhimõtteskeemile läbilõikepinnas

Pingete tekkimine plastse deformatsiooni piirkonnas sõltub lehtmaterjali mõõtmetest peale jääkdeformatsiooni. Kui ala mõõtmed vähenevad, siis kutsub see materjalis esile survepingeid, kui suureneb, siis tõmbepingeid. Avarii käigus tekkiva deformatsiooni ulatust ei saa ette prognoosida, kuna see sõltub eelkõige kombaini liikumiskiirusest, kaksikteo pöörlemise kiirusest, kokkupuutekohast ja väärtukama mõõtmetest ning kujust, operaatori reageerimiskiirusest jms. Deformatsiooni ulatust saab tagant järgi määrata peale avari toimumist ja sellest lähtudes võtta vastu otsus kasutatava remonditehnoloogia osas.
Eriti väikeste painderaadega deformatsiooni puhul tuleb tähelepanu pöörata asjaolule, et see mõjutab rohkem välismisi materjalikihte, kuhu võivad tekkida praod. Pragude tekkimise oht just välimistesse kihtidesse mõjutab materjali voolepiiri, mis on metallide puhul tõmbel alati mõnevörra väiksem kui survel [23]. Pragude tekemise oht just välimistesse kihtidesse mõjutab materjali voolepiiri, mis on metallide puhul tõmbel alati mõnevörra väiksem kui survel [23].

3.5. Mõõtmistööd

Mõõtmistööde käigus saadavad tulemused annavad ülevaate kaksikteokorpuse kujust ja selle hälvetest, mis annab võimaluse mõõtmistööde eesmärgil ise valida tootmistolerantsidega ja hinnata hiljem töö tulemist.

Ettevalmistus hõlmab endas enne mõõtmistööde alustamist kaksikteo korpusi visuaalset vaatlust ja tootmistolerantside hindamist, et määrata ligikaudne mõõtevahendite täpsusklass. Mõõtmisel kasutatud abivahendite loetelu ja nende tootmisõigused annavad võimaluse võrrelda neid tootmistolerantsidega ja hinnata hiljem töö tulemust.

1. Optiline nivelliir Sokkia C41 koos kolmjalg statiiviga, millega looditi teo toetuspunktid ja loeti joonlaual kõrgusnäite;
2. Müürinöörid tekitati visuaalne teo keskkohas paralleel, et lihtlustada mõõtmistööde positsioneerimist;
3. Mõõdulindikate asukohad teo piki- ehk edaspidi y-teljel;
4. Metalljoonlaudadega mõõdeti korpus pinnalt kõrgus nivelliiri objektiivini;
5. Magnetilised keevitusnurgikuid kasutati mõõtevahendite fikseerimiseks korpusi välimispinnal;
6. Loodiga looditi joonlaud korpusi ristipinna ehk edaspidi z-telje suhtes;
7. Kahest nurgikust ja keevitusnurgikutest tehti tööriist, millega mõõdeti kaksikteo korpusi väline läbimõõt;
8. šablooni korpus toru välismise pinna hälvete tuvastamiseks valmistati 1mm paksusest plekist ja vineerist, millega kontrolliti korpusi toru välispinna kujuhäilibeid;
9. Lisaseadmeteks olid kolmnurk redel, marker, fotoaparaat, paber ja pliiats.
Sele 3.19. Vaade tööasendis nivelliirile Sokkia C4

Kuna optilist nivelliiri ei liigutatud vaid looditi paika ja kasutati ainult sirge saamiseks ning näitute lugemiseks, siis seadme tehnilist spetsifikatsiooni mõõtetäpsuse määramisel ei arvestatud ja võeti mõõmise täpsusklassiks joonlaual olevate näitute vahe 0,5mm. Nivelliiri kasutamine tööasendis on toodud selel 3.19, kus vasakul on deformeerunud kaksikteo mõõmisel ajutises stendis ja paremal uue analoogilise kaksikteo mõõmisel järeilhaagisel asetseval heedril.

Arvestades esialgset visuaalsel vaatlusel ja mõõtmisel saadud tulemusi on valitud mõõtetäpsus vajaliku uuringute teostamiseks piisav. Stendis mõõmisel looditi kõigepealt omavahel laagripükid, millele kaksiktiugu toetub ja seejärel töötati välja süsteemne mõõtmisprotsess, et saada ülevaade deformatsiooniga kaasnenud kujuhälytest.

Kaksikteo korpuse kujuhälybed vastavad alajaotises 3.4 sarnaselt välja toodud deformatsioonidele ja üldistele kujumutustele. Võörkehaga kokkupuutete tagajärgel tekkinud plastne deformatsioon on mõjutanud kogu kaksikteo geomeetria. Väljatöötatud remonditehnooloogiat kasutades saavutati uuele sarnasele tootele vastav täpsusklass. Kaksikteo korpuse väline kuju mõõdeti kokku 48 punktist, mis andis kujuhälyvetest piisava ülevaate. Mõõtmine toimus neljel liinil, mis asetsesid üksteise suhtes 90° nurga all. Igal liinil
oli 12 mõõtpunkti, mille asukoht vailiti strateegiliselt olulistes kohtades nagu toru keskkoht, torude liitekoht, vaheseina asukoht, otsaseina asukoht (vt sele 3.20).

Sele 3.20. Vaade programmis Solid Edge kujutatud kaksikteo mõõtpunktidele

Sele 3.21. Vaade korpuse välispinnale märgitud mõõtpunktidele 1.4. ja 1.5

Üksteise suhtes vastastiku asetsevate liinide mõõtmistulemuste vahe toob kõrge parmini välja tegeliku korpuse geomeetria ja selle kujuhälbed. Sellest lähtudes esitatakse tabelis mõõtude vahe, mis lihtsustab kujuhälvetest arusaamist. Tabelites 3.1 ja 3.2 on toodud mõõtmistulemuste vahed enne ja peale remonti liinidel 1 ja 3 ning 2 ja 4. Seledel 3.22 ja 3.23 toodud graafikud kujutavad hästi kaksikteo korpuse üldise geomeetria muutumist peale plastse deformatsiooni ögvendamist, mis on tähistatud ovaaliga.
Tabel 3.1. Mõõtmise tulemuse vahed enne- ja peale remonti liinidel 1 ja 3

<table>
<thead>
<tr>
<th>liin/punkt</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liin 1_3_enne remonti</td>
<td>0,0</td>
<td>4,7</td>
<td>5,3</td>
<td>6,5</td>
<td>7,5</td>
<td>6,6</td>
<td>7,3</td>
<td>6,4</td>
<td>5,5</td>
<td>4,0</td>
<td>2,8</td>
<td>0,0</td>
</tr>
<tr>
<td>Liin 1_3_peale remonti</td>
<td>0,0</td>
<td>2,1</td>
<td>0,1</td>
<td>-0,3</td>
<td>2,2</td>
<td>0,7</td>
<td>1,8</td>
<td>2,8</td>
<td>2,3</td>
<td>1,3</td>
<td>1,9</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Sele 3.22. Mõõtmise tulemuse vahed enne-ja peale remonti liinidel 1 ja 3, ovaaliga on tähistatud plastse deformatsiooni asukoht

![Kujuhälbe erinevused enne- ja peale remonti](image)
Tabel 3.2. Mõõtmise tulemuste vahed enne- ja peale remonti liinidel 2 ja 4

<table>
<thead>
<tr>
<th>liin/punkt</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liin 2_4_enne remonti</td>
<td>0,0</td>
<td>3,5</td>
<td>3,5</td>
<td>5,5</td>
<td>4,0</td>
<td>3,5</td>
<td>2,5</td>
<td>1,0</td>
<td>1,5</td>
<td>-1,5</td>
<td>-1,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Liin 2_4_peale remonti</td>
<td>0,0</td>
<td>2,2</td>
<td>1,7</td>
<td>2,3</td>
<td>0,8</td>
<td>1,4</td>
<td>0,5</td>
<td>0,6</td>
<td>0,2</td>
<td>-1,3</td>
<td>-0,2</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Sele 3.23. Mõõtmise tulemuste vahed enne- ja peale remonti liinidel 2 ja 4, ovaaliga on tähistatud plastse deformatsiooni asukoht

Tabel 3.3. Mõõtmise tulemuste vahed peale remonti ja uuel korpusel liinidel 1 ja 3

<table>
<thead>
<tr>
<th>Liin/Punkt</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liin 1_3_peale remonti</td>
<td>0,0</td>
<td>2,1</td>
<td>0,1</td>
<td>-0,3</td>
<td>2,2</td>
<td>0,7</td>
<td>1,8</td>
<td>2,8</td>
<td>2,3</td>
<td>1,3</td>
<td>1,9</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Liin 1_3_uus</td>
<td>0,0</td>
<td>0,5</td>
<td>0,5</td>
<td>1,0</td>
<td>2,0</td>
<td>2,5</td>
<td>0,5</td>
<td>0,5</td>
<td>1,5</td>
<td>3,0</td>
<td>2,0</td>
<td>0,5</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Sele 3.24. Mõõtmise tulemuste vahed enne- ja peale remonti liinidel 1 ja 3

Tabel 3.4. Mõõtmise tulemuste vahed peale remonti ja uuel korpusel liinidel 2 ja 4

<table>
<thead>
<tr>
<th>Liin/Punkt</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liin 2_4_peale remonti</td>
<td>0,0</td>
<td>2,2</td>
<td>1,7</td>
<td>2,3</td>
<td>0,8</td>
<td>1,4</td>
<td>0,5</td>
<td>0,6</td>
<td>0,2</td>
<td>-1,3</td>
<td>-0,2</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Liin 2_4_uus</td>
<td>0,0</td>
<td>1,7</td>
<td>0,9</td>
<td>2,0</td>
<td>0,5</td>
<td>1,6</td>
<td>1,2</td>
<td>1,4</td>
<td>0,0</td>
<td>1,0</td>
<td>1,1</td>
<td>3,3</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Sele 3.25. Mõõtmise tulemuste vahed enne- ja peale remonti liinidel 2 ja 4
Kaksikteo koostamise kvaliteeti hinnates oli tähelepanuvärne torude omavaheline koostamise täpsus, kus torude otsad olid üksteise suhtes silmaga nähtavalt erineval kõrgusel kokku keevitatud. Näitena on seledel 3.26 ja 3.27 toodud liinil 2 paiknevad mõõtpunktid 9 ja 10.

