Mikk Melder

ALUSTAVA ETTEVÕTTE VÄÄRTUSE HINDAMINE
REEAALOPTSIOONIDE MEETODIL

Magistritöö

juhendaja: dotsent Ivo Karilaid

Tallinn 2015
Olen koostanud töö iseseisvalt.
Töö koostamisel kasutatud kõikidele teiste autorite töödele, olulistele seisukohtadele ja andmetele on viidatud.
Mikk Melder ……………………………
(allkiri, kuupäev)
Üliõpilase kood: 113925
Üliõpilase e-posti aadress: mikkmelder@gmail.com

Juhendaja dotsent Ivo Karilaid:
Töö vastab magistritööle esitatud nõuetele
…………………………………………
(allkiri, kuupäev)

Kaitsmiskomisjoni esimees:
Lubatud kaitsmisele
……………………………………
(ametikoht, nimi, allkiri, kuupäev)
SISUKORD

ABSTRAKT .. 5
SISSEJUHATUS ... 6
1. ETTEVÕTTE VÄÄRTUSE HINDAMINE ... 8
 1.1 Idufirma väärustuse hindamine ... 9
 1.2 Interneti ettevõtte hindamise eripärad ... 12
 1.3 Diskonteeritud rahavoogude meetod ... 14
 1.3.1 Diskonteerimismäär ... 16
 1.3.2 Diskontomäär idufirmades ... 18
 1.3.3 Diskonteeritud rahavoogude metodi piirangud ... 18
 1.4 Reaaloptsioonide meetod .. 20
 1.4.1 Optsoonide tüübid ... 21
 1.4.2 Reaaloptsioonide põhiteooria .. 23
 1.4.3 Reaaloptsioonide raamistikukoostamine .. 28
 1.4.4 Interneti idufirmade ja reaaloptsioonide seosed .. 30
2. ALUSTAVA ETTEVÕTTE ÜLEVAADE ... 34
 2.1 Interneti areng .. 37
 2.1.1 Ettevõtlus internetis .. 39
 2.1.2 Ärimudelite olemus internetis ... 40
 2.1.3 Viithinnastuse mudel .. 42
 2.1.4 Metoodika ... 44
3. ALUSTAVA ETTEVÕTTE VÄÄRTUSE HINDAMINE .. 45
 3.1 Simulatsiooni mudel ... 46
 3.1.1 Reaaloptsioonide raamistiku koostamine ... 49
4. TULEMUSED .. 52
5. JÄRELDUSED JA ETTEPANEKUD ... 58
KOKKUVÕTE .. 60
VIIDATUD ALLIKAD ... 62
SUMMARY .. 64
LISAD ... 66
 Lisa 1.Kasutatud inglise-eesti keele terminoloogia .. 66
Lisa 2. Ettevõtte x andmed ...68
Lisa 3. Monte Carlo simulatsiooni näide ..70
Lisa 4. Reaaloptsioonide parameetrid ..72
Lisa 5. Monte Carlo simulatsiooni statistilised näitajad73
Lisa 6. Erinevad konverteerimismäärad ..74
ABSTRAKT

Kõige levinum väärtuse leidmise analüüsi meetod on diskonteeritud rahavoogude meetod, mis arvestab raha sisse- ja väljavoogudega ning leiab tuleviku väärtused tänapäevas, kasutades selleks diskonteerimismäära. See hõlmab endas mitut olulist faktorit nagu näiteks finantsturgude ja vastava valdkonna käekäik, kus analüüsitav ettevõte tegutseb. Alustava ettevõtte väärtuse hindamine omab teatud komplikatsioone, kuna puudub majandustegevuse ajalugu, mida oleks võimalik analüüsida. Seetõttu tuleb erinevate väärtuse hindamise mudelite jaoks kasutada simulatsioone, mis annaksid sihipäraste eeldustel ja tingimustel võimalikult reaalse prognoosid ettevõtte potentsiaalselt käekäigust.

Internetis tegutsevate ettevõtete põhilisemaid eripärasid on suur volatiilsus. Lihtsustatult öeldes – lühikese aja jooksul on võimalik saavutada kasuminumbreid, mis tunduvad esialgsetel vaatlusel ebareaalseted. Samas väidavad vastupidist mitmed interneti ettevõtete edulood, mida idufirmad üha enam jahtima on hakanud.

Antud töö demonstreerib sügavama tasuvusanalüüsi vajalikkust alustava interneti ettevõtte finantsprognooside ja strateegiate loomisel.

Võtmesõnad: ettevõtte väärtuse hindamine, diskonteeritud rahavoogude analüüs, Monte Carlo simulatsioon, reaaloptsioonid, interneti idufirma, viithinnastuse mudel.
SISSEJUHATUS

Tänapäeval alustatakse igapäevaselt tuhandeid idufirmasid, millest suur osa lõpetab sageli läbikukkumisega. Vaatamata sellele, et suurel hulgal arendatakse uusi projekte, on igapäeval kasutatakse riskikapitali näol voolu või peamiselt siiski arvestatakse. Vaatamata pidevalle innovatsioonile, kasvavate tarbimisootustele ja konkurentsioonile, on interneti idufirma näol tegemist ettevõtmisega, kus edu võtmeks on kaalukas eelnev tasuvusanalüüs.

Interneti idufirmad ja alustavate investeerimisprojektide märksõnadeks on suur ebakindlus tulenevalt muutlikust kasutajabaasist, rahavoogudest ja konkurentidest; arvestatakse teadmatus teenuse käekäigu suhtes; suuremahuliste investeeringute vajadust tootekandude, turunduse või litsentside finantseerimise järel ning prognoositud eesmärkide täitmine läbi suurte kasutajate käitumuslike andmemassivide analüüsise, mis muudab finantsprognoosituse teatevamaks.

Käesolev magistritöö uurimisprobleem on viithinnastuse ehk freemium ärimudelit kasutava ettevõtte prognoositavate rahavoogude analüüsine ja väärtuse hindamine. Sageli ei kasuta idufirmad esialgsete finantsprognooside tegemisel põhjalikumat tasuvusanalüüsi, kui välja arvata lihtsustatud rahavoogude kaardistamine, sest selleks puudub vastav pädevus või soovitakse säästa finantseksperite nõudmist ja arvelt. Olgugi, et avalikult läbi antud ettevõtte äriplaanide mallides on finantsolukorra jaoks eraldi sektori analyseerimine, sageli koos selgitusega ja juhenditega, on see osa äriplaanist pigem triviaalne täiend kui läbimõeldud strateegilistest otsustest ülevaade.

Kuna käesoleva töö autor tegutseb samas ärivaldkonnas, on magisttitöö aluseks autorite märkimisväärne isiklik huvi. Teemat tuleb pidada ajakohaseks, sest idufirmad massiline loomine internetiteenustest sektoris on saanud tänapäeval tavaliseks nii Eestis kui välismaal.

Käesolevas töös uuritavaks objektiks on ettevõte x, mis on äriarenduse faasis olev teenuseportaal, arendav interneti ettevõte. Arvestades interneti idufirmad eripärasid, vastava majandussektori tingimust ja teoreetiliselt põhjendatud seisukohti kõrge muutlikkuse ning tulupotentsiaaliga ettevõtmiste hindamises, on autor püstitanud järgmise uurimisküsimuse:
• Missugusel viisil on võimalik hinnata erinevatele turgudele laieneda sooviva idufirma väärust diskonteeritud rahavoogude meetodiga, millesse on lisatud reaaloptsioonide meetod, kasutades selleks viithinnastuse ärimudelit?

Töö eesmärgiks on välja töötada sobiv ja rakendatav investeeringute ja strateegiliste otsuste analüüsimodel, mis baseerub viithinnastuse põhimõttel ning on alustava interneti ettevõtte vääruse hindamisele sobilik. Uurimisülesanded on jaotatud järgmisteks etappideks:

• diskonteeritud rahavoogude meetodi rakendamine ettevõtte esialgsetele rahavoogude prognoosidele,
• Monte Carlo simulatsiooni kasutamine rahavoogude ja konverteerimismäärade analüüsimeesk ja vääruste varieerumise mõõtmiseks,
• tõenäosusjaotuse analüüs,
• reaaloptsiooni raamistiku koostamine ja sisendparameetrite esitamine,
• ettevõtte vääruse leidmine, kasutades reaaloptsioonide meetodit.

Autor soovib tänada oma juhendajat Ivo Karilaidu meeldiva koostöö ja abi eest magistritöö koostamisel. Samuti köiki pereliikmeid ja lähedasi, kes olid sel perioodil toeks.
1. ETTEVÕTTE VÄÄRTUSE HINDAMINE

1.1 IDUFIRMA VÄÄRTUSE HINDAMINE

Kui ää alustamiseks piisaks vaid ideest, oleks noori ettevõtte üle terve maa ilma. Mõned on kaubanduslikus mõttes välja kujunemata, kus omanikul on idee, millega ta loodab täita rahuldamata klientide seas. Teised on kaugeseid ideid k-aukunud ning oma mõtte muutnud kaubanduslikuks tooteks, olgugi et käie ja kasum on veel tekimata. Veelgi enam on järgmised kaugemad ideid k-aukunud – neil on olema turu oma toote, mõningase käibe ja kasumipotentiaaliga (Damodaran 2009, 3).

Alustavad ettevõtted on tihti väikesed, mistõttu nende roll üldise majanduspildis on tagasihooldlik. Samas on neil majandusele suur mõju ja seda järgnevatel põhjustel (Damodaran 2009, 4):

1. tööhõive – olgugi, et on vähe uuringuid, mis keskidendavad ainult idufirmadele, eksisteerib tõendeid, et väikeettevõtted on vastutavad majandusel ebavõrdeliselt suure arvu uute töökohtade loome eest;

9
toimunud pigem tänu väiksematele tehnoloogiaettevõttele kui juba töötavatele ettevõttele.

Alustavad ettevõtted on mitmetahulised, kuid omavad teatud ühiseid jooni ja iseärasusi (Damodaran 2009, 6):

1. finantsajaloo puudumine – tihti on võimalus hinnata vaid ühe kuni kahe aasta tegevusepõhiseid- ja finantsandmeid;
2. väike või puudulik käive ja tegevuskulud – lühikeses ajajärjekorras eksisteerib vähene tegevuse ülevaatlus. Käibed on väikesed või olmeid (nn ideärid) ning kulud on pigem äri alustamisele, mitte käibe tootmisele suunatud;
3. sõltuvus omakapitalist – olni, et eksisteerib erandide, on noored ettevõtted sõltuvad pigem omakapitalist (tõenäoliselgi läbi omanike ringi) kui avalikust turgudest, kusjuures omakapital on enamasti loodud läbi omaniku sõprade ja perekonna;
4. paljud ei jää ellu – enamus alustavatest ettevõtetest ei elu üle kaubandusliku edukogu ning kukuvad läbi. Uuringus, milles vaadeldi 5196 Austraalia idufirmat, leiti, et aastane ebaõnnestumise määr on 9% ning 64% valmis kubu läbi 10 aasta jooksul.

<table>
<thead>
<tr>
<th></th>
<th>Proportsioon 1998. aastal asutatud ettevõtetest, kes olid tegutsevad läbi:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aasta 1</td>
</tr>
<tr>
<td>Loodusvarad</td>
<td>82,33%</td>
</tr>
<tr>
<td>Ehitus</td>
<td>80,69%</td>
</tr>
<tr>
<td>Tootmine</td>
<td>84,19%</td>
</tr>
<tr>
<td>Transport</td>
<td>82,58%</td>
</tr>
<tr>
<td>Informatsioon</td>
<td>80,75%</td>
</tr>
<tr>
<td>Finantstegevus</td>
<td>84,09%</td>
</tr>
<tr>
<td>Ariteenused</td>
<td>82,32%</td>
</tr>
<tr>
<td>Tervishoiuteenused</td>
<td>85,59%</td>
</tr>
<tr>
<td>Vaba aeg</td>
<td>81,15%</td>
</tr>
<tr>
<td>Muud teenused</td>
<td>80,72%</td>
</tr>
<tr>
<td>Kõik ettevõttes kokku</td>
<td>81,24%</td>
</tr>
</tbody>
</table>

Allikas: (Damodaran 2009, 6)
5. nõuded omakapitalile – alustavate ettevõtete korduvad püüdlused sisse tuua kapitali muudab haavataks need kapitali investorid, kes varajases staadiumis investeerisid. Oma huvide kaitseks esitavad kapitaliinvestorid sageli nõudeid esmastele rahavoogudele, likvideerimisele, kontrolli või veto õigusele, võimaldades seeläbi osalemise ettevõtte tegevuses. Selle tulemusena võivad erinevad nõuded kapitalile paisuda kõik suureks, mõjudes seeläbi noore ettevõtte väärtusele;

6. investeeringute mittelikviidsus – kuna kapitali investeeringud noorte ettevõtetele on eraldiseisvad ning mittestandardsed, eksisteerib rohkem mittelikviidsust kui avalikult kaubeldavatel teisikutel.
1.2 INTERNETI ETTEVÕTTE HINDAMISE ERIPÄRAD

Interneti ettevõtte hindamine on komplitseeeritud kolmel omavahel seotud põhjusel (Zarzecki, 2010, 108):

1. interneti ettevõtted toodavad suurte turunduskulude tagajärjel kahjumit või vähest tulu oma tegevust alustades;
2. interneti ettevõtted arenevad väga kiiresti – need, kellel onnestub enda hüvisega turuosa kinnitada, võivad kogeda ka algusaegadest mitmekordised kaibet kasvusid;
3. interneti ettevõtete tulevik on ebakindel.

Lihtsustatud hindamismeetodid nagu P/E või P/R esinevad vähe mõjuga rakendustes, kus puudub kasum või kas kääve kasvab eksponentiaalselt. Alternatiiviks pakuvad mõned hindajad mõned põhitõendid või käibe arvu kordajad hindamist kolmeaasta perspektiivis. Kuigi viimane lähene mine võib aga olla ebakohastne, sest tuleviku prognoosid sellistel tingimustel poleks kasulik tõostuse muutliku dünamiik kiitumise tõttu järgmise 10 või 20 aasta jooksul. Samuti ei hooma lihtsustatud meetodid erinevate ettevõtete eripärasid (Ibid.).

Mõistlikum on tagasi tulla majanduslike põhitõdede ja rakenduste juurde nagu diskonteeritud rahavoodet (DCF), mis ühendab eraldab reaalset sisenevad ja väljuvad rahavood vastavalt heakskiidetud raamatupidamislikele printsiipidele. Samuti on finantsajaloo puudumine ning erinevad meetodid puhast rahavoogude genereerimiseks probleemad (Ibid.).