Sele 3.26. Vaade mõõtepunktidele 9 ja 10 liinil 2

Sele 3.27. Lähivaade mõõtepunktidele 9 ja 10 liinil 2

Korpuse läbimõõdud erinesid üksteisest 0,5…2 mm võrra, mis oli ootuspärane. Üldise trendina täheldati läbimõõtude vahe 0,8mm, mis viitab painutatud toru tootmistolerantsile.

Mõõtepunktide võrdlemise valem sirgel:

\[
\begin{align*}
 h_t &= \frac{h_{\min} - h_{\max}}{l_{\max} - l_{\min}}, \\
 l_{\pm} &= h_{\min} + (l_{\max} - l_{\min}) \cdot h_t - h_n,
\end{align*}
\]

kus

- \(h_{\min} \) – esimese mõõtepunkti kõrgus sirgest,
- \(h_{\max} \) – viimase mõõtepunkti kõrgus sirgest,
- \(l_{\max} \) – viimase mõõtepunkti kaugus kaksikteo otspinnast,
- \(l_{\min} \) – esimese mõõtepunkti kaugus kaksikteo otspinnast,
- \(l_n \) – valitud mõõtepunkti kaugus kaksikteo otspinnast,
- \(h_n \) – valitud mõõtepunkti kõrgus sirgest.

Valemites sisalduvad mõõdud on toodud selel 3.28.
Sele 3.28. Vaade arvutusmooduli valemites kasutatud mõõtepunktidele

Reaalses olukorras näiteks põllul või töökoja ees kaksikteo kõverust mõõtes tuleb tabelis 3.5 rohelistesse lahtritesse sisestada mõõtepunkti kaugus vasakpoolsest otsast ja kollastesse lahtritesse punkti kõrgusmõõt korpusse pinnast nivelliiri kiireni. Tabeli 3.5 punasesse lahtisse on sisestatud valem 3.1, mis annab vasal liinil näidu mitu mm muutub kõrgus ühe pikkus mm kohta. Tabeli 3.6. sinistesse lahtisses on sisestatud valem 3.2, mis annab vastava mõõtepunkti reaalse kõrvalekalde sirgest. Paremaks visualiseerimiseks võib saadud andmete põhjal luua diagrammi, mis toob sarnaselt eelnevalt välja toodud mõõtmistulemustele korpusse kuju hästi välja (vt see 3.22…3.25).

Tabel 3.5. Arvutusmoodulisse sisestatavate andmete lahtrid

<table>
<thead>
<tr>
<th>Valem: kõrgus pikkuse kohta</th>
<th>30</th>
<th>855</th>
<th>980</th>
<th>1660</th>
<th>1770</th>
<th>2150</th>
<th>2715</th>
<th>3365</th>
<th>3660</th>
<th>3770</th>
<th>4572</th>
<th>5395</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siia sisesta kaugusmõõt</td>
<td></td>
</tr>
<tr>
<td>punkt / liin</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>0,00009</td>
<td>1</td>
<td>258,5</td>
<td>259,5</td>
<td>258,5</td>
<td>259,0</td>
<td>259,0</td>
<td>259,0</td>
<td>259,0</td>
<td>259,0</td>
<td>259,0</td>
<td>259,0</td>
<td>259,0</td>
</tr>
<tr>
<td>-0,00009</td>
<td>2</td>
<td>259,0</td>
<td>260,0</td>
<td>260,0</td>
<td>259,0</td>
<td>260,0</td>
<td>259,0</td>
<td>259,0</td>
<td>259,0</td>
<td>259,0</td>
<td>258,5</td>
<td>258,5</td>
</tr>
<tr>
<td>0,00019</td>
<td>3</td>
<td>258,0</td>
<td>257,0</td>
<td>258,0</td>
<td>259,0</td>
<td>257,0</td>
<td>257,0</td>
<td>258,0</td>
<td>258,0</td>
<td>258,0</td>
<td>257,0</td>
<td>259,0</td>
</tr>
<tr>
<td>0,00009</td>
<td>4</td>
<td>258,0</td>
<td>257,0</td>
<td>257,5</td>
<td>257,5</td>
<td>257,5</td>
<td>258,0</td>
<td>258,0</td>
<td>259,0</td>
<td>260,0</td>
<td>258,5</td>
<td>258,5</td>
</tr>
</tbody>
</table>

Tabel 3.6. Arvutusmoodulist saadud kujuhälve mõõdud

<table>
<thead>
<tr>
<th>liin/punkt</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0</td>
<td>-0,9</td>
<td>-0,1</td>
<td>-0,3</td>
<td>-0,8</td>
<td>-0,3</td>
<td>-0,2</td>
<td>-0,2</td>
<td>-0,2</td>
<td>-0,1</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,0</td>
<td>-1,1</td>
<td>-1,1</td>
<td>-1,2</td>
<td>-0,2</td>
<td>-1,2</td>
<td>-0,3</td>
<td>-0,3</td>
<td>-0,8</td>
<td>-0,3</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>3</td>
<td>0,0</td>
<td>1,2</td>
<td>0,2</td>
<td>-0,7</td>
<td>1,3</td>
<td>0,4</td>
<td>1,5</td>
<td>2,6</td>
<td>2,2</td>
<td>1,2</td>
<td>1,8</td>
<td>0,0</td>
</tr>
<tr>
<td>4</td>
<td>0,0</td>
<td>1,1</td>
<td>0,6</td>
<td>1,2</td>
<td>0,7</td>
<td>0,2</td>
<td>0,3</td>
<td>0,3</td>
<td>-0,7</td>
<td>-1,7</td>
<td>-0,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Kujuhälve (mm) valem põhjal
4. REMONDIVÕIMALUSED

Remonditehnoloogia eesmärk on säilitada maksimaalne osa algset, juba toodetud varuosast ja selle materjalist. Turul juba eksisteerivaid, alternatiivseid remondivõimalusi oleme eelpool käsitlenud alajaotises 2.5, kuid siin peatüks keskendutakse kaksikteo korpuuse toru seina õgvendamise piiride otsimisele, et oleks tagatud remonditud osaga masina häireteta töö. Kaksikteo korpusse deformatsiooni kvaliteetse körvaldamise remondivõimalused piirab selle koormusolukord, materjali omadused ja deformatsiooni ulatus. Deformatsiooni ulatus paraku mõjutada on saadaval, alternatiive piiratud soojevad igati kvaliteetse õgvendustöö önnestumist selliselt, et õgvendatud piirkond ei kujuta endast ohtu. 4.1. Koormusolukord

Sele 4.1. Vaade kaksikteo korpusse koormusskeemile normaalolukorras

Kaksikteo de formeerudes kokkupuutes võõrkehaga ületatakse normaalolukorras mõjuvad omakaalust tingitud jõud ja paindemomendid. Väändemomenti ületades rakendub sidur ja kaksiktegu seiskub.

Kaksikteo tsüklite arv:

1. kaksikutg pöörleb 135…204 p/min, \(\approx 170 \text{ n/min} \) [10; 11; 12];
2. kombaini arvestuslik kasutuse aeg uuringu [1] põhjal on keskmiselt 350 tundi aastas, mis teeb 21000 minutit aastas, \(T_{\text{min}} \);
3. kombaini elueaks arvestatakse 15 aastat, \(T_{\text{aasta}} \);

\[
N_{\text{tsükkel}} = n_{\text{p/min}} \cdot T_{\text{min}} \cdot T_{\text{aasta}} = 170 \cdot 21000 \cdot 15 = 53550000 \text{ tsükli}
\]

Ühe hooaja jooksul teeb kaksikutg 3 570 000 tsükli.

4.2. Materjali omadused

Materjali keemiline koostis, -mark ja -tunnusnumber määritati teenustööna TTÜ Mehaanika ja metroloogia katselaboris kolme erineva tootja kaksikteo korpusel. Konkreetseid marke ja keemilist koostist tootjate kaupa välja ei tooda ja katseprotokolle lisana ei esitata, kuid kirjeldatud peamiste materjalide omadustest on tõhusalt dokumenteeritud.

Materjale iseloomustavad järgmised ühised nimetajad [22; 23]:

- Mittelegeerteras;
- Kvaliteetne konstruktsiooniteras;
- Madal süsinikusisaldus \(C \leq 0.12\% \);
- Väga hästi külmsurveöödeldav, sügavtõmmatav;
- Katkevenivus, minimaalne pikenemine \(A=29…38\% \);
- Tõmbetugevus \(R_m < 400 \text{ N/mm}^2 \);
- Voolepiir \(R_e 140-210 \text{ N/mm}^2 \);
- Keevitatav, värvitav;

Materjali tömbekatsed viidi läbi ühe tootja kaksikteo korpuse küljest lõigutatud katsekehadega. Tömbekatse eesmärk oli tuvastada võimaliku materjali kalestumisest tingitud struktuurimuutusi ja sellest tulenevad plastsuse vähenemist, kuid katsete arvestuste pärast ei mõjutanud.

Katsekehadega imiteeriti avariisituatsioonis vöörkehaga kokkupuutes toimunud deformatsioonide tekkimist ja selle õgvendamist. Matseseeriaid oli kolm, igas seeria võis toimida kolm katsesere. Kõigepealt deformeeriti katsekehi plastset, painutades neid ühest ja samast kohast 135° nuruga alla, nurga raadiusega \(\sim 10 \text{ mm} \). Peale deformeerimist õgvendati katsekehad kasutades alasid ja vasarit selliselt, et katsekehade materjali maht õgvendatud piirkonnas ei
muutuks. Paindraadius ja painutusnurk valiti sarnaselt ögvendatud kaksikteol esinenud mõlkide servadele, kus olid need näitajad kõige kriitilisemad. Katseseeriarid olid järgnevad:

1. Esimese seeria katekehk ei olnud läbinud deformeerimise ja ögvendamise tsükleid;
2. Teise seeria katekehad olid deformeerimise ja ögvendamise tsüklid läbinud kolm korda;
3. Kolmanda seeria katekehad olid deformeerimise ja ögvendamise tsüklid läbinud viis korda;

Katsete tulemused:
1. Köikide katekte korral jäi tõmbetugevus Rm vahemikku 338…361 MPa;
2. Suhteline pikenemine A 80mm jää vahemikku 15,4…19,2 %.

Katsetulemustes vastavalt deformeerimise ja ögvendamise tsüklite arvule üheselt tuvastatavaid trende ei esinened.

Tõmbekatse ei ole parim viis kalestumise tuvastamiseks kuna katkevenivus võib aset leida kalestunud piirkonna kõrvalt ja sama kehtib tõmbetugevuse seisukohalt. Samas on omadustest lähtudes tegu sügavtõmmatava materjaliga, mille juures painutamine ja ögvendamine ei pruugi struktuuri nii piisavalt mõjutada, et kalestumine aset leiaks. Kalestumise tuvastamiseks on parem tsükliline väsimuskatsetamine, kuid ressursimahukuse tõttu seda teostatud.

4.3. Remontimise kriteeriumid

Kaksikteol korpsuste ögvendamise võimalused piirab avariil olukorras tekkinud plastsete deformatsioonide ulatus. Mida ulatuslikum on plastne deformatsioon, seda väiksem on painutusnurk ja seda väiksem on suure tõenäosusega painutusraadius. Kui raadius on väiksem materjali paksusest, siis suure tõenäosusega on materjali välimistes, tõmmatud kihtides tekkinud rebendid ja selle ala ögvendamisel võivad tekkida praod. Sisemistes surutud kihtides on ohtlike deformatsioonide tõenäosus väiksem, kuna voolepiir survel on natuke kõrgem. Väikese paindraadiuse korral liigub neutraalkiht sisemiste, surutud kihtide poole ja seda suurem osa materjalist allub tõmbepingetele. Suurema tõenäosusega võivad rebendid tekkida väikese paindraadiustega deformatsioonidele, mis asetsevad kaksikteo korpsusega risti (piki kombaini liikumise suunda). Suurem tõenäosus tuleneb pleki valtsimise suunast, mille käigus võib tekkida anisotroofne struktuur ja selle tõttu valmistatakse painutatavad detailid risti valtsimise suunaga [25]. Eelpool kirjeldatud olukord on samuti remonditav tugevduslapi
paigaldamisega või kõrvaldatav deformeerunud sektsooni väljavahetamisega, kuid käsesev töö on keskendunud korpurste õgvendamisele ja sellepärast sellel teemal rohkem ei peatuta. Reaalses situatsioonis võib tekkida vajadus remontida eelnevalt õgvendatud kaksikteo korpurst, mille puhul on oluline eelnev remondikvaliteet. Üldjuhul tehakse esialgne remont olukorras, kus on vaja hooaeg lõpetada ja seega on väga vähe aega. Alljärgnevalt mõned võimalikud variandid osaliselt õgvendatud korpurste kohta:

1. **Alaõgvendatud** – korpuse mõlvidega alas on kõrvaldatud plastseid deformatsioone, esineb vähene viskumine:
 1.1. Alaõgvendatud või õgvendamata kaksikteoga töötades tekkinud väsimuspraod on toodud selel 4.2;
 1.2. Remontides on kindlasti vajalik teostada pragude kontroll ja nende olemasolul võtta vastu otsus edasise remonditehnoloogia osas.

3. **Üleõgvendatud** – korpuse seinad on välja venitatud, läbimõõt on suurem kui õgvendamata alal, vähene viskumine (vt sele 4.2):
 3.1. Üleõgvendatud korpuse materjal on väljavenitatud ja selle kahandamine on võimalik vähesel määral ja lokaalselt;
 3.2. Kahandamise ebaõnnestumise korral tuleb väljaveninud sektsoon välja vahetada.

Sele 4.2. Vaade korrekselt õgvendamata kaksikteole, mille materjalis on arenenud väsimuspraod kuni purunemiseni
4.4. Remondiaeg

Kaksikteo korpuste remondiks on põhiliselt kaks varianti, milleks on remont heedril või remont stendil.

1. Remont heedril:
 1.1. Remont toimub kombainiomaniku asukohas;
 1.2. Vastavalt kombaini asukohast kaugusest tuleb arvestada sõiduajaga;
 1.3. Heeder on kombaini küljest eemaldatud ja paigaldatud järelkärule;
 1.4. Haspel on üles töstetud, toestatud ja kaksikteo on võimalik pöörata;
 1.5. Teostatakse esmane mõõtmine;
 1.6. Õgvendatavast piirkonnast on eemaldatud tehnoloogiliste avade katted ja sõrmed koos juhikutega;

Sele 4.3. Vaade üleõgvendatud korpusele, suurendatud on väljavenitatud piirkond
1.7. Remondimugavus on väiksem kui stendil, mis vastavalt vajab ka rohkem aega tööde teostamiseks;
1.8. Teostatakse kontrollmõõtmine;
1.9. Võimalik on hilisem põhjalikum remont peale hooaja lõppemist.

2. Remont stendil:
 2.1. Remont toimub remondiettevõtte ruumides;
 2.2. Kaksiktigu eemaldatakse heedrilt ja hiljem paigaldatakse. Väntmehhanismi koos sõrmedega ei eemaldata;
 2.3. Vastavalt kombaini asukohast tuleb arvestada sõiduajaga, millele lisandub ka laadimise aeg;
 2.4. Kaksiktigu paigaldatud stendile ja teostatakse esmane mõõtmine;
 2.5. Õgvendavast piirkonnast on eemaldatud tehnooloogiliste avade katted ja sõrmed koos juhikutega;
 2.6. Käesoleva lõputöö praktilise näite käigus näite käigu õgvendatud kaksikteo deformatsioonide kõrvaldamiseks stendis kulus neli tundi tööaega.
 2.7. Teostatakse kontrollmõõtmine;
 2.8. Kaksiktigu eemaldatud stendilt ja valmistatakse ette transpordiks;
 2.9. Transport töökojast kombainini;
 2.10. Kaksikteo paigaldamine heedrile.

Tabel 4.1. Kombaini töökorda seadmiseks kuluv aeg vastavalt tehnoloogiale

<table>
<thead>
<tr>
<th>Tööde nimetus</th>
<th>Remont heedril (h)</th>
<th>Remont stendil (h)</th>
<th>Komplekti vahetus (h)</th>
<th>Korpuse vahetus (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varuosa tellimine</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Heedri asetamine järelkärule</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Komplektne vahetus</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Korpuse vahetus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Transport</td>
<td>2,5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Paigaldamine stendile</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ettevalmistus, mõõtmine</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Õgvendamine</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mõõtmine, komplekteerimine</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eemaldamine stendilt</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transport</td>
<td>2,5</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokku</td>
<td>13,5</td>
<td>20</td>
<td>8</td>
<td>30</td>
</tr>
</tbody>
</table>
Vahetuse korral on samuti kaks varianti, milleks on komplektse kaksikteo või ainult korpuse vahetus.

3. Komplektse kaksikteo vahetus:
 3.1. Kaksikteo vahetus toimub kombainiomaniku asukohas;
 3.2. Varuosa transport laast kombineini;
 3.3. Komplektse kaksikteo vahetus.

4. Kaksikteo korpuse vahetus:
 4.1. Kaksikteo vahetus toimub kombainiomaniku asukohas või remonditöökojas;
 4.2. Varuosa transport laast kombainini või needri transport töökottas;
 4.3. Kaksikteo eemaldamine needril;
 4.4. Kaksikteo komplekteerimine – vääintehhanismi ümbertõstmine vana korpuse seest uue korpuse sisse ja reguleerimine;
 4.5. Kaksikteo paigaldamine needril;

Ajavõrdluse tabelist tuleb hästi välja, et kiireim lahendus on komplektse kaksikteo vahetus, mille puhul on kindlasti varuosade hind kõige kõrgem. Vahetamise vajaduse korral on võimalus kasutada ka n.ö. vahetusfondi osasid, kuid selleks tuleb vastav fond tekitada. Vahetusfond muudaks kiire vahetuse hinna soodsamaks, kuid see vajab pikemat etteplaneerimist. Ajaliselt ja rahaliselt on mõistlikum, kui kombainiomanikul endal on avariisituatsiooniks olemas komplekteeritud kaksiktegu vastavalt olemasoleva kombaini ja needri margile, mudelile. Vahetusfondiks uue komplektse kaksikteo soetamine on kulukas ja finantsvahendid pannakse teadmata ajaks kasutult seisva osa alla kinni. Vahetusfondi tekitamine peale võib mõelda olukorras, kui kaksiktegu saab ekspluatatsiooni käigus vigastada ja see vahetatakse. Sellisel juhul on mõistlik deformeerunud korpusegasiksi suurte remonditena ja säilitada see järgmise avariisituatsiooni tarbek. Samuti võidetakse oluliselt aja juhul, kui komplektse kaksikteo saab vahetada olemasoleva meeskonnaga ja remonditeenust ei pea sisse ostma. Alternatiivne vahetusfondi võimalus oleks tekitada sees kaksiktegu korpuste remondiga tegeleva ettevõtte juurde, kuid kombineini ja needrite erinevaid marke ning mudeleid arvestades, eeldab see ressurse fondi tekitamiseks, õigendustöödeks, ladustamiseks, transpordiks jms, mille tasuvusaeg võib kujuneda pikaks. Samas kombainiomaniku seisukohalt on oluline hajutada riske vastava varuosad saadavuse ja transpordile kuluvat aja seisukohalt, et hooajal asuks vajalik varuosad kombaina ligidal.
5. ÖGVENDUSABINÕU VÄLJATÖÖTAMINE

5.1. Prototüübid ja nõuded

Deformatsioonide kõrvaldamise seadmena kasutati sõidukite kere rihtimeseks mõeldud tööriistakomplekti, mis koosneb manuaalsest hüdraulilisest pumbast ja hüdraulilisest survesilindrist koos erinevate otsikutega (vt sele 5.1). Tööriista komplekti valik tehtis vastavalt hüdraulilise silindri pikkusele, mis vastaks kaksikteo sisemisele läbimõõdule.