Lisaks võimaldab DCF meetod luua reaalse ettevõtte väärtuse, mis võib küll baseeruda ainult tulu ja kulude prognoosimises. Antud meetod ei välija teatud keeruliste eelduste tegemist tuleviku suhtes, kuid sellele vaatamata hoomab see meetod kõrge kasvumäärade ja ebakindluse olemust. Siiski on interneti ettevõtte hindamisel üks kriitiline varjukulg. Tuleviku
suhtes tehtavaid eelduseid võib olla küllaltki keeruline õigustada ja põhjendada. Akadeemilistes uuringutes on leitud järgmised seisukohad interneti ettevõtte hindamisel (Zarzecki, 2010,109):

1. traditsiooniline raamatupidamislik info on oluline, kuid seos finantsnumbrite ja interneti ettevõtete hindamise vahel on nõrk;
2. veebiliiklus (web traffic) ei ole põhiline väärtuseloome tegur;
3. finantsanalüütikud on üle hinnanud interneti ettevõtte aktsiad;
4. oma olemuselt ei ole uued hindamismeetodid püsivad;
5. uued lähenemised interneti ettevõtete aktsiate väärtuse hindamiseks ei ole olemuselt tegelikult uued.
1.3 DISKONTEERITUD RAHAVOOGUDE MEETOD

Tabel 2. Enamlevinud hindamise meetodid erinevates kategooriates

<table>
<thead>
<tr>
<th>Põhilised väärtsuse hindamise meetodid</th>
<th>Bilansi põhised</th>
<th>Kasumiaruande põhised</th>
<th>Hübriid (Goodwill)</th>
<th>Rahavoo diskonteerimine</th>
<th>Väärtuse loome</th>
<th>Optsoonid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allikas: (Fernandez, 2002,4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Praegu kindla rahasumma eest saadav heaolu ületab tulevikus saadava võimaliku heaolu, seega peab tänasest tarbimisest loobumiseks pakkuma rahaomanikule lisapreemiat, mille võrra ta saab tulevikus rohkem tarbida. Raha tänase väärtsuse leidmist nimetatakse
Diskonteramiseks, kus tuleviku rahavoogusid vähendatakse diskonteramismäära ehk kapitali alternatiivkulu abil. Teisisõnu, mida suurem on raha hind ehk intress, millega tulevikus saadavat raha tänasesse päeva diskonteritakse, seda vähem väärtuslik on see rahavoog tänana.

Diskonteritud rahavoogude metod hindab projekte kasutades projekteeritud tuleviku rahavoogusid ning rakendades nüüdispuhasväärtuse (NPV) meetodit nende rahavoogude hindamiseks (Lueherman, 1997, 134).

\[
NPV_0 = \sum_{t=1}^{T} \frac{C_t}{(1+r)^t} - I_0
\]

kus
I_0 – esialgsed projektikulud,
C_t – projekti ajal tekivad rahavood,
r – nõutav tulunorm (mudelis kui diskonteramismäär).

Lahutatud investeeringud kõikidest projekti puhasväärtuste summa määravatavad nüüdispuhasväärtust (NPV). Kui projektil on positiivne nüüdispuhasväärtus, tuleks see vastu võtta, kuna see suurendab ettevõtte väärtust, mis on põhilisemad finantseerimise ehitajate jaoks. Olgu öeldud, et DCF analüüsi täpsus sõltub valitud diskontamäärast. Valides liialt kõrge diskontomäär, võib see tuua kaasa sellised kalkulatsioonide tulemused, mille valguses on soovitatav projekt mitte vastu võtta, kuna NPV on negatiivne. Samas liialt madal diskonteramismäär ei pruugi hoomata kõiki projekti eripärasid ning vigaselt positiivse NPV tõttu võetakse projekt ekslikult vastu.

NPV põhimõtte demostreramiseks oletame, et ettevõte a kaalub projekt kasutamist, mis on vie aasta pikkune, 100-eurose projektikuluga ning geneereerib 25 eurot aastas rahavoogusid kapitalihinnaga 5% (WACC).

Tabel 3. NPV kalkulatsiooni näide (eurodes).

<table>
<thead>
<tr>
<th>Aasta</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raha väljavood</td>
<td>-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Raha sissevood</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Diskonteritud rahavood</td>
<td>23,8</td>
<td>22,7</td>
<td>21,6</td>
<td>20,6</td>
<td>19,6</td>
<td></td>
</tr>
<tr>
<td>Diskonteramäär</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allikas: autor koostatud
Kuna NPV on antud projekti puhul positiivne, siis tuleks projekt ellukutsumist kaaluda, kuna see suurendab ettevõtte väärtust. NPV on oma olemuselt küllaltki lihtne läheneamine invsteeringu analüüsimisel ning see on ka tõenäoline põhjus, miks seda palju kasutatakse.

1.3.1 Diskonteerimismäär

Diskonteerimismäär on oluline osa diskonteeritud rahavoogude hindamisel, mis arvestab riski ja ajaloolist volatiilsust. Kalkulatsioonides esinev viga võib viia tõsiste tagajärgedeni projekti hindamisel (Fernandez 2002, 14). Diskonteerimismäära leidmiseks on erinevaid lähenedemisi, mis hõlmavad endas erinevaid lähennemisi, mis hõlmavad endas erinevaid kaasatavaid muutujaid.

Tabel 4. Erinevad diskonteerimismäärad rahavoogudele.

<table>
<thead>
<tr>
<th>Rahavoog</th>
<th>Sobiv diskonteerimismäär</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaba rahavoog (FCF)</td>
<td>Kaalutud kapitali keskmine hind (WACC)</td>
</tr>
<tr>
<td>Omakapitali rahavoog (ECF)</td>
<td>Omakapitali hind (Ke)</td>
</tr>
<tr>
<td>Kohustuste rahavoog</td>
<td>Võõrkapitali hind (Kd)</td>
</tr>
</tbody>
</table>

Allikas: (Fernandez, 2002,15)

Lisaks diskontomääradele, mis sobivad erinevatele rahavoogudele, on oluline mõista ka erinevate meetodite sisendeid, mis hõlmavad endas erinevaid riski- ja volatiilsuse tegureid.

Tabel 5. Omakapitali hinna erinevad mudelid

<table>
<thead>
<tr>
<th>Mudel</th>
<th>Oodatav tulunorm</th>
<th>Vajalikud sisendid</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPM</td>
<td>$E(R) = R_f + \beta (R_m - R_f)$</td>
<td>Riskikavaa määr, tööstuse beeta, tururiski preemia</td>
</tr>
<tr>
<td>APM</td>
<td>$E(R) = R_f + \sum_{j=1}^N \beta_j (R_j - R_f)$</td>
<td>Riskikavaa määr, faktorite arv, vastavad beetad faktoritele, faktoriiriski preemia</td>
</tr>
<tr>
<td>Mitmefaktoriline</td>
<td>$E(R) = R_f + \sum_{j=1..N} \beta_j (R_j - R_f)$</td>
<td>Riskikavaa määr, makronäitajad, vastavad beetad makronäitajatele, makroökonoomilised riskipreemiat</td>
</tr>
<tr>
<td>Proxy</td>
<td>$E(R) = a + \sum_{j=1..N} b_j Y_j$</td>
<td>Prognoosid, regressiooni koefitsiendid</td>
</tr>
</tbody>
</table>

Allikas: (Damodaran, 2008)

NPV kalkulatsiooni juures on põhilisteks kaks mudelit, mida kasutatakse riski kaasamiseks projekti väärtuse hindamisel – kaalutud kapitali keskmine hind (WACC) ja

\[WACC = w_eK_e + w_dK_d(1 - T) \]
(2)

kus

- \(w_e \) – omakapitali osakaal kapitalistruktuuris,
- \(w_d \) – laenu osakaal kapitalistruktuuris,
- \(K_e \) – nõutav osanike tulumäär,
- \(K_d \) – võlausaldajate nõutav tulumäär.

CAPM-on riskiga kaalutud diskonteerimismäära mudel, mis annab nõutava omakapitali tulunormi.

\[E(R) = R_f + \beta (R_m - R_f) \]
(3)

kus

- \(R_f \) – tulumäär riskivabale investeeringule,
- \(\beta \) – osaku beeta,
- \(R_m \) – nõutud turu tulunorm,
- \(R_m - R_f \) – tururiskipreemia.

Beeta (\(\beta \)) on olulisemaid parameetreid CAPM mudelis, kuna see väljendab endas vara riski võrreldes turuga. Beetat kasutatakse vara või varade portfelli süstemaatilise riski hindamiseks. Kasutades CAPM-i NPV kalkulatsiooni puhul, on beeta lisatud läbi tugeva või täiusliku korrelatsiooni, projekti rahavoogudele, millel on sarnane või sama risk. Analüüsi väitel olev beeta vastava vara ja projektiga peaks olema läbivalt sama. (Damodaran, 2008, 17)

CAPM analüüs hõlmab kahte riskitüüpi. Esiteks diversifitseeritav ehk hajutatav risk, mis on majandussektorile omased faktorid. Seda on võimalik hajutada ning see ei ole seotud turutingimustega muutustega. Teiseks on mitte-diversifitseeriv ehk süstemaatiline risk, mis on majanduslike tingimuste tulemus mõjutades võlakirjade hinda ning seda ei ole võimalik hajutada (Ibid.).

CAPM-i tuum seisneb selles, et leitakse tulunorm, mis kompenseerib ettevõetava projekti riske. Suuremaid puudu CAPM-i puhul on suutmatus leida instrument, millel oleks täiuslik korrelatsioon ettevõetava keerulise/kõrgetasemelise projekti kohta. Ettevõetavad
investeeringud omavad harva rahavoogu, mis oleks täiuslikus korrelatsioonis turuga. Intressimäärad on konstantsed kogu projektikulu ajal, mis ei ole kooskõlas reaalsusega, kuna turutingimused koos intressimääraadega on muutuvad nähtused. (Damodaran, 2008, 18)

1.3.2 Diskontomäär idufirmades

Enamus idufirmasid ei ole avalikult kauplevad ning ei oma võlakirju. Sellest tulenevalt ei ole võimalik teha mineviku võlakirjade/tootlikkuse regressioonianalüüsi, leida omakapitali betat või kasutada laenu puhul turu intressimäärä. Weelgi enam, idufirmade investorit on kas täielikult kaasatud ettevõttes (asutajaliikmed) või võimalik hajutada, arvestades asjaolu, et ainuke risk, mis loeb, on risk, mida ei saa hajutada ning nõuavad kompensatsiooni vähemalt mõnele ettevõttele oma ettevõttele riskile. (Damodaran, 2009, 9)

Ouline on tähelepanu juhtida asjaolu, et kõrgtehnoloogia idufirmad on täielikult finantseeritud läbi omakapitali, mis tähendab seda, et kapitali hind võrdub omakapitali hinnaga. Diskontomäär siinkohal väljendab investori nõutavat omakapitali tulunormi ning samal ajal peegeldab idufirma kapitalihinda. Eksisteerivad erinevad metodid kapitalituru hindamiseks arbitraaži hindamisest regressiooni mudelini, millega riskipreemia on arvutatud. (Festel, Wuermsher, Cattaeno, 2013,221)

1.3.3 Diskonteritud rahavoogude meetodi piirangud

Diskonteeritud rahavoogude meetodi laialdanud kasutus võib olla tingitud järgmistest asjaoludest:

1. analüüs sundib investoreid süvenema ettevõtte olemusse,
1. antud meetod võimaldab objektiivset raamistikku ettevõtte riskide ja rahavoogude vääruse hindamiseks,
2. suunab mõtlema põhiline majanduslikku väärust suunavate teguritele.

Olenemata laialdasest kasutuspinnast on meetodil leitud teatud piiranguid:
1. DCF analüüsid võivad juhtimise tasandil olla ebaedukad, isegi kui neid on korrektelt rakendatud (Myers 1984, 126);
2. rahavood on avatud erinevatele riskidele erinevate diskontomäärade puhul (Mathews 2009);
3. prognoositud rahavoogude risk (muutlikkus) on hindamisprotsessi kaasatud, kuid jätakse välja võimalikud tulemused. Viimane tekitab juhtimislikke eelarvamuse tagasi lükata suure potentsiaaliga projekte (Van Putten, MacMillian 2004, 135);
4. DCF analüüs eeldab, et ettevõtte otsused tulevikus on fikseeritud algusest peale ning ignoreerivad otsustuste paindlikkust investeerimisprojekti eluajal (Schwartz 2013, 165);
5. kui investeerimisprojektis on optsioonid (nt lahkumise/tagasilükkamise optsioonid), tekitavad komplikatsioonid korrektse diskontomäärade leidmiseks NPV kalkulatsioonides (Ibid.).

Olenemata kriitikast on DCF mudel ärianalüüsis olulisel kohal, kuigi komplektsemate projektide hindamine nõuab täpsete lähemist, mudeli muutmist või mudeli edasiarendust (Van Putten, MacMillian 2004, 135).
1.4 Reaaloptsioonide meetod

Joonis 1. Hindamiseks kasutavate metodoloogiate võrdlus (NPV ja ROV)

Allikas: (Leslie, Michaels 1997, 12)
1.4.1 Optsioonide tüübid

Euroopa optsioon annab omanikule õiguse optsiooni kasutada optsiooni täitumistähtajal T, kui alusvara hinna protsessi iseloomustab S(t), t ∈ [0, T]. Seega saab optsiooni omanik endale õiguse (S(t)), kus φ on tehingufunktsoon. Eksisteerib kaks põhilist Euroopa optsiooni – Euroopa müügi- ja ostuoptsioon.

Vastavalt Euroopa ostuoptsiooni olemusele lastakse optsioon käiku juhul, kui aktsia hind S on kõrgem kui tehinguhind K. Kui ostuoptsiooni realiseeritakse, tasub omanik optsioonikoostajale tehingu hinna optsiooni eest ning optsioon on seega lõppenud. Seega on optsiooni väärtus või väljamakse \(\varphi_c(S(T)) = \max (S(T) - K, 0) = (S(T) - K,0)^+ \), kus T on optsiooni täitumistähtag ja \(\varphi_c(\text{ostuoptsiooni tehingufunktsoon}) \). Seega \(\varphi_c(S(T)) \) on otsene valem ostuoptsioonin väärtuseks tähjal T, kui hinna kujunduse protsessi funktsioon alusvarale.
ajal T. Näiteks on optsioon vääratsetu, kui alusinstrumendi hind on alla tehinguhinna (S(T)<K). (Luenberger,1998, 323)

Joonis 2. Ostuoptsiooni väärus/väljamakse

Allikas: (Luenberger, 1998,323)

optsiooni väärus suureneb koos hinnaga lineaarselt, kui alusvara hind on suurem kui tehinguhind S(T) > K. Ükskõik, mis ajal on Euroopa ostuoptsioon raha omav, kui S(t) > K; tasakaalus, kui S(t) = K ning tulutu, kui S(t) < K.