Sele 5.1. Vaade hüdraulilisele pumbale, silindrule ning ögvendusabinõudele

Survesilinder paigaldati kaksikteo korpuse toru sisse tehnoloogilise ava kaudu (vt sele 5.2). Tööriistakomplektiga kaasas olnud otsikud ja abinõud olid enamalt jaolt kandilised, mis ei liibu mööda toru sisemist pinda. Kaksikteo korpuse deformatsiooni ögvendamiseks on vajalikud spetsiaalsed toru seina järgivad tallad. Kuna vastavalt ögvendatava kaksikteo korpuse toru raadiusele sobivaid ögvendusabinõusid ei olnud komplektiga kaasas ja seda ei olnud võimalik ka hankida kaubandusvõrgust, siis praktilise osa läbiviimiseks koostati vajalikud kolm erineva
pindalaga ögvendusabinõu prototüüpi. Ögvendusabinõu prototüübi materjali ja mõõtude valikut lähtuti kererihtimise komplektis sisalduva tasapinnalise otsiku mõõtudest ja geomeetriast. Prototüübid valmistati keeviskonstruktsioonina, olemasolevast terasest S235J2. Tald koosneb 8 mm paksusest toru seina juurde jälgivast plaadist, mis painutati vastava raadiusega manuaalse hüdraulilise pressi all. Plaadi keskele keevitati vastava läbimõõduga toru, mille sisse paigaldatuse silindri juhik. Toru ja talla nurkadesse keevitati tugevdusribid, et vältida plaadi paindumist ögvendusprotsessi käigus. Koostatud taldade prototüübid on toodud selel 5.1; 5.2 ja 5.3.

Sele 5.2. Vaade tööasendis silindrile koos ögvendusabinõudega

Sele 5.3. Vaade prototüüpidena koostatud ögvendusabinõudele
Õgvendusabinõu komplekti koostati kolme erineva suurusega talda, millest kaks väiksemat on õgvendustallad ja üks suurem on toetustald. Õgvendustallad on plaadi mõõtudega 50 mm x 100 mm ja 100 mm x 100 mm, ning tugitald on mõõtudega 100 mm x 150 mm. Nimetatud taldade kohta on koostatud ka käesoleva töö lisadena A1 formaadis joonised.

Eeltoodust tulenevalt esitatakse vajalikule tööriistale järgmised nõudmised:

- Piisavalt jääk, et oleks tagatud tööriista geomeetria säilimine ja toru seina deformeerumine;
- Piisavalt massiivne, et oleks tagatud alasina töötamine;
- Piisavalt kõva pinnaga, et suurte kontaktpingete korral oleks tagatud talla pinna säilimine.
- Piisavalt sitke, et oleks vääristatud lõkkkoormuste korral talla plaadist kildude eraldumine;
- Taskukohane hind ja materjali kättesaadavus, kuna vajalik on tööriista tootearendus;
- Tööriista vaalimised kiirus, -paindlikkus, et oleks vastavalt vajadusele valmistada ise vajalik tööriist.

Tugitald paigaldati silindri alumise otsa ja toru seina vahele, lisaks kasutati ka 8 mm paksust neopreenist vahekihti pinnakonaruste kompenseerimiseks (vt sele 5.2.). Tugitalla plaat painutati šablooni järgi ~90% toru raadiusest, et vältida töö käigus pingekontentstraatorite teket, sest toru deformeerub alati, kui silindriga survet avaldada suunaga seest välja.

Keskmine suurusega õgvendustald on mõeldud väikste pinnadefektiide taastamiseks lõppviimisliku käigus ja kasutamiseks alasina. Sellepärast on ka selle tala plaadi painderadius samuti ~90% toru sisemisest raadiusest, kuna õgvendamisel surutakse tald lihtsalt vastu toru seina ja õgvendamine toimub varasaga suunaga väljast sisse. Tööolukorras on mõeldud plaadi ja toru seina vahel kasutada üldjuhul 8mm neopreenist vahekihti.
Kõige väiksema pindalaga tööotsiku raadius on ~80% toru seina raadiusest eesmärgil (vt sele 5.2). Talla kasutamisel tööolukorras kasutatakse talla ja toru seina vahel samuti 8 mm neopreenist vahekihti, et vältida pinnakonaruste erinevustest tingitud soovimatuid plastseid deformatsioone. Talda kasutatakse suuremate mõlkkide väljasurumisel ja väiksemate mõlkkide kõrvaldamisel alasina. Väikese raadiusega mõlgi servadel, kus on vajalik suurem kontakte surve, asuvate deformatsioonide övgendamiseks neopreenist vahekihti ei kasutada.

Sele 5.4. Vaade programmiga Solid Edge modelleeritud övgendusabinõu mudelile

5.2. Koormusolukord

Maksimaalse koormuse arvutamisel võetakse aluseks hüdraulise silindri võimekus, sest koormusolukorrad kaksikteo korpuuse deformatsiooni asukohast lähtudes võivad varieeruda. Tugevusarvutustest selgub, et abinõu konstruktsioonis tekkivad pinged paindel on 5,7 korda suuremad korpuuse materjalis tekkivate pingetest, seega on maksimaalsel koormusel abinõu vastupidavus garantieritud. Ohutustegurina ületab 5,7 dünaamilisel koormusel töötavate masinaosadele esitatavaid nõudeid, mis on väikese riskiteguriga tööriista kohta liiga palju. Kuna övgendusabinõu peab töötama ka alasina, mille juures on vajalik massiivsus, et vähendada silindrile langevaid lõõkoormusi, siis on üle dimensioonimine aktspeeteritav.
Ansys R16.2 (edaspidi Ansys) programmis läbiviidud koormusolukord toob välja pingete kontsentreerumise asukohad ja piirrolukordades tekkivad deformatsioonid.

Avariideformatsioonide õgvendamise puhul on tegu materjali tagasipainutamisega algasendisse. Tugevustüüsid olukorra lihtsustamiseks võeti aluseks, et deformatsioon asub 100 mm läbimõõduga ringikujulisel alal ja õgvendatav materjal on servadest kinnitatud.

Õgvendustallale esitatud nõuetest lähtudes tuleb lahendada selle projekteerimisel järgmised ülesanded:

1. Survekoormus:

1.1. Survekoormus hüdraulilise silindri poolt juhiku toru otsale on 19620N, mis tuleneb alljärgnevast:

Hüdrauliline silinder arendab rihtimiskomplekti juhendis toodud näitude järgi survejõudu 4 t. Kuna silinder surub mõlemas suunas suunas ühesuguse jõuga, siis õgvendus- ja toetustalla toru juhiku servale langeb võrdne koormus:

1.1.1. Õgvendustalla juhiku otspinnale üle kantav silindri survejõud

\[F_{\text{sil}} = \frac{m \cdot a}{2} = \frac{4000 \cdot 9.81 \cdot 4}{2} = 19620N \]

Sele 5.5. Vaade õgvendusabinõu mudelile, punasega on tähistanud juhiku serva pind aksonomeetrilisel kujutisel. Noolega on tähistanud jõumõju suund
1.1.2. Surveypinged ühele ögvendustalla juhiku otspinnale on keskmiselt $44 \frac{N}{mm^2}$, tuleneb alljärgnevast:

1.1.2.1. Surveypinge

$$\sigma_c = \frac{F_{sil}}{A_{juhik}} = \frac{19620 N}{448 mm^2} = 44 \frac{N}{mm^2}$$ \[23\] (5.2)

1.1.2.2. Hüdraulilise siindi juhikute otsa pindala on serva faasist tulenevalt sisemise läbimõõduga 24,2 mm ja välimise läbimõõduga 34 mm,

$$A_{juhik} = \frac{\pi}{4} \cdot (D^2 - d^2) = \frac{\pi}{4} \cdot (34^2 - 24,2^2) = 448 mm^2$$ \[23\] (5.3)

kus D^2- juhiku välimine läbimõöt,

d2- juhiku sisemine läbimõöt.

Programmis Ansys tehtud koormusanalüüsi tulemus on esitatud selel 5.6, mille põhjal tekivad maksimaalsed pinged tugevdusribide ja juhiku liitekohtadesse selle otspinna ligidal. Tegu on plaadilt ribidele ülekantava koormusega, mis avaldub kontaktpinges 552 MPa. Suurimad pinged nimetatud piirkonnas saavad tekkida kõige suurema plaadi mõõdutega toetustallal, mida tõendas ka analüüüs selel 5.7, sest jõuõlg on sellisel juhul kõige pikem. Pinged tugitalla samas piirkonnas on kuni 776 MPa. Põhiline osa koostu materjalis esinevatest pingetest jäävad vahemikku 0,01…86 MPa.