Euroopa müügioptsioon annab omanikule õiguse müüa alusvara kindla hinnaga optsiooni täitumistähtajal T. Alusvaraks võivad olla aktsiad, aktsiaindeksid, futuurlepingud, intressimäärad jne. Antud optsioon lastakse käiku ainult juhul, kui aktsia hind S on väiksem kui tehinguhind K. Kui müügioptsioon käiku lastakse, saab omanik optsioonikoostajalt tehinguhinna aktsia eest ning optsioon lõppeb. Seega on müügioptsiooni väärus täitumistähtajal φp(S(T)) = max (K-S(T), 0) = (K-S(T))+ (Ibid.).
Joonis 3. Müügioptsiooni väljamakse

Allikas: (Luenberger, 1998, 323)

Näiteks on optsioon väärtusetu, kui alusinstrumentsi hind on suurem kui tehinguhind K (S(T) > K), kuid kui tehingud on suuremad aktsia hinnast, on müügioptsioonil väärtust. Ükskõik, mis ajal on Euroopa müügioptsioon raha omav, kui S(t) < K; tasakaalus, kui S(t) = K ning tulutu, kui S(t) > K.

Ameerika optsioon annab omanikule õiguse optsiooni käiku lasta enne optsiooni täitumistähtaega või selle ajal (t ≤ T). Seega tuleb eeldada, et eksisteerib konkreetselt väljamaksese enne täitumistähtaega. Sellest tulenevalt igal ajahetkel optsiooni eluajual tuleb Ameerika optsiooni omanikul otsustada, kas optsiooni käiku lasta koheselt või oodata. Juhul, kui optsiooni omanik otsustab oodata näiteks t ≤ T ajal, realiseerub φ(S(T)), kus φ on tehingufunktioon. Sarnaselt Euroopa optsioonidega on võimalik Ameerika optsiooni klassifitseerida kahe põhitüübina.

Ameerika ostuoptsiooni annab omanikule õiguse osta alusvara kindla hinnaga enne optsiooni täitumistähtaega või selle ajal ning müügioptsiooni annab õiguse müüa alusvara kindla tehinguhinnaga enne täitumistähtaega või selle ajal. Kui alusinstrument ei maksa dividende, ei ole Ameerika ostuoptsiooni realiseerimine optimaalne. Ameerika optsioon on vähemalt sama palju väärt kui identne Euroopa optsioon just tänu varajase käiku laskmise võimalusele (Ibid.).

1.4.2 Reaaloptsioonide põhiteooria

Optsiooni hinna arvestamiseks kasutatakse tavaliselt Black-Scholes’i mudelit. Esialgne Black-Scholes’i valem arvutab teoreetilise optsiooni väärtuse, nüüdisväärtsuse oodatava optsiooni tasu kohta, eeldusel, et puuduvad dividendi väljamaksed, maksu- või tehingukulud. (Leslie, Michaels 1997, 12)

\[
S_e = \delta^t[N(d_1)] - X e^{-rt[N(d_2)]},
\]

\[
d_1 = \frac{\ln \left(\frac{S}{X} \right) + (r - \delta + \sigma^2) t}{\sigma \sqrt{t}},
\]

(4)
\[d_2 = d_1 - \sigma \sqrt{t} \]

kus

\[\begin{align*}
S & \quad \text{– aktsia hind}, \\
X & \quad \text{– optsooni hind}, \\
\Delta & \quad \text{– dividendid,} \\
r & \quad \text{– riskivaba määr,} \\
\sigma & \quad \text{– ebakindlus,} \\
t & \quad \text{– aeg lõppemiseni,} \\
N (d) & \quad \text{– kumulatiivne normaaljaotuse funktsioon}
\end{align*}\]

Reaaloptsoonide süstemaatiline olemus jaotab need võimalusteks edasi lükata (aeg), sõlmida (vähendada), vaheata (ümber jaotada) või investeeringuid laiendada (vt joonis 4) (Baduns 2013, 58). Näiteks optsooni laiendada projekt on väärtuslik ettevõttele, mis soovib investeerida negatiivse nüüdispuhasväärtusega projekti, kui see annab võimaluse ettevõttete uue projekti alustamiseks. Teisalt, juhul kui projektil lasub positiivne NPV, on optsooni edasi lükata investeeringut väärtuslik, kuna see annab ettevõttete võimaluse oodata, kuniiks tekib rohkem informatsiooni turu kohta. Veelgi enam on on optsooni projektide tagasi lükata oluline tootearenduse seisukohast, kuna see annab paindlikkust loobuda negatiivsete tulemuste ilmnemisel (Schwartz 2013, 164). Teisisõnu on reaaloptsoonid juhtimiskontekstis õigus, mitte kohustus, investeerida või mitte (Baduns 2013, 58). Reaaloptsoonid ostmin strateegiliselt tähtsal võimaluse abil mooduse edasi lükata kohustust, kuni arvestatav määr teadmatust ettevõtmise puhul on lahendatud (Ibid.).

Tänul oma paindlikkusele, sarnasusele Black-Scholes’i mudelile ja lihtsale arusaamale on riski neutraaltõenäosuse (RNP) baas mudelit kõige rohkem kasutatud reaaloptsoonide meetodite erinevates harudes (Baduns 2013, 59). Kui konkreetne muutuja on riskile neutraalne, on see „riskist vaba“ nagu kirjeldab Mun (2002), mis toovad kaasa kaks üldist „riski vabastavat“ lähenemist: (a) rahavoo riskile mugandamine või (b) riski mugandamise tõenäosused, mis seavad rahavoo väärtuse kindlal ajaperioodil. RNP lähenemine kasutab viimast. Seega saab rahavoogu diskonterida riskivaba määrani, mitte riskiga kohandatud määrani (Ibid.).

Pärast esialgse investeeringu tegemist tuleks juhtival organil pöörata tähelepanu muudele teguritele ning oodata signaali, millal oleks põhjendatud esialgse investeeringu kaasamine. Arvestades sündmusi enne finantsoptsooni käiku laskmist, millele reaaloptsoonid baseeruvad (vt joonis 4), ostab investor optsooni (järk 1, joonisel 4). Hoidmisperioodi ajal

Joonis 4. Reaaloptsiooni struktuur

Allikas: (Adner, Levinthal 2004, 75)

optsiooni kasutamise teoria kohaselt, tekib võimalus osta või müüa alusvara selle volatiilisuse ja rahavoo kõrgest muutlikusest. Sellest tulenevalt on reaaloptsioonid kõrgema väärusega siis kui volatiilsus ja suutlikus tulenevalt õigeaegseks realiseerimiseks on kõrge. (Baduns 2013, 59):
Reaaloptsioonid sarnasus

<table>
<thead>
<tr>
<th>Finantsoptsioon</th>
<th>Sarnane klassifikaator kirjanduses</th>
<th>Reaaloptsioon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktsia (alusvara) hind</td>
<td>S, V</td>
<td>Diskonteritud rahavoog (NPV)</td>
</tr>
<tr>
<td>Optsooni hind</td>
<td>E, X, K</td>
<td>(Kapitali) investeering</td>
</tr>
<tr>
<td>Aeg lõppemiseni</td>
<td>t,T</td>
<td>Aeg, kuni otsustest saab ära öelda</td>
</tr>
<tr>
<td>Riskivaba määr</td>
<td>r, r^f</td>
<td>Raha aja väärtus</td>
</tr>
<tr>
<td>Tulususe variatsioon</td>
<td>Σ</td>
<td>Rahavoo muutlikkus</td>
</tr>
<tr>
<td>Dividendimäär</td>
<td>Δ,b,q,l</td>
<td>Kaotatud väärtus real optsioon ajal</td>
</tr>
</tbody>
</table>

Allikas: (Baduns 2013, 59)

Aktsia hind (S) on tehingutagatise väärtus, millele optsioon on ostetud. Teisisõnu on tegemist turu nüüdisväärtuse prognoosiga köikidest tulevikku rahavoogudest – dividendid, kapitali kasvutulu, jne – mis suhestuvad antud aktsiaga. Selle vordeline tähendus reaaloptsioonides on see oodata ja vajaliku rahavoogude nüüdisväärtus investeeringu võimalusele, millele optsioon osteti.

Optsooni hind (X) on eelseadistatud hind, millega optsiooni saab kasutada. Selle reaalväärtus on kõikide oodata ja fikseeritud väljuvate rahavoogude nüüdisväärtus kogu investeeringu võimaluse ajal.

Teadmatus (σ) on aktsia hinna tuleviku muutlikkuse ettearvamatuse mõõdik, täpsemalt tuleviku rahavoogude kasvumäära standardhälve. Reaalväärtus on sama, kuid suhestub vastava vara rahavooga.

Aeg lõppemiseni (t) on periood, millal optsiooni saab kasutada. Reaalväärtus on periood, millal investeeringu võimalust on võimalik kasutada. Viimane sõltub tehnoloogiast (toote elutsüklist), konkurentsiedelas ning õigusjärjestest tingimustest (patendid, kohustused ja litsentsid).

Dividendid (Δ) on aktsionäridele makstud summad, st dividendi kulu on esitatud läbi väärte, mis eemaldub optsiooni aja mõõdudes. Tegemist võib olla optsiooni ülalhoidmise kuluga või rahavoogudega kaotatud klientidele, kes otsustasid minna investeeringu võimalusega edasi.

Riskivaba tulumäär (r) on ilma riskita võlakirjade tulususe määra sama maksetähtpäevaga kui optsioonil, olenemata finants- või reaaloptsioonist. (Leslie, Michaels 1997, 9)
Kõiki eelnimetatud tuleb vaadelda eraldi igas reaaloptsioonis, kuigi nende omavahelist seost tuleb arvestada. Sellest tulenevalt projekti elua ja jooksul olenemata perioodist peab ajahorisont üle kaaluma oma positiivsed aspektid versus iga reaaloptsioon hind.

Kasutades kõrgeid, madalaid või keskmisi stsenaariumeid, on võimalik teadmatus piiritleda. Stsenaarium-mõtlemine teadvustab teadmatute olemasolult, kui ei võimalda paindlikkuse vääruse kaasamist antud olukorda ning seetõttu pakub vähe mõtteainet juhtmisliklikul tasandil. Teisalt, reaaloptsioonid pakuvad ülevaatlikumat hindamise mudelit, tagamaks asjaolu, et need väärused peavad olema vahemikud, mitte üksikud muutujad. (Leslie, Michaels 1997, 12)

Kui vaadata korporatsioone kui eraldiseisvad äriüksuseid eraldi NPV-dega, luuakse staatiline pilt olemasolevat investeeringutest ja võimalustest. Paljudel juhtudel loob viimane lähenemise tüüp jälginise mehanismi, teistel kordadel seda ei juhtu. (Leslie, Michaels 1997, 10) Protsessi, kus reaaloptsioone hinnatakse, teatakse kui reaaloptsiooni analüüsi (real option valuation - ROV). See koosneb identifitseerimisest, raamistikude seadmisest, hindamisest ja reaaloptsioonide valikust. Analüüsi teostamiseks on oluline mõista, et: (a) kumbki optsioon ei ole realiseeritav (ootamise tulemusel võib tekkida suurem väärus); (b) reaaloptsioon on võimalus, mitte kohustus, investeerida või mitte investeerida, sellest tulenevalt ei ole väärus kunagi negatiivne ning (c) hindamise parametreid on optsiooni vääruse kääritud. (Baduns 2013, 59).

Dünaamiline kompleksus on reaaloptsioonide fookus, leidmaks investeeringute ja rahavoogude keerulist faktoriite väärust. Viimased on abiks otsuste tegemisel ükskõik mis ajahetkel (Ibid.).

Reaaloptsiooni analüüs (ROA) arvestab mitmete otsustussõlmedega, kuna neid iseloomustavad suur teadmatus, mille ees juhtorgan seisab, kui tuleb leida optimaalseid strateegiaid. Juhtorganil on võimalik strateegias muudatusi teha, kui ilmneb uus informatsioon ning teadmatuse määr väheneb, mis kokkuvõttes võimaldab parima strateegia käikut.

27
Seega reaaloptsioonid eeldavad mitmedimensioonilist tulevikutsust kogumit, kus juhtorganil on paindlikkus (võimalus) kohaneda ärikeskkonna muutustele (Baduns 2013, 59).

Reaaloptsioonid rõhuvad strateegilisele oportunistile. Juhid suunatakse võrdlema kõiki võimalusi, mis teki võimalikest investeeringutes ja kõikide teiste alternatiividega, mis tulevad projektid või vaadeldava ajahorisondi jooksul.

1.4.3 Reaaloptsioonide raamistiku koostamine

Ülevaatliku reaaloptsioonide hindamise raamistiku koostamiseks on välja toodud kuus pidepunkti:
1. raamistiku loomine,
2. sisendite kaardistamine,
3. optsiooni parameetrite kalkulatsioonid,
4. binoomjaotuse koostamine,
5. tagurpidi sisestusprotsess,
6. tulemuste analüüsimine.