![Sele 5.6. Vaade programmis Ansys R16.2 tehtud ögvendustalla koormusanalüüsi tulemusele](image.png)
Sele 5.7. Vaade programmis Ansys tehtud toetustalla koormusanalüüsi tulemusele

Programmis Ansys vaadeldi ka taladele tekkivaid tõenäolisi deformatsioone, mille ulatus on tühine (vt sele 5.8). Kõige suurema deformatsiooniulatusega 0,04 mm oli arusaadavalt toetustald, kuna selle jäikusribide vahelina ala oli kõige suurem.

Sele 5.8. Vaade programmis Ansys tehtud toetustalla deformatsiooni tulemusele, musta raamiga on tähistatud talla esialgne kuju. Deformatsioon on välja toodud parema visualiseerimise eesmärgil ülivõrdes
1.2. Survapinged ögvendustalla plaadile jaotatud koormuse korral on \(4 \frac{N}{mm^2} \), mis tuleneb alljärgnevast:

1.2.1. Survapinge

\[
\sigma_c = \frac{F_{\text{sil}}}{A_{\text{plat}}} = \frac{19620 N}{5000 mm^2} = 4 \frac{N}{mm^2}
\]

1.2.2. Plaadi pindala

\[A_{\text{plat}} = a \cdot b = 50 \cdot 100 = 5000 mm^2\] \[\text{[23] (5.4)}\]

1.3. Survapinge ögvendustalla plaadile koondatud koormuse korral 196 \(\frac{N}{mm^2} \), mis tuleneb alljärgnevast:

1.3.1. Survapinge

\[
\sigma_c = \frac{F_{\text{sil}}}{A_{\text{ala}}} = \frac{19620 N}{100 mm^2} = 196 \frac{N}{mm^2}
\]

1.3.2. Kontaktpindala

\[A_{\text{ala}} = a \cdot b = 10 \cdot 10 = 100 mm^2\]

2. Paindekoormus:

Deformatsioonide ögvendamisel on vajalik painutada hüdraulilise silindriga kaksikteo korpuse seina materjali, mille maksimaalne voolepiir on 310 \(\frac{N}{mm^2} \). Hüdraulilise silindri poolt arendatava jõu tulemusena on võimalik avaldada kaksikteo korpuse seina materjalile surve 750 \(\frac{N}{mm^2} \), mis tuleneb alljärgnevast:

2.1. Paindepinge korpuse seina materjalis koondatud koormusega ehk ögvendusprotsessi alguses

\[
\sigma_b = \frac{M_b}{W} = \frac{245250}{327} = 750 \frac{N}{mm^2}
\] \[\text{[23] (5.5)}\]

kus \(\sigma_b \) – paindepinge,

\(M_b \) – paindemoment,

\(W \) – ristlöike telgvastupanumoment.

2.2. Paindepinge korpuse seina materjalis ühtlase koormusjaotusega ehk ögvendusprotsessi lõpus

\[
\sigma_b = \frac{M_b}{W} = \frac{163500}{327} = 500 \frac{N}{mm^2}
\]
2.2.1. Korpu materjali paindemoment koondatud koormuse korral

\[M_b = \frac{F_t}{8} = \frac{19620 \cdot 100}{8} = 245250 \frac{N}{mm} \] \hspace{1cm} [23] (5.6)

kus \(l \) – kinnituspunktide kaugus üksteisest, siin on võetud 100 mm, mis vastab ögvendustalla laiusele

2.2.2. Korpu materjali paindemoment ühtlase koormuse korral jaotusega

\[M_b = \frac{F_t}{12} = \frac{19620 \cdot 100}{12} = 163500 \frac{N}{mm} \] \hspace{1cm} [23] (5.7)

2.2.3. Korpu materjali telgvaastupanumoment 100 mm läbimõõduga mõlgi puhul

\[W = \frac{w \cdot h^2}{6} = \frac{314 \cdot 2.5^2}{6} = 327 \text{ mm}^3 \] \hspace{1cm} [23] (5.8)

kus \(w \) – materjali laius, on võetud 100 mm ringi ümbermõõt \(C = \pi \cdot d \),
\(h \) - materjali kõrgus.

2.3. Paindekoormus avaldub ögvendustalla plaadile juhikutoru kõrval, kus lihtsustatult vaatleme olukorda kui ühest otsast kinnitatud tala, millele jõud mõjub ühtlaselt jaotatult. Koondatult mõjub koormus ainult ögvendusprotsessi alguses, mida ögvendatavse põhiliselt tala selle osaga, mis jäeb juhikuga ühele sihile ja millele seetõttu mõjuvad põhiliselt survekoormus. Seega vaadeldakse ainult olukorda, kui koormus jaotub ühtlaselt, mille korral paindepinge talle plaadis on 295 \(\frac{N}{mm^2} \), mis avaldub alljärgnevas:

2.3.1.1. Paindepinge

\[\sigma_b = \frac{M_b}{W} = \frac{156960}{533} = 295 \frac{N}{mm^2} \]

2.3.1.2. Paindemoment

\[M_b = \frac{F_t}{2} = \frac{9810 \cdot 32}{2} = 156960 \frac{N}{mm} \]

2.3.1.2.1. Maksimaalne hüdraulilise silindri poolt arendatav jõud, mis mõjub ögvendustalla ühele poolele

\[F_{sil} = \frac{4000kg \cdot 9.81 \text{m}}{4} = 9810N \]

2.3.1.3. Telgvastupanumoment

\[W = \frac{w \cdot h^2}{6} = \frac{50 \cdot 8^2}{6} = 533 \text{ mm}^3 \]

Korpuuse seina materjalis mõjuned paindeeping 500 \(\frac{N}{mm^2} \) on ögvendustalla plaadis mõjuvatest pingetest 1,7 korda väiksemad.
2.4. Paindekoormus avaldub ögvendustalla jäikusribile juhikutoru körval. Tugevusarvutused viidi läbi kahe erinev mõõtu materjali. Painepinged erineva paksusega materjalist ribides avalduvad alljärgnebas:

2.4.1. Tugevdusribi 6 mm

\[\sigma_b = \frac{M_b}{W} = \frac{235440}{1089} = 216 \frac{N}{mm^2} \]

2.4.1.1. Telgvastupanumoment

\[W = \frac{wh^2}{6} = \frac{633^2}{6} = 1089 \ mm^3 \]

2.4.1.2. Tugevdusribi painemoment toru körval

\[M_b = F \cdot l = 9810 \cdot 24 = 235440 \ \frac{N}{mm} \]

2.4.2. Tugevdusribi 4 mm

\[\sigma_b = \frac{M_b}{W} = \frac{235440}{726} = 324 \frac{N}{mm^2} \]

2.4.2.1. Telgvastupanumoment

\[W = \frac{wh^2}{6} = \frac{433^2}{6} = 726 \ mm^3 \]

2.5. Plaadi ja jäikusribide konstruktsiooni paindepinge, arvestatud ei ole keevisest tulenevat jääkust.

2.5.1. Plaat 8 mm ja kaks 6 mm paksusest materjalist jäikusribi

\[\sigma_b = \frac{M_b}{W} = \frac{235440}{2 \cdot 1089 + 533} = \frac{235440}{2711} \approx 87 \ \frac{N}{mm^2} \]

2.5.2. Plaat 8 mm ja kaks 4 mm paksusest materjalist jäikusribi

\[\sigma_b = \frac{M_b}{W} = \frac{235440}{2 \cdot 726 + 533} = \frac{235440}{1985} \approx 119 \ \frac{N}{mm^2} \]

Arvestades korpuse seinamaterjalis tekkivaid minimaalseid pingeid 500 \ \frac{N}{mm^2} maksimaalsel silindri survejõul korral on abinõu materjalis tekkivad pinged ligi kuus korda väiksemad.

3. Löökkoormus:

Ögvendusabinõu materjal pea taluma lööke, seega ei tohi materjal olla liiga habras ega liiga sitke. Liigse hapruse korral võib löökide mõju hakata sealt kilde eralduma ja liigse plastsuse korral võib see deformeeruda. Löökkoormusi peab ögvendustald taluma väga harvadel juhtudel, kui on tarvis ögvendada väiksema raadiusega deformatsioone. Korpuse seina materjali ögvendatakse vasaralöökidega selle välispinnale, sellisel juhul töötab abinõu alasina. Üldjuhul kasutatakse abinõu plaadi ja korpuse sisepinna vahel neopreenist kihti, mis leevendab otseste löökide mõju. Harvadel juhtudel ögvendatakse ilma neopreenist vahekihita. Vasara löök ei tohi muuta ögvendatava korpusematerjali mahtu, vaid peab
aitama kaasa väikese raadiusega deformatsioonide painutamisele. Kasutatakse ka
pingutatud materjalil vasaraga alasist mõõdalöömise meetodit. Lõökoormuse olukorras on
abinõu ögvendamise löppetapis kui enamus korpuse sisepinnast on liibunud vastu abinõu
plaat.
4. Massiivsus:
Tööriista projekteerimise juures on oluline arvestada ka selle massiivust alasina töötades,
sest sellisel juhul langeb hüdraulilisele silindrilile väiksem lõökoormus.

5.3. Materjali valik

Tööriista materjali valiku juures on põhiline selle valmistamise kiirus, koostamise lihtsus,
materjalide hind. Arvestades ögvendustegevuse vähest praktikat ja sellest tulenevad tõenäolist
tootarenduse vajaduse, sis on mõistlik valida materjal sellistest omadustest, millegi on võimalik
väikese energiakuluga valmistada uus vajalike mõõtmetega töörast. Vastavalt enimmüüdud
darbaindide kaksistikude korpuste läbimõõdul on esialgu vajalik nelja erinevat näituala
abinõu komplektide kogus, kuid vastavalt vajadusele on võimalik neid lihtsate vahendite
juurde toota.