Täies mahus ROV integreerimiseks DCF analüüsis tuleb kõigepealt koostada DCF analüüs. Viimane toob nõudeks projektid või investeeringu NPV kalkulatsiooni, kuju on integreeritud juhtmislik paindlikkus (reaaloptsioonid). Kui juhtorgan on sisestanud mudelisse eeldused, peab see väljendama selget seost reaaloptsioonidega ning prognoosima kasud ja kulud igale reaaloptsioonile. Kui poolle on võimalik investeeringut edasi lükata, on selle vaikimisloobumisoptsioon ning seda tuleb analüüsis samuti arvestada. Sisendparameetrid ROV analüüsis toovad kaasa iga reaaloptsiooni determinandi kalkulatsioonid. (Baduns 2013, 60)

Kolmas samm seab tählepanu binoomjaotuse parameetrite arvutusele RNP põhises ROV-is. Põhilisi piiranguid selles staadiumis rajavad tihti „usaldusväärse“ muutlikkuse faktori või dispersiooni määramise projekti rahavoogudele. Selleks võib juhtimisorgan kasutada
erinevaid muutlikkuse prognooside vahemikke, sh logaritmiline tululähenemine, finantsmodelleerimine, (akadeemilise taustaga) pakkumine, ajaloolise info analüüs, turu andmete analüüs ja simulatsioonid. Ükskõik millist meetodit võib kasutada seniks, kuni juhtimisorgan tunneb piisavalt kindlalt suure muutlikkuse olemust. Sageli kasutatakse Monte Carlo simulatsiooni muutlikkuse kalkulatsiooniks (Baduns 2013, 61). Traditsioonilist Monte Carlo simulatsiooni on peetud võimekaks ja paindlikuks vahendiks ärirahanduses. See on soovitatav metodoloogia paljudes ärirahanduse teooriast. Simulatsioon võimaldab suure spektri väärtusteteguritest kaasa haarata, on piisavalt paindlik rakenduslikke probleeme lahendama ning ei ole liialt mõjutatud dimensioonsetest komplikatsioonidest. (Gamba, 2002, 2)

Kui reaaloptsiooni portfelli väärtus on määratud, esitatakse tulemused 3D optsiooni ruumis ja kogu projekti väärtus graafiliselt. Vaadates üle optsioonhinnanguid igale optsioonile, saab juhtimisorgan seeläbi leida kõige rohkem väärtust suurendavad otsused. Väärtus realiseeritakse, kui suurima väärtusega reaaloptsioon realiseerub. Tagasilükkanime reaaloptsiooni väärtus sõltub muutlikkuse vahemikust järgnevat võresõlmedes. Teisisõnu, kui hiljem mõnedel optsioonidel on suurem potentsiaalne väärtus, siis tekib ootamise väärtus. Kombineerides RNP lähenumist ROV lähenemisele, sh visuaalseid mudeleid, on võimalik arendada ülevaatlik mudel.
Nagu DCF analüüsi puhul, on mitmeid reaaloptsioonide lähememisi välja pakutud, alates küllaltki lihtsa ja robustse ülesehitusega riskiga kohandatud otsustuspuudest kuni mänguteoorial põhinevate optsoonimängudeni, mida peamiselt kasutatakse kapitali intensiivsetel turgudel. *Fuzzy* loogikal põhinevad teooriad on akadeemilises maailmas aktsepteeritud, kuid neil puudub piisav empiiriline testimine. Küll aga suunavad peamiselt Monte Carlo simulatsiooni põhised Datar-Mathews ROV meetodid tähelepanu kõrge tehnoloogia sektori projektidele. (Baduns 2013, 59).

Joonis 5. Erinevate reaaloptsioonide väärtuse hindamise klassifikatsioonid
Allikas: (Schulmeric, 2010, 27)

1.4.4 Interneti idufirma ja reaaloptsioonide seosed

Laienemise optsoonist tulenev võimalus arendada projektist välja uus ettevõte võib mõnikord tuua tulemuseks preemia omaväärtusele. Seega võib väita, et potsiaalne aspekt on juba esitatud väärtuses. Argumendi vastu räägib asjaolu, et ühe ettevõtmise või turu edu võib mõnikord olla hüppelauaks teiste ettevõtmiste/turgude jaoks (Damodaran 2009, 63):

1. uued tooted – edu olemasoleva toote või teenusega võib mõnikord pakkuda avangu ettevõttele järgmise tootega välja tulemiseks. Klassikaline näide on Microsoft, mis
ehitas olemasolevate operatsioonisüsteemidele (MSDOS ja Windows) Microsoft Office tarkvara, mis oli ääretult tulus lisaväärtus tooteseeriatele. Apple kasutas olemasolevat kliendibaasi iPhone’i turundamiseks läbi iPod’i. Kuigi kummagi uue toote (MS Office ja iPhone) prognoosimine esialgse toote ajal ei oleks olnud reaalne, olid pilootootuted hüppelauaks järgmistele järgmistele:

2. uued turud – mõnedel juhtudel ettevõtted, kellel önnestub tootega ühel turul läbi lüüa, võivad kohata samasugust edu, laieneses järgmistele turgudele. Silmnähtavateks näideteks on Coca-Cola, McDonald’s ja paljud laiatarbe ettevõtted. Tagasihoidlikumad näited on tooted, mis on suunatud kindlale turule, kuid mis pooljuhuslikult leiavad tee uutele turgudele.

Luues ootusi uute toodete ja turgude rahavoogudesse ja väärtsuse satutaks kahe probleemi ette. Esiteks on nende prognoosid kõllaltki laialivalgusel esialgse väärtuse hindamisel ning rahavood peegeldavad ebakindlust. Teisisõnu ei oleks Microsoft ega Apple suutnud näha potentsiaalset turgusid Microsoft Office’i või iPhone jaoks sellel ajal, kui turule tulid MSDOS või iPod. Teiseks on saadud kogemused ja informatsioon esimese toote väljalaskmisel ning nendele järgnev äriarendus, mis võimaldab ettevõttel kasutada järgnevaid võimalusi. Teisisõnu on õppimise ja kohanemise olemuses optsooni väärtuse tekitamine. (Damodaran 2009, 63)

Kui lähtuda võimalusest laienenud täna, ajal mil teadmatus on suurim, siis kuidas oleks võimalik väärtuse prognoosimine? Järgnevalt on esitatud neli sammu, kuidas sisestada numbreid (ja preemia) reaaloptsoonidesse:

1. prognoosida oodatud väärtus ja edasimineku kulud laienemisoptsooni tänale;
2. hinnata teadmatus prognoositud väärtuse laienemisoptsooni;
3. ajahorisondi paikapanemine, millal ettevõte peab laiemiseotsuse tegema;
4. laienemise optsooni hindamine.

Argumenti, mis õigustaks reaaloptsooni preemiat, st mida õppida olemasolevatelt toodetelt ja turgudelt, saab kasutada väärtuse lisamiseks uute toodete ja turgudele sisenemise teel iga uue ettevõtmise puhul. Tuleb silmas pidada nn põhilist provvikivi, mida tuleks enne väärtuse hindamist teha – eksklusiivsus testi. Teisisõnu õpetab ja kohanduv käitumine piiritleb ettevõtet ning loob avatuse barjäärid ülejäänud turule. Näiteks Microsofti eksklusiivsus tõusis läbi oma olemasoleva operatsioonisüsteemi kontrolli, seega oli tal eelis tarkvara arendamisel konkurentide ees (Lotus, Wordperfect jne). Apple’i eksklusiivsus tuli tänu brändile, mida
Viimane oli arendanud läbi innovatsiooni ja värskuse tänu iPodile – mõlemad olid võtmetegurid iPhone jaoks. (Damodaran 2009, 65)

Reaaloptsioonide argument on preemia, mida saab lisada traditsioonilisele diskonteeritud rahavoogude hindamisele ning neile tuleks lisada optsiooni preemia. Teisalt on seisukoht, et aetakse võimalused segamini optsioonidega, kasutades reaaloptsiooni argumenteis lisada preemiat ettevõttele, millel on kõrge kasvupotsentsiaal – tehnoloogiaettevõtetest kuni arenguturgudeni, väiksestest ettevõttetest suurteni ja arengumaadesse. Selles protsessis dubleeeritakse kasvuvaäärtust, kõigepealt läbi prognoositud rahavoogude diskonteeritud rahavoogude hindamisel ning taas omandab reaaloptsiooni argumenteis lisatud preemia.

Interneti ettevõtte hindamine kui reaaloptsioon nõuab teatud eeldusi. Optsoonid kaaluvad reaalseid varasid (mittefinantsilisi, mittekaubeldavaid), kes teadmatu on defineeritud kui vältimatu juhuslikkus väliskeskkonnast, mida mõjutavad paljud faktorid ning mida saab vaid osaliselt juhtida. Sellised teadmatused sisaldavad situatsioon, kus ei saa korrupitsel kaasata traditsioonilistest hindamismudelitest (nt DCF), kuna viimasest kasutab vaid ühte prognoositud rahavoog uäärtust. Veelgi enam tuleks erinevatide diskonteerimismäärasid kasutada erinevate optsooniid erinevatel aegadel, kuna sistematiiline risk võib läbi aja muutuda. Viimane on eriti tõene internetiprojektides, mis on avatud majanduse hetkeolukorras esialgises arengustadiumis ning vähem avatud ärtsüklites kasvamise faasis. Teine põhjus, miks DCF alahindab interneti ettevõtteid, on fakt, et klassikalised meetodid kipuvad üle vaatama nende investeerimisotsuste paindlikkusest kindlates tuleviku ajahetkedes. Järgnevalt on esitatud näiteid internetisektorist optsoonidest (Dariusz 2010, 117):
1. optsioon edasi lükata – juhatusel on võimalus investeeringi misest loobuda, kuni turu tingimused on sobivamad;
2. etappinvesteeringud – võimalus uuesti hinnata või loobuda investeeringust igal ajahetkel;
3. optsioon loobuda – uuest toolest võidakse loobuda, kui turu vastus on sobimatu;
4. optsioon vahetada – juhatus võib valida erinevaid ressurseid toodete vahel;
5. kasvuoptsioon – tulevikus kasvu võimalused uute toodete või protsesside näol, turule sisenemisvõimalus või põhivõimekuse täiendamine;
2. ALUSTAVA ETTEVÕTTE ÜLEVAADE

Ettevõte on arvestanud kasutajabaasi täitumiseks lihtsustatud viraalmudelit, mis iseloomustab uute kasutajate liitumist pakutava teenusega. Iga turu jaoks on kasutatud sama mudelit.

Joonis 6. Kasutajate kontode registreerimine portaailil
Allikas: Ettevõtte x andmed

Lisaks erinevate tarbimismustrite koostamisele (ettevõtte koostatud seisukohad), arvestab ettevõte kasutajabaasi küllastumisega. Ettevõte on välja selgitanud, millal toimuvad erinevatel turgudel kasutajabaasi küllastumised ning on vastavalt sellele suunanud turundusinvesteeringute suurendamise antud efekti leevendamiseks ja uute klientide kaasamiseks.
Joonis 7. Prognoositud kasutajabaasi küllastumine Eesti turul.
Allikas: ettevõtte x andmed

Ettevõte kavatseb kasutada kohaliku meeskonna asemel vabakutselisi arendajaid, mis välistab suures osas klassikaliste töösuhetest tulenevad finantskohustused võimaldades vältida tööjõuga seonduvat aja mitteostabarbekat kasutamist (nt haigestumised ja muud ootamatud isiklikud takistused). Autor leiab, et interneti idufirma puhul on oluline arendada välja toote esimene äriväljundeid realiseeriv versioon võimalikult optimeeritud väljaminekutega (sh ajakulu). Eelnevalt väljatoodud kulujaotus ja selle sisu on fikseeeritud sisend, sest ettevõtte on analüüsinud vabakutselise tööjõuturu võimalusi. Lisaks arvestab
Ettevõte suurenevate arenduskuludega järgmistele turgudele sisenemisel, mis eelkõige tähendab rohkem kvalifitseeritud vabakutselise tööjõu värbumist.

Ettevõte on koostanud oma kääibeprogoosid eelmääritud info põhjal viie aasta lõikes. Ettevõtte dividendipoliitikas ei arvestata dividendide väljamaksmisega, sest tegemist on volatiilse ja väga muutliku ettevõtmisega. Sellest tulenevalt ei ole prognoosidesse sisse arvestatud ka tulumaksu. Ühtlasi ei soovi asutajaliikmed kasutada esimeste aastate jooksul finantsvõimendust. Põhjendused on antud tööstuse kontekstis, mis on täpsemalt järgnevalt kirjeldatud käsosleva töö teises peatükis. Ettevõtte ülevaatlikum sisendparameetri tabel on esitatud töö lisas.

Tabel 8. Ettevõtte prognoosid järgnevaks viieks tegevusaastaks (eurodes).

<table>
<thead>
<tr>
<th>Aasta</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esialgne investeering</td>
<td>20 000</td>
<td>10 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raha sissevood</td>
<td>26 611</td>
<td>351 281</td>
<td>622 554</td>
<td>2 549 528</td>
<td>6 322 162</td>
<td></td>
</tr>
<tr>
<td>Raha väljavood</td>
<td>34 280</td>
<td>143 680</td>
<td>474 400</td>
<td>768 000</td>
<td>768 000</td>
<td></td>
</tr>
</tbody>
</table>

Allikas: ettevõte x andmed

2.1 INTERNETI ARENG

Veeb areneb – läbi kujunduse, läbi tagasilöökide ja läbi edusammude põhiliseks ühiskonna kommunikatsioonivajadust täitmiseks. Sotsiaalvõrgustike tulek on küllaltki naturaalne fenomen. Interneti põhileisks eeliseks on piiramatud võimalused – ükskõik, millisel üksusel on võimalus ükskõik, millise teise üksusega suhelda. Ühtlasi on see ka peamine miinus, kuna see genereerib palju infomüra. Olgugi, et võimalused uhenduse pidamiseks on piiritud, toimub väärtuse kasv mitte n^2 määral, mida *Metcalfe’s* seadus prognoosib, vaid pigem $n \log(n)$

Tänapäeva interneti keskkonnas on otsingumootorite roll ning soovitustesüsteem oluliselt täienud just tänu sotsiaalvõrgustikele, mis pakuvad omakorda informatsiooni levitamist ja avastamist. Seda seetõttu, et inimesed arvestavad üha enam sellega, et sotsiaalvõrgustikud aitavad üksteisega ühendust hoida – jälgida Twitteri säutsusid, Facebook'i ja LinkedIn'i uudistelevikut jne. (Hall, Tiropanis 2012, 3861).

2.1.1 Ettevõtlus internetis

Arusaamaks, mis on ettevõtlus internetis, tuleb kõigepealt defineerida, mis on „interneti ettevõte“. Selleks on ettevõte, mille põhiline või oluline osa käib interneti või mille põhitegevus baseerub konstantsele interneti kasutamisel. Kõige tüüpilisem näide sellistest ettevõtetest oleksid e-kaubandusega seotud ühendused, Facebook'i ja LinkedIn'i uudistefoogused. (Zarzecki 2010, 107):

1. läbi www, e-posti ja erinevate meeskonnahalduse tarkvarad saab interneti kasutada
2. kommunikatsioon (läbi)kliendi – üha enam kasutatakse interneti hüviste leidmiseks;
3. tarneahelate ja tootmise tellimussüsteemide omavaheline suhtlemine.
2.1.2 Ärimudelite olemus internetis

Oma olemuses ühendab ärimudel endas organisatoorse ja finantsarkitektuurilise ettevõtmise. Tegemist ei ole pelgalt arvutustabeli või arvutimudeliga, kuigi ärimudel võib olla ühendatud ärialasnikus, kasumiaruandes ja rahavoogude projektsooniides. Alge on pigem kontseptuaalses kui finantsimodelleerivades lähenemises, mis loob eeldused klientidele, käibe ja kulude käitumisele, tarbide suvel muutlikkusele ning konkurentide vastustele. Defineeritakse äriloogika kasumiteenimiseks ning määramiseks viis, kuidas ettevõte siseneb turule. (Teece 2010,173)

Joonis 8. Ärimudeli kujunduse elemendid
Allikas: (Teece 2010,173)

Ärimudeli konseptsioonil jääb vajaka majandus- või ärialastest teoreetilistest põhialustest. Teisisõnu puudub majandusteoorias koht ärimudelite jaoks. Majandusteooria eeldab, et kaubandus toimub materiaalsete kaupade ümber, kus immateriaalsus on järelmõte.

Veebipõhised teenuste pakkumised on teerajajateks võrreldes traditsioonilisemate pakkumismeetoditega. Antud nähtus esitab selliseid küsimusi nagu: (a) kuidas arengumehhanismid veebipõhiste teenustele tagavad toimiva ja kasumliku äri ning (b) kuidas veebipõhiste teenuse pakkumise olemasolu suudab koos eksisteerida traditsiooniliste teenuse-tarnimismeetoditega. Välja on pakkuda neli varianti (Lyons, Messinger 2012, 20):

1. arvutuslike protsesside ja andmebaasiteenuste pakkumine – klassikalised utiliidi;
2. sisu-põhised teenuse pakkumised – kogum vanamoodsmast pakkumismoodusest (kogutud läbi uudiste meeskondade ja jagutud läbi uudistekanalite) ja uuemast meediast (kogutud sisu läbi erinevate kommunude);
3. ülekandeteenuste pakkumine materiaalsetele toodetele ja paketipõhistele informatsoonisüsteemidele või meedia toodete;
4. maaklerteenuste pakkumine – ühendab potentsiaalsed koostööpartnerid ülekannete või vahetustehingute tegemiseks.

Enamus eelmaitud ärimudelitest tuginevad asjaolul, et (vaid mõned) klendi on nõus maksma kasutatava teenuse eest. Samal ajal tasuta veebipõhiste teenuste pakkumine üha suureneb. Tasuta teenuste ja toodete majanduslik olulisus lasub kliendi seisukohast fakt, et eksisteerib arvestatav psühholoogiline erinevus väga odava ja tasuta hüvise vahel. Tasuta teenus võib mututa viralseks viisil, mis võib tunduda võimaliku, kuna selle hind on ülväike. Järgnevalt on loetletud kuus ärimudelit, mille aluseks on tasuta toodete ja teenuste vahetamine (Lyons, Messinger 2012, 33):

1. viithinnastuse mudel: sisu, teenused ja tarkvara on kättesaadavad läbi erinevate teenuskihtide, s.h tasuta põhikiht. Antud mudelis on üldistatult kuni 1% kliente, kes on nõus maksma. Kuna toote/teenuse nn kulu on madal, siis loovad maksvad kliendid baasi, millega üleval hoida 99% klientidest, kes kasutavad teenust tasuta;
2. tasuta-läbi-reklamimudel: sisu, teenuseid ja tarkvara pakutakse tasuta, sest kolmandad pooled (reklamimajad) on nõudsaks maksma klientide sisenemise eest;
3. traditsiooniline rist-asendusmudel: tooteid ja teenuseid pakutakse tasuta ning mõõgakse peibutuskaubana, sest need ahvatlevad kliente maksma millegi muu eest;
4. madala kulu mudel: mõned asjad on tasuta, kuna tootmine ja turustamine piirkulu on null. Sellistel juhtudel võib teenusest või sisust saada turunduskäituri mingi muu hüvise müümiseks;
5. tööjõu-vahendusmudel: teenused muutuvad maksevabaks, kuna kliendid läbi teenuse kasutamise lisavad väärtust kasutajatevõrgustikku läbi sisu lisamise (nagu seda on Facebook). Antud juhul võib olla järgev rahaks realiseeritav läbi erinevate meetodite mis võimaldavad teenusepakkuja tasuta teenest pakkuda;
 1. aja säästmiseks,
 2. riskide maandamiseks,
 3. meeldivate asjade ostmiseks,
 4. staattuseks,
 5. teatud sõltuvuse rahuldamiseks erinevate surve mõjul.

2.1.3 Viithinnastuse mudel

Viithinnastuse mudelis edu seisneb põhimõtteliselt kahel mõõdikul: (a) kulu teenuse eest ning (b) relatiivne suurus ja kasutusmustrid tasuta ning maksvate klientide vahel ehk konveterteerimismäär (ingl.k conversion rate). Seostuud probleemid edu saavutmiseks on tasuta kliendi muutmine tasuvaks kliendiks, teenuse kasutatav aeg kliendile ja kasutusmustrid kahe kommuuni vahel – s.o tasuta ja tasuvad kliendid (Ibid.).
Skype on edukas näide viithinnastuse kasutamisest. Tänu p2p infrastruktuurile on teenusekulu madal. Veelgi enam, suhe tasuta Skype-to-Skype minutite ja tasuvate SkypeOut minutite vahel hõljub 7 ja 8,5 vahel, kus teised ettevõtted on tavaliselt 20 ja 100 kandis. (Ibid.)

Veebimängu ettevõtted üritavad oma kulstruktuuri konstrueerida viisil, kus nulli jõudmine toimiks 5-10% maksva kliendibaasi olemasolul. Näiteks Club Penguini kasutajatest 25% klientidest maksab kuupõhist tasu (5$/kuu); Habbo’l 10%; Runescape’l 16,6%; Puzzle Pirates’l 22%. Prognoosi on, et 5-10% tasuta Flickr’i kasutajatest konverteeruvad Flickr Pro plaanidele ja Ning’i 500 000 kasutajast moodustavad maksvad kliendid 3%. (Lyons, Messinger 2012, 34)

<table>
<thead>
<tr>
<th>Kirjeldus</th>
<th>Dropbox</th>
<th>Linkedin</th>
<th>NYTImes.com</th>
<th>Spotify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirjeldus</td>
<td>Pilvepõhine failihoiustus ja - jagamine</td>
<td>Professionalne suhtlusvõrgustik</td>
<td>Digitaalne version paberkandjast</td>
<td>Muusika kuulamine ja allalaadimise platvorm</td>
</tr>
<tr>
<td>Tasuta</td>
<td>2 GB mahtu, kuni 16GB</td>
<td>Profiili loomine, tutvuste loomine, limiteeritud suhtlus</td>
<td>10 artiklit kuus</td>
<td>Piiramatu muusika, mille vahel jooksevad reklamid</td>
</tr>
<tr>
<td>Tasuline</td>
<td>100GB mahtu 9,99$/kuus</td>
<td>Põhjalikum otsingufunktsooni ja suhtlus, alates 19,95$/kuus</td>
<td>Piiranguteta ligipääs, alates 3,75$/kuus</td>
<td>Kuulamine ja allalaadimine on reklamivaba, alates 9,99$/kuus</td>
</tr>
<tr>
<td>Kasutajad</td>
<td>200 miljonit+</td>
<td>277 miljonit+</td>
<td>53,8 miljonit+ külastajat, 760 000+ ettevõttijat</td>
<td>24 miljonit+, kellest 6 miljonit on ettevõtteljat</td>
</tr>
</tbody>
</table>

Allikas: (Kumar, 2014, 29)
2.1.4 Metodika

Käesoleva töö uuritava objekti analüüsismetodika on koostatud nii, et uuringu lõpus oleks võimalik anda vastus uuritava ettevõtte väärtime kohta ning leida tähelepanupunktid, millega antud ettevõte (ja ka sarnase ülesehitusega ettevõtted) võiksid arvestada. Koostatakse esialgne diskonteeritud rahavoogude analüüs, tuginedes esitatud teooriale ning arvestades ettevõtte prognoose.

Diskonteeritud rahavoogude analüüsis kasutatakse ettevõtte poolt paika pandud eelduseid, tingimusi ja strateegiaid. Ettevõttele leitakse diskontomäär lähtudes töös esitatud põhiteoorialist ning arvestades idufirma hindamise eripärasid.

Selgitatakse välja DCF meetodile mõju avaldavad muutujad, mida kasutatakse tundlikuse analüüsisisi, pidades silmas ettevõtte olemust ja rakendatavat viihindastu ärimedelit.

Luuakse kolm simulatsioonist stsenariumit paremini mõistmaks põhiliste mõjuavaldata sisendite olemust. Koostatakse pessimistik, reaalsel ja esialgse (optimistlik) stsenarium erinevatele konverteerimismääradele.

Simuleeritakse põhilisi mõjuavaldata sisendite, kasutades selleks sobilikku protsessi Monte Carlo simulatsiooni abil. Viimane simulatsioon viiakse läbi, kasutades MS Exceli keskkonda. Analüüs on simulatsiooni tulemustest saadud tõenäosusjaotusi selgitamaks välja ettevõtte laienemisplaani riskikohad.

Arvutatakse reaalalotsioonide optsoonipreemiat ja tehinguhinnad, lähtudes esitatud reaalalotsioonide teooriast. Leitakse ettevõtte väärtuse argument, kasutades reaalalotsiooni meetodit, mis baseerub töös esitatud teooriatele.
3. ALUSTAVA ETTEVÕTTE VÄÄRTUSE HINDAMINE

Lähtudes käesoleva magistritöö uuritava ettevõtte eeldustest, tingimustest ja prognoosidest, viidi läbi esialgne DCF (vt tabel 10) kalkulatsioon vastavalt välja toodud põhiteooriatele Arvestatakse 2%-lise konverteerimismääraga ning strateegiatega laieneda plaanitud turgudele viie aasta lõikes. Vastavalt autori kalkulatsioonidele lähtudes CAPM mudelist on ettevõtte diskonteerimismääraks 20,36%. Autor otsustas kasutada riskivaba tulumäärana 0,63%, mis on 10-aastane Saksa valitsuse võlakirjade riskivaba tulumäär. Omakapitali riskipreemia 6,80% saamiseks kasutati A. Damodarani määratud ja arvutatud Eesti riigiriski preemiat. Autor leidis kaalutud keskmise beeta - 2,90, mis on kahe sarnase ettevõtte kaalutud keskmine. Antud väärtsuse kasutamine iseloomustab alustavate eeldustest, kusjuures olemas on optimistlikkus eeldustest, olles liialt optimistlik. Arvestades töös välgatud interneti majandusharu iseärasusi, võib teatud tingimustel selline prognoos tõenäoliseks ja realiseeritavaks osutuda. Sellele vaatamata on esitatud juul rahavoogude kaasamine ja DCF analüüsi läbiviimine liialt lihtsustatud lähenemine hindamaks ettevõtte väärustust viie aasta lõikes. Samuti ei ole konstantsete

Tabel 10. Ettevõtte x DCF kalkulatsioon viie aasta lõikes (eurodes)

<table>
<thead>
<tr>
<th>Aasta</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aastane sissevoog</td>
<td>0</td>
<td>26 611</td>
<td>351 281</td>
<td>622 554</td>
<td>2 549 528</td>
<td>6 322 162</td>
</tr>
<tr>
<td>Investeeringud</td>
<td>20 000</td>
<td>10 000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aastane väljavoog</td>
<td>0</td>
<td>34 280</td>
<td>143 680</td>
<td>378 400</td>
<td>672 000</td>
<td>672 000</td>
</tr>
<tr>
<td>Diskonteeritud raha aasta lõpul</td>
<td>0</td>
<td>2 331</td>
<td>209 524</td>
<td>377 340</td>
<td>1 377 972</td>
<td>3 929 603</td>
</tr>
<tr>
<td>Diskontomäär</td>
<td>20,36%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allikas: autor koostatud

Selguse mõttes on autor koostanud ka DCF analüüsi iga turule eraldi vastavalt ajakomponendi järgi, millal need turud avanevad. DCF meetodit kasutades on näha optimistlikku stenaariumit ettevõtte esialgsetes finantsprognoosides. Esimesel aastal soovitakse omakapitaliga saavutada puhaskasum, mis tuginedes eeldustele, oleks liialt optimistlik. Arvestades töös väljatoodud interneti majandusharu iseärasusi, võib teatud tingimustel selline prognoos tõenäoliseks ja realiseeritavaks osutuda. Sellele vaatamata on esitatud kujul rahavoogude kaasamine ja DCF analüüsi läbiviimine liialt lihtsustatud lähenemine hindamaks ettevõtte väärustust viie aasta lõikes. Samuti ei ole konstantsete
konverteerimismäärad kasutamine põhjendatud, olenemata sellest, et ettevõte on arvestanud kasutajabaasi küllastumiseefektiiga. Kliendid, kes on nõus maksma, sooritavad teenustamba misestegud jõhökisesel juhuslikel aegadel, mistõttu tuleb läbi viia kuupõhine simulatsioon konverteerimismääradele. Viimased on täiuslikus korrelatsioonis maksvate klientidega. Selleks uuritakse lähemalt konverteerimismäärade mõju rahavoogudele ja ettevõtte plaanidele. Töö lisas on väljatoodud erinevad konverteerimismäärad 0,05% muutusega ning on arvutatud nende mõju puhaskasumile.

Lihtsustatud kalkulatsiooni käigus on näha erinevate konverteerimismääradest mõju aastasele puhasumale (vt tabel 22). Kontrolli käigus on selgunud, et esimesel aastal tegutsemiseks Eesti turul oleks konverteerimismäär vähemalt 2,6%, Baltikumi turul 0,85% jne. Tähelepanu tuleb pöörama sellele, et ka viimased väljatoodud määrad on konstantsed üle kõigi tegevusaastate, seega ei ole realistlik ning põhjendatud kasutada edasiseks analüüseks staatilisi konverteerimismäärasid.