Materjali valikku materjaliks valiti S355J0 või S355J2, kuna tegu on laialt kätestaadava
kvaliteetse konstruktiooniteerusega. Materjalid erinevad üksteisest ainult külmhaprus lävi
poolest, kus purustustöö 27 J on esimesel juhul 0°C ja teisel juhul -20°C juures [23]. Kuna
ögvendusabinõu materjalis valiti S355J0 või S355J2, kuna tegu on laialt kätestaadava
kvaliteetse konstruktiooniteerusega. Materjalid erinevad üksteisest ainult külmhaprus lävi
poolest, kus purustustöö 27 J on esimesel juhul 0°C ja teisel juhul -20°C juures [23]. Kuna
tööriista kasutatakse ainult plusskraadidel, siis ei ole see materjal omadus kriteeriumiks.
Materjali mehaanilised omadused nagu sitkus ja hapra purunemise kindlus täidavad hästi
alasina töötavale tööviistale esitatavaid nõudeid. Samuti on materjal hästi käävitatav, mis on üks
põhilisi nõudmisi keeviskonstruktsiooni projekteerimisel.[23]

Tugevusarvutustest tulemused on toodud tabelis 5.1, kus on võrdeldud maksimaalseid pingeid
väljapakutud materjali voolepiiriga. Valitud materjali voolepiri täidab maksimaalsetest
pingetest tulenevaid nõudeid. Tabelis toodud korpusena materjaliks tekivate pingeid puhul
on näha, et need ületavad voolepiiri, seega on painikedeformatsioonide ögvendamine võimalik
ka arvutuslikult.
<table>
<thead>
<tr>
<th>Pinge liik</th>
<th>Detail</th>
<th>Maksimaalne pinge</th>
<th>Materjali voolepiir</th>
<th>Pinge ja voolepiiri erinevus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paine</td>
<td>Korpuse sein, koondatud koormusel</td>
<td>750</td>
<td>210</td>
<td>0,3</td>
</tr>
<tr>
<td>Paine</td>
<td>Korpuse sein, jaotatud koormusel</td>
<td>500</td>
<td>210</td>
<td>0,4</td>
</tr>
<tr>
<td>Surve</td>
<td>Juhiku otspind</td>
<td>44</td>
<td>355</td>
<td>8</td>
</tr>
<tr>
<td>Surve</td>
<td>Ögvendustalla plaat jaotatud koormusel</td>
<td>4</td>
<td>355</td>
<td>88,8</td>
</tr>
<tr>
<td>Surve</td>
<td>Ögvendustalla plaat koondatud koormusel</td>
<td>196</td>
<td>355</td>
<td>1,8</td>
</tr>
<tr>
<td>Paine</td>
<td>Plaat juhiku toru kõrval</td>
<td>295</td>
<td>355</td>
<td>1,2</td>
</tr>
<tr>
<td>Paine</td>
<td>Jäikusribi 6mm</td>
<td>216</td>
<td>355</td>
<td>1,6</td>
</tr>
<tr>
<td>Paine</td>
<td>Jäikusribi 4mm</td>
<td>324</td>
<td>355</td>
<td>1,1</td>
</tr>
<tr>
<td>Paine</td>
<td>Konstruitsioon: plaat + 6 mm jäikusribi</td>
<td>87</td>
<td>355</td>
<td>4,1</td>
</tr>
<tr>
<td>Paine</td>
<td>Konstruitsioon: plaat + 4 mm jäikusribi</td>
<td>119</td>
<td>355</td>
<td>3,0</td>
</tr>
</tbody>
</table>

6. FINANTSARVESTUS

Kaksiktigude taastamise maksumuse võrdlemisel on kõige parema aja ja hinna suhtega korpuse remont, kuna tehnoloogia ei sisalda varuosade kulu. Sealjuures odavaim on korpuse remont heedril, sest see ei sisalda heedrilt eemaldamise- ja paigaldamise- ning stendile paigaldamise- ja eemaldamise- kulusid. Kõige suurema aja ja hinna suhtega on komplektse kaksikteo vahetamine, kuna hind sisaldab kõrge hinnaga varuosa maksumust. Töötunni hinnaks on võetud turul keskmine töötunni maksumus koos käibemaksuga. Transpordi tasuks on arvestatud sõiduajale kuluv töötunnihind, kuigi suurte mõõtmetega varuosa transport on eeldatavalt kulukam ja ajamahukam. Tulemused on toodud alljärgnevast tabelist 4.1.

Tabel 4.1. Erinevate remonditehnoloogiate maksumuste võrdlused

<table>
<thead>
<tr>
<th>Kulutused/remondilahendus</th>
<th>Remont heedril (h)</th>
<th>Remont stendil (h)</th>
<th>Komplekti vahetus (h)</th>
<th>Korpuse vahetus (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tööd kokku (h)</td>
<td>13,5</td>
<td>20</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>Töötunni hind (€)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Tööde maksumus (€)</td>
<td>675</td>
<td>1000</td>
<td>400</td>
<td>1500</td>
</tr>
<tr>
<td>Varuosad (€)</td>
<td>0</td>
<td>0</td>
<td>13800</td>
<td>6700</td>
</tr>
<tr>
<td>Remont kokku (€)</td>
<td>675</td>
<td>1000</td>
<td>14200</td>
<td>8200</td>
</tr>
<tr>
<td>Aja ja hinna suhe (€/h)</td>
<td>50</td>
<td>50</td>
<td>1775</td>
<td>273</td>
</tr>
</tbody>
</table>
Ögvendusabinõu komplekti maksumus arvutati isikliku kogemuse põhjal prototüüpi valmistades, seega võib tulevikus oskuste süvenedes või teenustööna sisse ostes komplekti hind muutuda. Komplekti omahinna juures moodustab põhilise osa abinõu valmistamisele kuluv aeg. Abinõu komplekti kuulub kolm erineva suurusega talda: kaks õgvendustalda ja üks toetustald. Vajaliku materjali ögvendusabinõude valmistamiseks müüakse kuue meetriste latti kaupa, mille kogumaksumuses kujuneb 96 eurot koos käibemaksuga. Latti külmest lõigatakse vajaliku suurusega detailid. Plaadi materjali kuue meetrisest latist saab vajalikud detailid 19 komplektile, jääksribi latist 30 komplektile ja juhiku latist 50 komplektile. Sellest tulenevalt ei ole tootearendusele tehtavat investeeringut kuigi suured. Ühe ögvenduskomplekti materjali maksumus on 3,87 eurot, mis muudab mötetuks materjali kokkuhoi eesmärgil tehtavad tootearendused. Olenemata näiteks kasutatava jääksribi materjali paksuse valikust kas 4 mm, 6 mm või 8 mm jääb komplekti koostamise kulu samasse suurusjärku, mis moodustab põhilise osa komplekti lõppmaksumusest.

Tabel 4.22 Ögvendusabinõu komplekti hinnaarvestus

<table>
<thead>
<tr>
<th>Tööd, materjalid</th>
<th>Ühik</th>
<th>Kogus</th>
<th>Hind (€)</th>
<th>Summa (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaadi materjal, ribateras 8x100, S355</td>
<td>kg</td>
<td>1,9</td>
<td>1,21</td>
<td>2,30</td>
</tr>
<tr>
<td>Jääksribi materjal, ribateras 6x30, S355</td>
<td>kg</td>
<td>1,1</td>
<td>1,21</td>
<td>1,33</td>
</tr>
<tr>
<td>Juhiku materjal, paksuseinaline toru 36x20, S355</td>
<td>kg</td>
<td>0,2</td>
<td>1,21</td>
<td>0,24</td>
</tr>
<tr>
<td>Lõikekettad terasele</td>
<td>tk</td>
<td>1</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Keevitustraat G3Si1</td>
<td>kg</td>
<td>0,6</td>
<td>1,50</td>
<td>0,90</td>
</tr>
<tr>
<td>Kaitsegaas M21</td>
<td>kg</td>
<td>30</td>
<td>1,65</td>
<td>49,50</td>
</tr>
<tr>
<td>Lõikamine</td>
<td>tund</td>
<td>1</td>
<td>50,00</td>
<td>50,00</td>
</tr>
<tr>
<td>Painutamine</td>
<td>tund</td>
<td>1</td>
<td>50,00</td>
<td>50,00</td>
</tr>
<tr>
<td>Treimine</td>
<td>tund</td>
<td>1</td>
<td>50,00</td>
<td>50,00</td>
</tr>
<tr>
<td>Keevitamine</td>
<td>tund</td>
<td>1</td>
<td>50,00</td>
<td>50,00</td>
</tr>
<tr>
<td>Värvimine</td>
<td>tund</td>
<td>1</td>
<td>50,00</td>
<td>50,00</td>
</tr>
</tbody>
</table>

Summa kokku 307,27
7. OHUTUSTEHTNIKA

Kaksikteo korpuste remonditööde teostamisel opereeritakse suuremõõtmeliste ja suure massiga masinaosadega, millega töötades peab olema äärimiselt ettevaatllik, et vältida võimalikke tööönnetu. Ohutusteks korral vöidakse ohtu seada inimeste tervislik seisund või elu. Tööönnetuste vältimiseks tuleb järgida ohutustehnika eeskirju. Alljärgnevad on kirjeldatud vastavalt kapskikteo korpusse remonditegevuse järjekorrale võimalikke ohuolukordi, millele tuleb kindlasti tähelepanu pöörama.