3.1 SIMULATSIOONI MUDEL

Selleks, et konverteerimismäärad liiguksid ajas reaalsusele lähemale, otsustati Monte Carlo simulatsioonis kasutada keskmisele tagasipöördumise protsessi (mean reversion process). Selle kasutamine on argumenteeritud sellega, et viithinnastel on prognoositav keskmine konverteerimismäära väärtus teatud ajahetkel. Samas pole see stabiilne liikudes muutlikult keskmise väärtuse ümber. Selleks kasutatakse simulatsioonis Ornstein-Uhlenbeck protsessi põhivale mit, millega on võimalik simuleerida juhuslikke konverteerimismäärasid. Antud võrrandiga saab modelleerida süsteeme, kus taustmärga olemasolul pöördub lahend tagasi teatud olekusse:

\[
dS_m = K \cdot (\mu - S_m) \cdot dt + \sigma \cdot dW
\]

kuus

- \(S_m\) – konverteerimismäära praegusele kuule,
- \(S_{m+1}\) – konverteerimismäära järgmisele kuule,
- \(dS_m\) – konverteerimismäära muutus (stohastiline ehk juhumuutlik protsess)

46
Oletame, et hetkeline $S_m = 1\%$, $dS_m = 15 \cdot (1\%-1\%) + 15\% \cdot rand$ ehk $0 + 15\% \cdot rand$. Antud näitega näeme, et S_{m+1} on absoluutsest juhuslik ning selle väärtus on 15% juhuslikust numbrit, põhjusel, et hetkeline konverteerimismäär S_m on võrdeline antud protsessis keskmisega. Veelgi enam, oletame, et $S_m = 2\%$, $dS_m = 15 \cdot (1\%-2\%) + 15\% \cdot rand$ ehk $-15\% + 15\% \cdot rand$. Näeme, et tänane konverteerimismäär (2%) on oluliselt kõrgem kui keskmise (1%) ning sellisel juhul on antud protsess palju määratletum. Põhjuseks on asjaolu, et -15% ning see on mitte juhuslik osa. -15% \cdot rand on palju rohkem mõjutatud determinandi osast, mis suunab simulatsiooni protsessi liikuma keskmises suunas tagasi. Selle tõttu ongi -15% determinandi osa, kuna 2% konverteerimismäär on kõrgem kui keskmise. Seega, konverteerimismäärad simuleerimiseks luuakse simulatsiooniks järgmised lähenemised:

$$S_{m+1} = S_m \cdot (1 + dS_m)$$
$$dS_m = K \cdot (\mu - S_m) \cdot dt + \sigma \cdot dW$$

$$dW = \varnothing \cdot \sqrt{dt}$$
$$\varnothing = \sum_{i=1}^{12} \text{rand}() - 6$$

kus
K – juhuslikuse tagasipöördumise jõud,
μ – konverteerimismäärad keskmine,
dt – ajahürik, antud mudelis üks kuu,
σ – standardhälve (%-des),
S_m – konverteerimismää praeuguse kuule,
S_{m+1} – konverteerimismää järgmise kuule,
dS_m – konverteerimismäära muutus (stohastiline protsess),
rand – juhuslik arv (MS excelis funktsioon „=rand“)

Mittejuhuslikul osal dS_m on väiksem väärtus, kui konverteerimismäär on keskmisele väärtusele lähemal. Hetkelise konverteerimismäära ja keskmise taseme vahe suurendes muutub võrrandi vasak osa dominantseks pooleks, kuna $(\mu - S_m)$ korrutades $K > 0$ ning antud juhul $K > 1$, annab oluliselt rohkem väärtust kui võrrandi parem pool $\sigma \cdot dW$. Kuna σ on siinkohal väiksem kui 1 ning keskmist juhuslike arvude väärtus on umbkaudsetelt 0, jõuame järelkohale, et kui konverteerimismäärad on keskmise väärtuse lähedal ja juhuslik komponent on dominantne, siis konverteerimismäärad suunatakse üles või alla. Kui need liiguvad keskmise väärtusest eemale (üles või alla), siis võrrandi vasak pool muutub dominantseks $(\mu - S_m)$ tõttu ning suunab määrasid tagasi keskmise poole. Seega liiguvad

Joonis 9. Erinevad konverteerimismäärad

Allikas: autor koostatud

Lähtudes eelnevalt kirjutatud protsessist, luuakse kolm eraldi simulatsiooni sisendit. Kuna ettevõttel puudub majandustegevuse ajalugu ja selleläbi ka info eelnevate konverteerimismäärade kohta, pole sellest tulenevalt võimalik kalkuleerida tegevusajaloos esinenud määrade standardhälvet, vaid need tuleb simuleerida. Autor on enne tabelis 11 esitatud standardhälvete ja keskmisele tagasipöördumise protsessiga läbi teinud erinevaid katseid ja otsustanud vaatluse teel kasutada tabelis välja toodud väärtusi. Koostatud on kolm stsenaariumit erinevate keskmiste konverteerimismäärade väärtustega.
Tabel 1. Erinevad simulatsioonide sisendid konverteerimismääradele

<table>
<thead>
<tr>
<th>Simulatsioon</th>
<th>1 - (Pessimistilik)</th>
<th>2 - (Reaalne)</th>
<th>3 - (Esialgne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keskmise konverteerimismäär</td>
<td>1%</td>
<td>1,5%</td>
<td>2%</td>
</tr>
<tr>
<td>Keskmise tagasipöördumise jöud</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Standardhälve</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Allikas: autori koostatud

Sisendeid kasutades viakse läbi 10 000 x 3 Monte Carlo simulatsiooni igale erinevale sihtturule. See tähendab, et Eesti turule aastast 0 kuni 5, teistele turgudele vastavalt alates 12., 24. ja 36. kuust. Kasutades simuleeritud sissevoogusid, arvestades ettevõtte poolt kindlaksmääratud kulused ning arvutades välja kasum, diskonneeriti viimane, kasutades väljaarvestatud 20,36% diskontomäära.

3.1.1 Reaaloptsioonide raamistik

Optsiooni raamistiku loomiseks tuleb arvestada teatud eelduste ja tingimustega, mis on töös uuritava ettevõtte puhul sätestatud. Järgnevalt on defineeritud optsiooni raamistiku sisendparameetrid:

Tabel 2. Optsiooni sisendparameetrid

<table>
<thead>
<tr>
<th>Parameeter</th>
<th>Selgitus</th>
</tr>
</thead>
<tbody>
<tr>
<td>S - alusvara</td>
<td>prognoositud rahavood</td>
</tr>
<tr>
<td>V – optsiooni väärtus</td>
<td>diskonneeritud viie aasta</td>
</tr>
<tr>
<td></td>
<td>turgude väljamaksed</td>
</tr>
<tr>
<td>K – tehingu hind/optsiooni preemia/</td>
<td>kahekuuline ettevalmistusaeg</td>
</tr>
<tr>
<td>kapitaliinvesteering</td>
<td>laienemiseks</td>
</tr>
<tr>
<td>(r_f – riskivabamäär)</td>
<td>arvestatud</td>
</tr>
<tr>
<td></td>
<td>juba diskontomääras</td>
</tr>
<tr>
<td>(σ – volatiilsus)</td>
<td>pole arvestatud sisendina</td>
</tr>
</tbody>
</table>

Allikas: autori koostatud

Lisaks eelmises peatükis väljatoodud interneti majandusharu ja idufirma olemusele, tuleb tähelepanu juhtida järgmistele seisukohtadele:

1. optsioon laiendat sisaldub juba ettevõtte esialgsete strateegias. Optsioon laiendat on võimalus laiendada sisendat uutele turgudele. Uuritava ettevõtte eripära on see, et vajata kindla kuud enne laiendamist lisatiööstüüde, suurendatav turbunduse- ja muid
väljaminekuid. Eelnimetatud väljaminekutega on ettevõte arvestanud mis on vajalikud, kui ta soovib uutel turgudel tegutseda:

2. optsioon oodata on täiendus laienenemisoptsioonist, kuna reaalses elus võib ette tulla olukordi, kus enne turule sisenemist võivad tekkida viivused (olgu selleks mitte piisav kritiline mass kasutajaid, teenuse kvaliteediprobleemid jmt). Ootamisoptsioonist tekkivad optsioonipreemiad/kulud on samad, mis laienenemisoptsiooni kulud ühes kuus ning nende suurus sõltub sellest, kui kaua ettevõte viivitab uue turu avamisega;

3. optsioon loobuda on lisatud autori poolt, kuna ettevõtte plaanide ja reaalse elu vahel võib tekkida olukord, kus juba sisenedut turul pärast teatud aega ei ole enam kasumlik tegutseda. Samas võib tekkida olukord, kus ettevõte otsustab planeeritud turule mitte siseneda. Seega on loobumise kulud võrdsed laienenis- ja ootamisoptsioonide kulude summagena. Loobumisoptsiooni kulud on võrdsed kahe kuu lisakuludega, mis on vajalikud loplikult turult lahkumiseks. Oluline on märkida, et loobumisoptsiooni preemiad on lahutatud ettevõtte väärutuse leidmisel, kuna need on oma olemuselt kulud.

Tabel 13. Laienenemisoptsiooni preemiad planeeritavatele turgudele (eurodes)

<table>
<thead>
<tr>
<th>Turg</th>
<th>Optsiioni preemia</th>
<th>Kuu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Läti ja Leedu (1)</td>
<td>12 229</td>
<td>12</td>
</tr>
<tr>
<td>Soome, Rootsi, Norra (2)</td>
<td>23 704</td>
<td>24</td>
</tr>
<tr>
<td>Venemaa (3)</td>
<td>32 312</td>
<td>36</td>
</tr>
</tbody>
</table>

Allikas: autori koostatud

Raha sissevood on simuleeritud kasutades Monte Carlo simulatsiooni ning väljavood on fikseeritud. Kõik eelmajandus on diskonteeritud iga turu jaoks järgmiseks 60 kuuks. Konverteerimismäärd on kuupõhiselt simuleeritud ning raha sissevood on nendega otseselt seotud. Analüüsides kõiki diskonteeritud rahavoogusid, on saadud kunstlik raha ülejäägi jaotus igale turule viieks aastaks. Luues 30 väärtuse vahemikku maksimaalse vaba rahavoo vahele ning arvestades, mitu korda need sattusid sellesse vahemikku, saame tõenäosusjaotuse diskonteeritud üle- või puudujäägist iga turu kohta.

Oletame, et kahe kuu eest maksti 10 000 eurot, et oleks võimalik laieneda järgmisele turule. Monte Carlo simulatsioon annab tulemuseks keskmise diskonteeritud kasumi
100 000 eurot järgmiseks viieks aastaks. Kui oodata kaks kuud, siis tuleb Monte Carlo simulatsiooni abil analüüsida mitte optsiooni tehinguhinda (strike price) 10 000 eurot, vaid 20 000 eurot, mille tulemusel oleks keskmise diskonteeritud kasum ~ 90 000 eurot.

Etevõte on võtnud endale lisakulud järgmisele turule laienemise ettevalmistamiseks. Laienedes optsioon kasutatakse ära. Samas võib ta vajada ka pikemat aega otsustamaks kas turule siseneda või mitte. Analüüsi tarbeks on lisatud 6 kuu optsioonipreemia. Tuginedes Monte Carlo simuleeritud väljamaksete loobumisoptsisooni (olemuselt Euroopa müügioptsioon) analüüsile on võimalik leida kuidas ettevõte otsustab palju tal on aega, enne kui loobumisoptsioon käiku laста.

Väljamaksed antud olukorraks esindavad väljaminekuid, mis ei toiminud, sest turule sisenemisest loobuti. Lihsutatult öeldes, kui keskmne loobumisoptsisooni/Monte Carlo väljamakse on suur, tähendaks see suurte kahjude võimalusi. Omades loobumisoptsisooni, oleks ettevõttel võimalik viimane käiku lasta, loobuda turust ja neid vältida. Optsooni väljamakse ja optsioonipreemia suhe annab ettekujutuse, kas turule siseneda, oodata või loobuda.

Igale ettevõtte poolt planeeritud laienevale turule simuleeriti erinevad raha sissevood erinevate konverteerimimääradega. Seejärel need diskonteritati, kasutades väljaarvutatud diskontomäära. Kui laieneda ilma ootamiseta, siis selleks defineeriti järgnev valem laienemisoptsioonile (valem 7) ja loobumisoptsioonile (valem 8).

\[
V = \frac{1}{N} \sum_{i=1}^{N} \max(kasum_i - \text{optsiooni tehinguhind}, 0)
\]

Arvestades keskmised laienemisoptsiooni väljamaksed, mis on suuremad kui tehinguhind (mis on võrdne laienemisoptsiooni omamise kuludega), saadi väärkehe isendid, kasutati ettevõtte väärtuse hindamise protsessile.

Laienemise optsioonipreemia on fikseeritud kuludena kahe kuu jooksul ning see suureneb ainult ootamise optsiooni tõttu, mida analüüsiti ootamise optsioonipreemiana ühe kuu lõikes. Seetõttu on see sama, mis oleks laienemise optsioonipreemia ühes kuus. Ootamise korral tuleb laienemise optsiooni tehinguhinnale lisada ootamise optsioonipreemia, sõltuvalt oodatavate kuude arvust. Kasutades optsiooni väljamakseid, on võimalik näha, mida on oodata tulevikus, kui maksta optsioonipreemia ning analüüsida tulemusi, mis juhtuksid täna viie aasta pärast.
4. TULEMUSED

Kuna Monte Carlo simulatsioon võimaldab hinnata riske ja võimalike ohuke kohti, siis nende selgemaks mõistmiseks on järgnevalt esitatud tõenäosus jaotuse kohta n-oli pessimistlikule stsenaariumile. Normaaljaotus otsustati sobitada igale tõenäosus jaotusele selgemini demonstrerimaks riskide mõju ja jaotuse olemust. Normaaljaotuse kasutamine on akadeemilises finantsanalüüsis standardiks. Antud analüüsi käigus tehakse mitu võrdlust simuleeritud tõenäosustest, mis esindavad ettevõtte riskikäsitlust. See antud juhul tähendab ettevõtte võimalike (diskonteeritud) raha väljavooge kindlate usaldusväärtsuste juures viie aasta lõikes.
Joonis 10. „Pessimistlik“ simulatsiooni Läti ja Leedu turgudele
Allikas: autori koostatud

Ettevõtte poolt planeeritud laienenime Läti ja Leedu turgudele on keskmiselt 1% konverteerimismääraga kahjumis. Eksisteerib 0,4% tõenäosus (99,6% usaldusväärse koefitsiendi järgi) teenida 148 570 eurot kahjumit või rohkem. Autor sobitas Monte Carlo simulatsioonile ka normaaljaotusliku riskivaartus, mille kohaselt on 78,7% tõenäosus teenida 7 014 või rohkem eurot kahjumist.

Käesoleva simulatsiooni stsenaariumi tulemused viitavad tugevalt tugevalt selle, et kui ettevõte saavutab keskmiselt 1% konverteerimismäärä, siis pole finantsperspektiivis põhjendatud Läti ja Leedu turgude avamine.
Joonis 1. „Pessimistlik“ simulatsiooni Soome, Rootsi ja Norra turgudele
Allikas: autori koostatud

Soome, Norra ja Rootsi turgudel on tulemused positiivsemad. Kahjumi teenimise võimalus (24 286 eurot või rohkem) jääb 1,50% tõenäosuse juurde. Antud turud on rohkem potentsiaalikamad ettevõtte finantsseisukohast, arvestades sealjuures 1% keskmist konverteerimismäära.

Joonis 2. „Pessimistlik“ simulatsioon Venemaa turule
Allikas: autori koostatud
Venema turg on kõige positiivsemate tulemustega, kus eksisteerib 1,1% tõenäosus teenida kahjumit. Seega võib öelda, et Venema turg oleks kõige atraktiivsem ettevõttele antud stsenaariumi tingimustes.

„Reaalse“ stsenaariumi simulatsiooni tõenäosusjaotuse tõi välja varu riskiväärtuse koha vaid Läti ja Leedu turul. 48,3% tõenäosusega oleks ettevõttel võimalik kaotada 7 746 eurot või rohkem. Normaaljaotusele sobitatud riskiväärtus andis tulemuseks 10,1% tõenäosuse havidu 10 085 või rohkem euroga. Ülejäänud turgudele antud stsenaariumis varu riskiväärtust simuleeritud mudelitega ei täheldatud (v.a 2% Läti-Leedu turul, vähem kui 0,4% tõenäosusega).

„Reaalne“ stsenaarium riskiväärtust tõenäosusjaotustes simuleeritud mudelitega ei täheldatud, kuna kõik/99% rahavoogudest ei olnud negatiivsed.

Uuritava ettevõtte väärtuse leidmise tulemused nõuavad sinkohal olulisi täpsustusi. Koostatud mudeli tulemused on võimalik üldistatud kujul võrrelda kahe väärtuse hindamise lähememise seisukohti: dünaamiline DCF meetod reaaloptsioonide raamistikuga, simuleeritud konverteerimismääradega ning staatiiline DCF analüüs staatiiliste konverteerimismääradega.

Tabel 14. Erinevate mudelitega arvutatud ettevõtte x väärtused viie aasta lõikes

<table>
<thead>
<tr>
<th>Meetod</th>
<th>Pessimistlik</th>
<th>Reaalne</th>
<th>Esialgne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ettevõtte väärtus (1) Simulatsioon</td>
<td>981 367</td>
<td>2 022 215</td>
<td>3 113 732</td>
</tr>
<tr>
<td>Ettevõtte väärtus (2) DCF+ROV</td>
<td>572 075</td>
<td>1 612 922</td>
<td>2 704 439</td>
</tr>
<tr>
<td>Ettevõtte väärtus (3) DCF</td>
<td>1 099 823</td>
<td>2 184 553</td>
<td>3 269 283</td>
</tr>
</tbody>
</table>

Allikas: autor koostatud

Oletame, et järgmisel viiel aastal saavutab ettevõte 1% konverteerimismäära (pessimistlik stsenaarium), mis DCF meetodile lisatud reaaloptsiooni raamistikuga leiab ettevõtte väärtuseks keskmiselt 572 075 eurot. Laienemisoptsioonid näitavad sinkohal, kui palju oleks võimalik teenida ning mis on tõenäosusjaotuse keskmised väärtused. Vaadeldava stsenaariumi puhul oli simulatsioonis Läti ja Leedu turul 99,1% suurune tõenäosus teenida 816 eurot kahjumit või rohkem. Normaaljaotusele sobitatud tõenäosus teenida 7 014 eurot või rohkem kahjumit jäi 78,7% tõenäosuse juurde. Soome, Rootsi ja Norra turul oli tõenäosus kahjumit teenida 1,50% ning Venemaa turule laienedes 1,10%. Dünaamiliseks ettevõtte väärtuseks loeb sinkohal autor siiski keskmiselt 572 075 eurot, millele on „lisatud“ kuuekuuline loobumisoptsioon. Analüüsisides loobumisoptsiooni väljamaksed, tõenäosusjaotust ning turu riskiväärtust, oleks võimalik otsustada, kas turult lahkuda. Selle
otsuse läbiviimiseks on vaja omada optsiioni, siinkohal loobumisoptsiioni, millel on optsiionipreemia (uuritud ülesandes fikseeritud raha väljavood). Kuue kuu kulud on diskonteeritud ning lahutatud ettevõtte väärtusest, mille tulemusel on riskiga arvestamine väärtuse hindamisel arvesse võetud. Seega pole esitatud väärtus (572 075 eurot) staatiline fikseeritud väärtus, vaid simulatsiooni tulemuste keskmine väärtus.

Eelnimetatud ettevõtte väärtuse hindamise seisukohtade selgituseks on esitatud illustratiivsete väärtustega joonis 13, millel on kaks tõenäosusjaotust väärtusest. Pideva musta joonega tõenäosusjaotus esitab normaaljaotuse ettevõtte väärtusest 400 000 euro keskmisega ning 100 000 eurose standardhälvega. Punktiiriga joon esitab normaaljaotuse ettevõtte väärtusest 250 000 eurot ja 30 000 eurose standardhälve. Paksem vertikaalne joon ja peenem vertikaalne joon esindavad ettevõtte jaotuse keskmisi väärtusi graafiliselt.

Joonis 13. Ettetõttė väärtuse leidmise loogika illustratsioon
Allikas: autori koostatud

Must pidevjoon (mitte vertikaalne) esindab ettevõtte tõenäosusjaotust kui Eesti turu DCF-i, millel lisaks on laienemisoptsiioni väljamaksed kõikidele teistele turgudele. Jooniselt on näha, et jaotus on küllaltki "lai" ehk teisisõnu eksisteerib lai väärtuse vahemik, mis võiks olla ettevõtte väärtused, arvestades konverterimismäärade liikumist (olgu need simuleeritud või tegevusajaloo jooksul tekkinud). Lai väärtuse vahemik eksisteerib selle tõttu, et konverterimismäärad on tulevikuperspektiivis tundmatuks sisendiks, samuti nende

56
liikumine ja käitumismustrid ning muud riskid, mis uuritava ettevõttega võivad seonduda (olgu selleks turunduse, tööjõu, laienemise, liitsentside jmt probleemid).

Kui loobumisoptsiooni preemiat kaasata ettevõtte väärtusele, siis liigub jaotus vasakule (alandades ettevõtte väärtust), kuid samal ajal “kitsendades” jaotust. Ettevõtte keskmise väärtuse vähendamine on loobumisoptsiooni omamise kulu iga turu kohta (kuue kuu vältaminekud igale turule, kuhu ettevõtte planeerib laieneda tulevikus). Jaotuse kitsendamine on ettevõtte riskide maandamine ja konverteerimismäärade prognoosimatusse vähendamine.

Loobumisoptsiooni omamine uuritaval ettevõttel iga turu jaoks annab ettevõttele suurema spektri riskide haldamistööd, juhul kui ebasobivad situatsioonid või informatsioon tekivad tulevikus. Olgugi, et selline lähenemine vähendab ettevõtte väärtust, siis on väärtuse hinna leidmine täpsem, kuna ettevõtte väärtuse vahemik on oluliselt kitsam kui see oleks seda ilma loobumisoptsioonideta.

5. JÄRELDUSED JA ETTEPANEKUD

Monte Carlo simulatsioonide läbiviimine erinevate konverteerimismääradega saamiseks olid põhjendatud lähenemine ning esitas reaalsema pildi kui ettevõtte poolt prognoositud staatialised konverteerimismäärad. Dünamiilisem hindamine muudeli koostamine ja selle kõrvutamine staatialise DCF mudeliga esitas põhiteoorias ninnatud tulemusi ning tõi tähelepanu olulistele strateegiliste otsustuspunktidele. Tulemustes välja tulnud pigem optimistlikum staatialise analüüsi meetodi väärtused võivad pigem eksitavad olla, eriti siis kui võrdlemismoment eksisteerib dünamiilisema hindamismoodiga.

Autor leiab, et ettevõtte seisukohalt tuleks tähelepäästa just pessimistikule stsenaaariumile, kuna viimane annab ülevaatliku pildi, mismoodi investeeritud kapitaliga äritegevus võiks kulgeda. Lisaks annab see aimu, mis tingimustel finantsvõimendust kaasata läbi krediidiotsuse. Samas, kui ettevõtte soovib otsida investoreid või müüa ettevõtet, siis tuleks pigem keskenduda 1,5% keskmise konverteerimismääraga stsenaaariumile, kuna viimane võimaldab reaalse staatialine prognoosiga ettevõtte tegevuse planeerimisel.

Töö autor on lisaks järeldanud, et antud ettevõtte hindamine on oluliselt rohkem hajutatud kui seda oleks sama ettevõtte puhul pärast esimesi tegevusaastaid, kus eksisteerib realne majandusajalugu ja strateegiate toimimine või mitte toimimine. Edasiarendusena tuleks antud uurimisobjekti plaane uurida, arvestades dünamiilisemaid makrofaktoreid ning nende
mõjusid diskoneerimismäärale, kuna ettevõte soovib laieneda rahvusvaheliste turgudele, kus eksisteerivad mitmed rahvusvahelised majandusriskid. Samuti võiks koostada mudeli, mis ei arvesta ettevõtte poolt loodud strateegiatega, vaid läheneb etteantud olukorrale neutraalselt, pakkudes välja reaaloptsioonide erinevatest mudelist tuletatud strateegiaid.
KOKKUVÕTE

Ettevõtte väärtuse hindamine on alustava ettevõtte tulevast käekäiku arvestades oluline protsess, sest see on kriitiline informatsioon investoritele ja ettevõtjatele. Internetis tegutsevate ettevõttete põhilisemaid eripärasid on suur volatiilsus, mis teeb prognoosimise keerukaks. Sellistes olukordades on väärtuse hindamise enimkasutatavaks vahendiks diskonteeritud rahavoogude meetod, mis arvestab raha sisse- ja väljavoogudega ning leiab tuleviku rahavoogude väärtusele hinnangu, kasutades selleks diskonterimismäära. Alustava ettevõtte, mis on seadnud endale eesmärgi laieneda erinevatele turgudele, väärtuse leidmise lisab olulist argumentatsiooni diskonteritud rahavoogude meetodile lisatud reaaloptsioonide raamistik.

Käesolevas lõputöös arvutati esialgu ettevõtte väärtus diskonteeritud rahavoogude meetodil Eesti turul järgmiseks viiks aastaks diskontomääraaga (20,36%) ning lisati tuleviku sihtturgude väärtused, kuhu ettevõte planeerib laieneda. Viimased rahavood modelleeriti, kasutades Monte Carlo simulatsiooni, muutes konverteerimismäärasid, kasutades selleks keskmise juurde tagasipöördumise protsessi (mean reversion process).

Töö eesmärgiks oli välja töötada interneti ettevõttetele sobiv ja rakendatav investeeringute ja strateegiliste otsuste analüüsimplaid, mis baseerub viithinnastuse põhimõttel ning mis on alustavale projekstile sobivaim. Magistritöö eesmärgi saavutamiseks viidi läbi diskonteritud

Magistritöö tulemuste põhjal saab järeldada, et pessimistliku stsenaariumi realiseerumine seab küsimärgi alla Läti ja Leedu turgudele laienenemise põhjendatuse. Ülejäänud turgudel eksisteerib vähene võimalus kahjumile. Ülejäänud kahes stsenaariumis olulist riskiväärtuste tõenäosusi ei täheldatud.

Dünaamilisema hindamise mudeli koostamine ja selle kõrvutamine staatilise diskonteeritud rahavoogude meetodiga esitas põhiteoorias kinnitatud tulemusi ning tõi tähelepanu olulistele strateegiliste otsustuspunktidele. Tulemuste põhjal vältis pigem optimislikum staatialise analüüsi meetodi väärtused võivad pigem eksitavad olla, eriti kui võrdlusmoment eksisteerib dünaamilisema hindamise meetodiga.

Antud töö demonstreerib sügavama tasuvusanalüüsi vajalikkust alustama interneti ettevõtte finantsprognooside ja strateegiate loomisel. Autor peab ülaloodule tuginedes töö eesmärki täidetuks.
VIIDATUD ALLIKAD

New York Stock Exchange.
https://www.nyse.com/quote/XNYS:LNKD (01.01.2015)
https://www.nyse.com/quote/XNYS:MWW (01.01.2015)

IVSC kodulehekülg. About The International Valuation Standards Council (IVSC) http://www.ivsc.org/about (03.03.2015)

SUMMARY

The aim of this master’s thesis was to examine a startup company that is using a freemium business model and valuate the company accordingly. The company will act as a headhunting service portal and aspires to expand to seven different markets in the next five years. The company has created forecasts for its perspective cashflows using a static conversion rate. The conversion rate is rate that presents the ratio between paying and non-paying customers. The company has used a static discount rate (2%) for all five markets and created its forecasts accordingly. The problem with this simplistic approach of merely forecasting cash in and outflows to calculate the net profit might lead to critical errors in assumptions and strategic decisions. However it is not unlikely that other startups behave in the same way.

Company valuation is a delicate process, while startup valuation is even more complex. Classical methods that require historical financial data to enable correct analysis outputs become more or less a formality than a valuation tool. Therefore there is a need to simulate certain input parameters for startup companies.

To value the company the author conducted an initial DCF analysis where a discount rate was calculated for the company. Then a sensitivity observation was done in order to identify the highest impact value drivers in the company’s case. Having determined that conversion rates play the key role in this particular assignment a Monte Carlo simulation with a mean reverting process for the conversion rates was created to simulate different cashflows for 10 000 iterations. To get a more broader overview of the case, the author created three different scenarios for the Monte Carlo simulation inputs. With the simulation results a probability distribution analysis was conducted in order to assess the value-at-risk with different scenarios, keeping in mind the company’s aspirations to expand to seven different markets. The real option framework was embedded into the valuation model to more correctly understand the capital requirements and yields for the company. Using the latter model to analyze the company it can be concluded that if using the DCF approach with real options framework embedded in them, then the company’s average value would be estimated around 562 075 – 2 704 439 euros, according to the scenarios. Also important points in time were presented to show the impact of either expanding, delaying or abandoning the market if the expansion plans did not meet the managerial expectations.
The findings of this master’s thesis present the fact that if valuating an internet startup that wishes to use the freemium model, then a static freemium model for a long timespan is not argumented. Moreover a static DCF analysis (or merely summing up cashflows) may lead to wrongful assumptions and strategic decisions. Finally, if a startup company wishes to do business in the online industry, then using the real options framework to analyze different key strategic points would be advised.
LISAD

Lisa 1. Kasutatud inglise-eesti keele terminoloogia

Adjusted book value – korrigeeritud arvestusväärtus
Book value – arvestusväärtus
Capital asset pricing model (CAPM) – finantsvara hindamismudel
Capital gains – kapitalikasvu tulu
Discounted cashflow (analysis/method) (DCF) - diskoneeritud rahavoogude mudel
Exercise price – optsiooni hind
Earnings before intrests and taxes (EBIT) - maksustamiseelne tulu
EVA – Economic value added – majanduslik lisaväärtus
Freemium – viithinnastus
Free ride – koos arvega ümbrikku lisatud mis tahes reklaammaterjal
Free-throguh-advertising - tasuta-läbi-reklaami mudel
Going concern - tegevusejätkuvuse printsiip
Growth stocks – kasvuaktsiad
Loss leader – peibutuskaup
Labor exchange model - tööjõu-vahendus mudel
Liquidation value – likvideerimisväärtus
Low-cost model - traditionsaalne rist-asendus mudel
Monetizable - rahaks realiseeritav
Multiples – sama firma ühetüüpilised ettevõtted
Open-Source - avatud lähtekood
Option premium - optsioonipreemia
Payoff, payout – väljamakse
Put option – müügi optsioon
Substantial value – varaline väärtus
Sales – müügikäive
Strike price – optsioonirakendushind, tehinguhind
Tradition cross-subsidized model - traditionsaalne rist-asendus mudel
Underlying stock – tehingutagatis
Venture – riskantne ettevõtmine
Value at risk – (vara) riskiväärtus
Weighted average cost of capital (WACC) - kaalutud kapitali kesmehind
Lisa 2. Ettevõtte x andmed

Tabel 15. Ettevõtte x prognoositud väljaminekud viie aasta lõikes.