Kaksikteo korpuse övgendamisel heedril:
1. tuleb kasutada tugevast materjalist tööriietust ja kaitsekindaid ning kaitsekiivrit, et vältida võimalikke kehavigastusi masinaosade teravate servadega kokkupuutumisel;
2. tuleb kasutada metallist ninaga turvajalatseid, et kaitsta jalgu raskete esemete künkumise korral;
3. remondi teostamisel peab olema kindlasti heeder kombaini eest lahti ühendatud ja paigaldatud järelihisele või muule kindlale alusele, välistatud peab olema heedri lõikavate või pörlevate mehandismide võimalik tööle hakkamine remondi teostamise ajal;
4. töötamisel haspli all tuleb see seadistada ülemisse asendisse ja alla langemise kindlustamiseks kasutada ohutusripide. Ohutusrotide asuvad mõlemal heedril;
5. haspli all töötades on oht selle piidega vigastada peapiirkonda, selleks tuleb kanda kaitsekiivrit ja kaitseprille;
6. töötatakse lõiketerade vahealsete suhtedel, millega on suur võimalus kontakteeruda. Kuna terad võivad vigastada ka läbi tööriiite, siis selle vältimiseks tuleb kasutada lõiketerade kaitseid. Kaitseid tuleb küsida kombaini omanikult. Kaitsete puudumisel saab need valmistada laudade;
7. vajadusel redelit kasutades veenduge, et see oleks paigaldatud kindlalt, tasasele pinnastele künkumisohu vältimiseks;
8. kapskikteo korpusse pöörmasel vajalikku asendisse kindlustage see kindlasti iseäestiku pöördumise vastu kasutades lukustatavaid näpitsaid, millega saab fikseerida korpuse asendi sormede suhtes;
9. töötatakse vahest sundasendis põlvele toetudes, kasutage pölvekaitseid hilisemate tervekahjustuste vältimiseks;
10. korpuse övgendamisel võib tekkida tugev mür. Kasutage körvaklappe või körvatroppe kuulmisorganite kahjustuste vältimiseks.
Kaksikteo korpuse ögvendamisel stendis:
1. tuleb kasutada tugevast materjalist tööriietust, kaitsekindaid ning kaitsekiivrit, et vältida võimalikke kehavigastusi masinaosade teravate servadega kokkupuutumisel;
2. tuleb kasutada metallist ninaga turvajalatseid, et kaitsta jalgu raskete esemete kukkanisel korral;
3. töötatakse tõsteseadmetega töste seadmetega, tuleb järgida kindlasti tõsteseadmete ohutuse eeskirju;
4. töstetakse suurte möötmetega ja raskeid esemeid. Selle juures tuleb tähelepanelikult jälgida tõsteseadmete korrasolekut, kinnitusi ja nende paigaldamise korreksust.
5. kunagi ärge seiske ülestõstetud kaksikteo all;
6. oht on vigastada ennast masinaosade teravate servadega, selleks kasutage kaitsekindaid ja tugevast materjalist tööriietust;
7. kaksikteo korpuse pööramisel vajalikku asendisse kindlustage see kindlasti iseinesliku pöördumise vastu kasutades lukustatavaid näpitsaid, millega saab fikseerida korpuse asendi sõrmede suhtes.
8. võib tekkida tugev müra korpuse ögvendamisel. Kasutage kõrvaklappe või kõrvatroppe kuulmisorganite kahjustuste vältimiseks.
8. KVALITEEDIKONTROLL, GARANTII, KINDLUSTUS

Kaksikteo korpuse ögvendamisjärgne kvaliteedikontroll seisneb kontrollmõõtmise teostamises, mille käigus saadakse ülevaade ögvendamistööde tulemuslikkusest. Vajadusel ögvendatakse täiendavalt, kui esmase ögvendamise järgselt, ei mahu korpuse üldine geomeetria selle tootmistolerantsidesse.

Vääkse raadiusega deformatsioonide ögvendamise järgselt kontrollitakse piirkond praotuvastusvärvidega juhul, kui on pragude tekkimise oht. Samuti on vajadus pagude kontrolliks juhul, kui ögvendamata kaksikteoga on enne ögvendamisprotsessi eelnevalt töötatud ja oht on väsimuspragude tekkeks materjali kalestumise tulemusel. Praotuvastusvärv kasutatakse keevõmbluste kvaliteedikontrollis ja neid on võimalik hankida keevitustarvetega tegelevatele ettevõtetele.

Praotuvastusvärv kasutatakse keevõmbluste kvaliteedikontrollis ja neid on võimalik hankida keevitustarvetega tegelevatele ettevõtetele.

Tegevuse riskide maandamises sõlmitakse kindlustusseltsis vastutuskindlustuspoliis, mis korvab ebakvaliteetsest remondist või remonditeostaja eksimustest põhjustatud kulud.
Kindlustusselti kahjukäsitluses töötades silma hakanud probleemistik, mis seisneb pealtnäha tühiste vigastustega masinaosa vahetamises uute ja kõrgehinnaliste vastu, on tavad toime olukord. Ressursi raiskamisena tunnunud tegevus ajendas seda valdkonda uurima ja olukorraga kurssi viima. Käsenevalt töö näol on ajalugu algust tehtud, et otsida lahendusi ebamõistlike kulutuste piiramisele ja seljäbi anda oma panus keskkonna säästmisele. Valik, millise pöörleva masinaosa taastamise teemal töö kirjutada oli alguses laiem, kuid arutelus juhendajaga langetati otsus kombaini kaksiktigudega kasuks.

Selge on see, et kaksiktiguge kahjustumine tulevikus jätkub, sest senisele praktikale tuginedes ei ole Eesti põldudelt kivid kuhugi kadunud. Iseküsimus on selles, et millisel meetodil kivide poolt lõhutud masinaid remontida.

remondimahud ning andis suuna, millistele markidele keskenduda. Siiani ei ole nimetatud teenust välja reklaamitud ega ühtegi kaksiktiigu remonditud teenustööna, kuid puhtalt majanduslikust aspektist lähtudes peaks sellisest teenusest olema kombainiomanikud huvitatud just aja ja raha vahelist seost arvestades.

Remonditehnoloogia eesmärk on säilitada maksimaalne osa algsest, juba toodetud masinaosast ja selle materjalist, et vältida asjatur energiakuulu uue korpuse tootmisele. Praktilises osas övgwendatud kaksikteo korpuse esialgne, avariielne kuju jaotati nelja tunniga. Tegu on reaalse käituse, mille tulemus tõendab, et masinaosa on jälle valmis selleks ettenähtud ülesannet täitma. Loomulikult ei ole kõik deformatsioonid sama ulatusega, sest see oleneb kivi kuju ja liikumise kiirusest.

Kaksiktiigu läbivatest materjaliomadustest lähtudes on tegu väljapakutud remonditehnoloogiat igati toetava olukorraga. Tegu on süsinikuvaese, väga plastsete omadustega, külmvormitava terasega mida kasutatakse sügavtömbamise kääbus valmivate detailide tootmisel. Järgi reaalsest korraldatud deformeerimise katsed ei avaldu ühes kordus, mis annab kindlust deformatsioonide övgwendamisel.

77
Probleemiks võib kujuneda õgvendamata või piisavalt õgvendamata kaksikteoga töötamine, mis tekitab plastsete deformatsiooni ja vajadusel korpuse sisse tugevdusvõru lisamiseks, mis ei ole paraku kässeleva tõö teema.

Väljapakutud remonditehnoloogia valiti deformatsiooni tekemehhanismist lähtudes ja on sellega suunult vastupidine. Teisisõnu, kui kiviga kokkupuutes surutakse kaksikteo korpuse sisse, siis õgvendamisel seostakse see suunaga seest välja. Spetsiaalse tehnoloogilise seadmestiku puudumisel kasutati sõiduauto kerevenduvamiseks, mis ei ole paraku käesoleva töö teema.

Väljapakutud remonditehnoloogia valiti deformatsiooni tekemehhanismist lähtudes ja on sellega suunult vastupidine. Teisisõnu, kui kiviga kokkupuutes surutakse kaksikteo korpuse sisse, siis õgvendamisel seostakse see suunaga seest välja. Spetsiaalse tehnoloogilise seadmestiku puudumisel kasutati sõiduauto kerevenduvamiseks, mis ei ole paraku käesoleva töö teema.

Väljapakutud remonditehnoloogia valiti deformatsiooni tekemehhanismist lähtudes ja on sellega suunalt vastupidine. Teisisõnu, kui kiviga kokkupuutes surutakse kaksikteo korpuse sisse, siis õgvendamisel seostakse see suunaga seest välja. Spetsiaalse tehnoloogilise seadmestiku puudumisel kasutati sõiduauto kerevenduvamiseks, mis ei ole paraku käesoleva töö teema.

Väljapakutud remonditehnoloogia valiti deformatsiooni tekemehhanismist lähtudes ja on sellega suunalt vastupidine. Teisisõnu, kui kiviga kokkupuutes surutakse kaksikteo korpuse sisse, siis õgvendamisel seostakse see suunaga seest välja. Spetsiaalse tehnoloogilise seadmestiku puudumisel kasutati sõiduauto kerevenduvamiseks, mis ei ole paraku käesoleva töö teema.

Väljapakutud remonditehnoloogia valiti deformatsiooni tekemehhanismist lähtudes ja on sellega suunalt vastupidine. Teisisõnu, kui kiviga kokkupuutes surutakse kaksikteo korpuse sisse, siis õgvendamisel seostakse see suunaga seest välja. Spetsiaalse tehnoloogilise seadmestiku puudumisel kasutati sõiduauto kerevenduvamiseks, mis ei ole paraku käesoleva töö teema.

Väljapakutud remonditehnoloogia valiti deformatsiooni tekemehhanismist lähtudes ja on sellega suunalt vastupidine. Teisisõnu, kui kiviga kokkupuutes surutakse kaksikteo korpuse sisse, siis õgvendamisel seostakse see suunaga seest välja. Spetsiaalse tehnoloogilise seadmestiku puudumisel kasutati sõiduauto kerevenduvamiseks, mis ei ole paraku käesoleva töö teema.

Väljapakutud remonditehnoloogia valiti deformatsiooni tekemehhanismist lähtudes ja on sellega suunalt vastupidine. Teisisõnu, kui kiviga kokkupuutes surutakse kaksikteo korpuse sisse, siis õgvendamisel seostakse see suunaga seest välja. Spetsiaalse tehnoloogilise seadmestiku puudumisel kasutati sõiduauto kerevenduvamiseks, mis ei ole paraku käesoleva töö teema.
Töö eesmärgi saab autori arvates lugeda saavutatuks, kuna väljatöötatud remonditehnoloogia võimaldab senise praktikaga vörreldes viia masin uuesti töökorda kaksteist korda finantsressursse säästvamalt ja kaks korda väiksema ajakuluga. Komplektse kaksikteo vahetamiseks kuluva summa saab teraviljatootja vahetada keskmiselt 37,4 ha koristatud viljalt teenitud kasumi eest, seevastu remondi saab tehtud 2 ha koristatud viljalt teenitud kasumi eest. Koostatud töö tulemust hindab autor kõrgelt, selle käigus läbi viidud praktiliste katsete ja eksperimenteeritud lahenduste osas. Autor tunneb rahulolu töö tulemuse näol loodud lisaväärtuse üle, mille rakendamine aitab säasta keskkonda ja arendada mõistlikku lähenemist masinate remondil.
Having worked in claims department for an insurance company, I noticed that a fairly usual problem was replacing machine parts that had seemingly trivial damage with new and high-value parts. This activity seemed to be nothing more than a fruitless waste of resources, but it made me want to study the matter in more depth. This work marks the beginning of this study, which aims to look for a solution that will help to limit unreasonable expenses and thereby contribute towards the preservation of the environment. The range of machine parts that needed to be covered in this work was initially wide but, after some discussion with my supervisor, a decision was made to concentrate on header augers for combines.

It is clear that more header augers will be damaged in the future, since stones and rocks will not simply disappear from Estonian fields. The question is which method should be used to repair machines that have been damaged by such rocks.

The study commenced by outlining the market situation in order to measure the approximate scope of the work. With this in mind, the current state of the combine park and the developments that have taken place in the past few years were studied. Statistics shows that the newer a machine may be, the wider its headers become, and the more its operators have to be careful to ensure that no expensive equipment is damaged by rocks. Along with the growth of header dimensions, the price for their spare parts has been increasing. Despite the fact that various combine makes are available on the market, those makes are almost equally divided between the two largest manufacturers, which makes the situation simpler in the context of this topic.

Statistics demonstrate that, on average, each third-registered combine suffers from insurance-related losses, and as a result of such losses it becomes necessary to replace deformed header augers. Such statistics are impressive, but consider the fact that the actual number of damaged header augers is unknown. Based on actual cases of damage, one can say that of every three cases that are reviewed, two are repairable. There is no company in Estonia that deals with header augers repairs, even though the demand for such repairs certainly exists among representatives of manufacturers and combine owners. In addition, the part played by insurance companies cannot be ignored, since all new combines are insured and those insurers want to keep repair-related expenses at reasonable levels. The research shows that, so far, any repairs that are carried out at a location that is not in Estonia are focused mainly on replacing damaged sections and straightening deformed finger holes. No straightening work within the scope that has been presumed by this level of repair technology were discovered by the author on the basis of questionnaires or an internet search. The proposed repair technology provides an option to
use the resource of previously manufactured machine parts until they have been depleted in a manner that ensures the reliable operation of repaired elements. Market analysis clearly demonstrates the need for repairs, as well as guaranteed repair scopes in cases involving damage, and indicates the direction that should be focussed upon. Until now the service required in this area has not been advertised, and not a single header auger was repaired under the conditions of providing service work while, based on purely economic aspects, combine owners should be interested in such services precisely for the reason of the time taken to carry out such repairs in relation to the costs involved.

In the practical area of this work, experiments were carried out with several technological solutions - from drafting temporary stands to the development of straightening methods. The situation was caused by the fact that there have been some very useful technological developments in this area, but no option exists in which the necessary tools and instruments can be purchased through sales networks. One must admit that it is a time-consuming but interesting and still-developing activity which - in the opinion of the author - may be crowned by successful results. For a replacement part that weighed around 300kg and which had a length of 5.4 metres, a working position at a convenient height was found so that measurements could be carried out to discover any possible deformations in header auger cases. In order to achieve this working position, a temporary stand was designed so that the header auger was able to revolve around its axis. During the development work on the measurement process, the calculation module was created to allow the easily detecting of any general deformations after the height data had been entered. This module proved to be a very useful tool, and one that will certainly find more use in the future. The measurement calculations that were used on the stand were also used when determining manufacturing tolerances for new header augers (based on which factor straightening accuracy is determined). Straightening the entire case was also carried out on the stand. A deeper study of the construction of the header auger case and the mechanisms behind creating any plastic deformation provides an understanding of the nature of elastic deformation in general. Such an understanding simplifies the elimination of deformations and general deviations. Measurements confirm successful straightening results - at times even the production accuracy of new header augers was exceeded. The goal for the repair technology is to preserve an already manufactured part and its materials to the maximum extent in order to avoid unreasonable energy loss during the manufacture of a new case. In practice the initial shape was restored to header augers in the space of four hours. These were actual tests, and the results confirmed that the part in question was once again ready to carry out its designed function. However, it is a certainty that not all deformations are of the same scope - they
depends very much upon the shape of the rock that was struck and the speed of movement for the combine.

Based on the properties of materials that are being used in header augers, it is possible to state that the proposed repair technology will indeed be helpful. The materials are low-carbon, highly-plastic, cold-formed steel, which is used in the production of components that employ the deep drawing process. Again, actual deformation tests did not reveal a common trend during elongation, which provides a degree of certainty that deformations can be straightened out. Problems may arise when working with header augers that have not been straightened or which have been insufficiently straightened for which, in place of plastic, a deformation stress area is created and materials fatigue may start to develop. Such a scenario can be prevented by paying proper attention to the respective areas and, where necessary, by strengthening the case from the inside (something that is not covered by this work).

The repair technology on offer was chosen by using as a basis the mechanism behind the creation of deformation and any work that may be contrary to this desire. In other words, in a situation in which, as the result of striking a rock, a header auger case is deformed inwards, the work of straightening it is carried by moving it outwards. In the absence of special technological equipment a body straightening kit for passenger cars was used, which was selected due to the suitable length of the hydraulic cylinders. None of the nose-pieces from the kit fitted, so special prototypes were manufactured for respective diameters. Using the prototypes, the case for the header auger was straightened out. Bottom pieces of different sizes were also manufactured that allowed the direction of the greatest levels of stress to be selected, and thereby the force of the cylinders could be used to straighten out any deformation whilst not creating any new deformations.

Strength calculations in regard to bottom pieces demonstrated that the same structure of pieces could be achieved with materials that were not as strong when S355 steel was used. At the same time, while materials of lesser dimensions can be used, these will not provide the necessary mass. From the point of view of saving materials, a financial analysis of straightening methods becomes pointless, since the required resource is insignificant in comparison with the labour expenses that are required to produce the tool in the first place. The selection of materials of lesser dimensions will also not lower labour expenses.

Due to large dimensions and the large weight of repaired machineparts, it is absolutely necessary to comply with work safety requirements. The use of personal protective equipment is necessary in order to ensure a safe working environment. Temporary tools that were used during the experiment were not sufficient to allow the establishment of a potential repair
workshop. Other equipment will be required for a workshop that would allow for the repair of header augers at the maximum dimensions. Lifting equipment, a balancing bench, methods for replacing sections, and other means should be provided. The economic viability of establishing such a workshop and the time taken to pay for its construction and equipping should be addressed separately. The repair technology that has been described in this work is certainly not designed solely for selling servicing work, but is also to be used by all interested parties that are connected with combines maintenance.

The author believes that the goal of the work has been achieved since, in comparison with existing practice, the repair technology that has so far been developed allows machines to be brought back into working order whilst making savings on financial expenses of up to twelve times, as well as halving the time required. Replacing header augers will cost a grain producer a figure that is approximately equal to the profit that can be made on 37.4 ha of grain, whilst the cost of repairs will equal the expected profits of two hectares of grain. The author highly estimates results of the current work with regard to practical tests and experiments performed. The author is satisfied with the improved value that has been created as a result of the work, and its implementation will help to preserve the environment and develop a reasonable approach to machine repairs.
5. Kindlustusseltsi kahjutoimiku nr E42142876T materjalid.
13. Penno’s Machining & Manufacturing Ltd. kodulehekülg [WWW]
 http://www.pennosmachining.com/tableauger.html (02.05.2015).
14. Midwest Ag Parts kodulehekülg [WWW]
15. Catford Engineering kodulehekülg [WWW]
16. CFC Distributors, Inc. kodulehekülg [WWW]
 http://www.cfcdist.com/shopping/trutube-for-16-augers-p-1515.html?zenid=78375d35a646c8ed322e98d7e162039f (02.05.2015).
17. Poly Tech Industries, Inc. kodulehekülg [WWW]
18. Kaksikteo toru remondi tööriista patent [WWW]
 http://www.google.com/patents/US6094963 (02.05.2015).
 http://www.barnesweldinginc.com/gallery (02.05.2015).
22. Autoplekkepa õpik ametikoolidele. SA Innove koduleht [WWW]:
 http://www.innove.ee/UserFiles/Kutseharidus/C3%95ppe-%20ja%20juhendmaterjalid/plekkepp/7._APO_OPEMOODUL_5_-_autokere_kosmeetiliste_osade_ogvendamine_ja_lehtmetallide_tootlemine.pdf (11.05.2015).
24. European Steel and Alloy Grades/Numbers kodulehekülg [WWW].
25. Kulu, P., Kübarsepp, J., Laansoo, A., Veinthal, R. Materjalitehnika II
 Konstruktsioonimaterjalide Tehnoloogia: TTÜ kirjastus, Tallinn 2015
LISA