<table>
<thead>
<tr>
<th>Kuu</th>
<th>Arendus väljaminekud</th>
<th>Turundus väljaminekud</th>
<th>Muud väljaminekud</th>
<th>Väljaminekud kokku</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>2</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>3</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>4</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>5</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>6</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>7</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>8</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>9</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>10</td>
<td>1320</td>
<td>150</td>
<td>150</td>
<td>1620</td>
</tr>
<tr>
<td>11</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>12</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>13</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>14</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>15</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>16</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>17</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>18</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>19</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>20</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>21</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>22</td>
<td>7040</td>
<td>1000</td>
<td>1000</td>
<td>9040</td>
</tr>
<tr>
<td>23</td>
<td>24640</td>
<td>1000</td>
<td>1000</td>
<td>26640</td>
</tr>
<tr>
<td>24</td>
<td>24640</td>
<td>1000</td>
<td>1000</td>
<td>26640</td>
</tr>
<tr>
<td>25</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>26</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>27</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>28</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>29</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>30</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>31</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>32</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>33</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>34</td>
<td>24640</td>
<td>5000</td>
<td>5000</td>
<td>34640</td>
</tr>
<tr>
<td>35</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>36</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>37</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>38</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
</tbody>
</table>

Allikas: Ettevõtte x andmed
Tabel 15. Ettevõtte x prognoositud väljaminekud viie aasta lõikes (jätk)

<table>
<thead>
<tr>
<th>Kuu</th>
<th>Arendus väljaminekud</th>
<th>Turundus väljaminekud</th>
<th>Muud väljaminekud</th>
<th>Väljaminekud kokku</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>40</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>41</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>42</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>43</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>44</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>45</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>46</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>47</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>48</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>49</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>50</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>51</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>52</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>53</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>54</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>55</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>56</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>57</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>58</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>59</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
<tr>
<td>60</td>
<td>44000</td>
<td>10000</td>
<td>10000</td>
<td>64000</td>
</tr>
</tbody>
</table>

Allikas: Ettevõtte x andmed
Lisa 3. Monte Carlo simulatsiooni näide

Tabel 17. Monte Carlo simulatsiooni „reaalse“ stsenaaariumi näide (eurodes)

<table>
<thead>
<tr>
<th>Kuu</th>
<th>Eesti</th>
<th>Läti</th>
<th>Leedu</th>
<th>Soome</th>
<th>Rootsi</th>
<th>Norra</th>
<th>Venemaan</th>
<th>Määr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td>1,51%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td>0,79%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td>0,88%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td>0,86%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>186</td>
<td></td>
<td></td>
<td></td>
<td>0,68%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>413</td>
<td></td>
<td></td>
<td></td>
<td>0,77%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>681</td>
<td></td>
<td></td>
<td></td>
<td>0,67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>986</td>
<td></td>
<td></td>
<td></td>
<td>0,78%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1 313</td>
<td></td>
<td></td>
<td></td>
<td>1,17%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1 955</td>
<td></td>
<td></td>
<td></td>
<td>0,78%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2 645</td>
<td></td>
<td></td>
<td></td>
<td>0,78%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4 967</td>
<td></td>
<td></td>
<td></td>
<td>0,88%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9 925</td>
<td></td>
<td></td>
<td></td>
<td>0,68%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14 967</td>
<td></td>
<td></td>
<td></td>
<td>0,63%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13 602</td>
<td></td>
<td></td>
<td></td>
<td>0,80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14 676</td>
<td></td>
<td></td>
<td></td>
<td>0,86%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>19 847</td>
<td></td>
<td></td>
<td></td>
<td>0,95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>11 967</td>
<td></td>
<td></td>
<td></td>
<td>0,79%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6 283</td>
<td></td>
<td></td>
<td></td>
<td>0,96%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3 710</td>
<td></td>
<td></td>
<td></td>
<td>1,42%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2 971</td>
<td></td>
<td></td>
<td></td>
<td>1,71%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3 353</td>
<td></td>
<td></td>
<td></td>
<td>1,96%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2 435</td>
<td></td>
<td></td>
<td></td>
<td>1,56%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2 310</td>
<td></td>
<td></td>
<td></td>
<td>1,38%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1 912</td>
<td></td>
<td></td>
<td></td>
<td>1,20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1 725</td>
<td></td>
<td></td>
<td></td>
<td>1,13%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1 736</td>
<td></td>
<td></td>
<td></td>
<td>0,79%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1 593</td>
<td></td>
<td></td>
<td></td>
<td>0,90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1 772</td>
<td></td>
<td></td>
<td></td>
<td>0,96%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1 834</td>
<td></td>
<td></td>
<td></td>
<td>1,06%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2 089</td>
<td></td>
<td></td>
<td></td>
<td>0,91%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2 945</td>
<td></td>
<td></td>
<td></td>
<td>1,02%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3 288</td>
<td></td>
<td></td>
<td></td>
<td>0,70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3 650</td>
<td></td>
<td></td>
<td></td>
<td>0,80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5 060</td>
<td></td>
<td></td>
<td></td>
<td>0,67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5 013</td>
<td></td>
<td></td>
<td></td>
<td>0,72%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>5 249</td>
<td></td>
<td></td>
<td></td>
<td>0,81%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>6 691</td>
<td></td>
<td></td>
<td></td>
<td>0,90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>8 549</td>
<td></td>
<td></td>
<td></td>
<td>0,97%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>9 431</td>
<td></td>
<td></td>
<td></td>
<td>0,93%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>8 348</td>
<td></td>
<td></td>
<td></td>
<td>0,98%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allikas: autor koostatud
Tabel 17. Monte Carlo simulatsiooni „reaalse“ stsenaariumi näide (eurodes) (jätk)

<table>
<thead>
<tr>
<th></th>
<th>8 398</th>
<th>983</th>
<th>794</th>
<th>36 841</th>
<th>37 718</th>
<th>63 082</th>
<th>3 262</th>
<th>0,90%</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 025</td>
<td>1 564</td>
<td>1 264</td>
<td>27 145</td>
<td>27 843</td>
<td>48 881</td>
<td>7 737</td>
<td>0,75%</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>12 160</td>
<td>2 530</td>
<td>2 044</td>
<td>19 069</td>
<td>19 575</td>
<td>35 062</td>
<td>18 570</td>
<td>0,67%</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>9 635</td>
<td>2 673</td>
<td>2 160</td>
<td>28 990</td>
<td>29 736</td>
<td>52 203</td>
<td>28 881</td>
<td>0,59%</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>7 323</td>
<td>2 709</td>
<td>2 188</td>
<td>22 033</td>
<td>22 600</td>
<td>39 676</td>
<td>42 464</td>
<td>0,78%</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>5 062</td>
<td>2 497</td>
<td>2 017</td>
<td>15 230</td>
<td>15 622</td>
<td>27 425</td>
<td>55 370</td>
<td>0,90%</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>4 438</td>
<td>2 919</td>
<td>2 358</td>
<td>13 352</td>
<td>13 696</td>
<td>24 044</td>
<td>87 776</td>
<td>0,86%</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4 538</td>
<td>3 979</td>
<td>3 214</td>
<td>13 652</td>
<td>14 003</td>
<td>24 584</td>
<td>151 822</td>
<td>0,76%</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>4 775</td>
<td>5 583</td>
<td>4 510</td>
<td>14 368</td>
<td>14 737</td>
<td>25 872</td>
<td>246 636</td>
<td>0,91%</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>5 974</td>
<td>9 312</td>
<td>7 523</td>
<td>17 973</td>
<td>18 435</td>
<td>32 365</td>
<td>434 263</td>
<td>1,03%</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>3 568</td>
<td>7 417</td>
<td>5 991</td>
<td>10 736</td>
<td>11 012</td>
<td>19 332</td>
<td>351 176</td>
<td>0,85%</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>3 314</td>
<td>6 888</td>
<td>5 565</td>
<td>9 971</td>
<td>10 228</td>
<td>17 955</td>
<td>447 914</td>
<td>1,14%</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>3 068</td>
<td>6 377</td>
<td>5 152</td>
<td>9 231</td>
<td>9 468</td>
<td>16 622</td>
<td>548 651</td>
<td>1,40%</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>2 692</td>
<td>5 596</td>
<td>4 520</td>
<td>10 800</td>
<td>11 077</td>
<td>19 447</td>
<td>547 710</td>
<td>1,72%</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>3 060</td>
<td>6 360</td>
<td>5 138</td>
<td>16 367</td>
<td>16 788</td>
<td>29 473</td>
<td>560 000</td>
<td>2,23%</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>2 701</td>
<td>5 615</td>
<td>4 536</td>
<td>19 266</td>
<td>19 761</td>
<td>34 692</td>
<td>610 670</td>
<td>1,65%</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>2 440</td>
<td>5 071</td>
<td>4 097</td>
<td>23 200</td>
<td>23 797</td>
<td>41 778</td>
<td>551 539</td>
<td>1,25%</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>2 030</td>
<td>4 220</td>
<td>3 409</td>
<td>25 743</td>
<td>26 406</td>
<td>46 357</td>
<td>459 000</td>
<td>1,10%</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>1 330</td>
<td>2 763</td>
<td>2 232</td>
<td>22 476</td>
<td>23 054</td>
<td>40 473</td>
<td>300 554</td>
<td>1,41%</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Allikas: autori koostatud
Lisa 4. Reaaloptsioonide parameetrid

Tabel 18. Reaaloptsioonide parameetrite väljundväärtused

<table>
<thead>
<tr>
<th>Simulatsioon</th>
<th>1 - (Pessimistlik)</th>
<th>2 – (Reaalne)</th>
<th>3 - (Esialgne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDCF¹</td>
<td>58 164</td>
<td>122 662</td>
<td>189 684</td>
</tr>
<tr>
<td>BOL²</td>
<td>3 134</td>
<td>41 302</td>
<td>126 948</td>
</tr>
<tr>
<td>SOL³</td>
<td>306 351</td>
<td>678 138</td>
<td>1 057 559</td>
</tr>
<tr>
<td>VOL⁴</td>
<td>613 718</td>
<td>1 180 112</td>
<td>1 739 541</td>
</tr>
<tr>
<td>BOLP⁵</td>
<td>73 363</td>
<td>73 363</td>
<td>73 363</td>
</tr>
<tr>
<td>SOLP⁶</td>
<td>142 169</td>
<td>142 169</td>
<td>142 169</td>
</tr>
<tr>
<td>VOLP⁷</td>
<td>193 761</td>
<td>193 761</td>
<td>193 761</td>
</tr>
<tr>
<td>EV⁸</td>
<td>572 075</td>
<td>1 612 922</td>
<td>2 704 439</td>
</tr>
</tbody>
</table>

Allikas: autori koostatud

¹ EDCF - Eesti turu DCF 5 aastale
² BOL - Laienemise optsiooni väljamakse optsioonipreemia tehinguhinnas Baltikumi turul (ainult tulud optsioonipreemial kõrgemal)
³ SOL - Laienemise optsiooni väljamakse optsioonipreemia tehinguhinnas Skandinaavia turul
⁴ VOL - Laienemise optsiooni väljamakse optsioonipreemia tehinguhinnas Venemaa turul
⁵ BOLP - Loobumise optsioonipreemia Baltikumi turul
⁶ SOLP - Loobumise optsioonipreemia Skandinaavia turul
⁷ VOLP - Loobumise optsioonipreemia Venemaa turul
⁸ EV – Ettevõtte väärtsus
Lisa 5. Monte Carlo simulatsiooni statistilised näitajad

Tabel 19. „Pessimistliku“ Monte Carlo simulatsiooni statistilised näitajad (eurodes)

<table>
<thead>
<tr>
<th></th>
<th>Eesti</th>
<th>Läti</th>
<th>Leedu</th>
<th>Soome</th>
<th>Rootsi</th>
<th>Norra</th>
<th>Venemaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keskmene</td>
<td>118 821</td>
<td>90 909</td>
<td>67 035</td>
<td>184 463</td>
<td>193 037</td>
<td>265 431</td>
<td>959 333</td>
</tr>
<tr>
<td>Standardhälve</td>
<td>26 154</td>
<td>24 900</td>
<td>17 851</td>
<td>52 514</td>
<td>54 600</td>
<td>74 803</td>
<td>316 451</td>
</tr>
<tr>
<td>Miinimum</td>
<td>49 519</td>
<td>27 930</td>
<td>20 570</td>
<td>43 046</td>
<td>44 950</td>
<td>65 316</td>
<td>144 017</td>
</tr>
<tr>
<td>Maksimum</td>
<td>208 239</td>
<td>180 165</td>
<td>129 077</td>
<td>355 427</td>
<td>368 202</td>
<td>499 989</td>
<td>2 241 972</td>
</tr>
<tr>
<td>Mediaan</td>
<td>118 621</td>
<td>89 738</td>
<td>66 015</td>
<td>181 918</td>
<td>190 421</td>
<td>262 506</td>
<td>930 403</td>
</tr>
<tr>
<td>1.Kvartiil</td>
<td>100 846</td>
<td>73 219</td>
<td>54 300</td>
<td>146 139</td>
<td>152 928</td>
<td>208 977</td>
<td>743 374</td>
</tr>
<tr>
<td>3.Kvartiil</td>
<td>135 854</td>
<td>105 319</td>
<td>77 653</td>
<td>221 188</td>
<td>231 135</td>
<td>316 731</td>
<td>1 155 201</td>
</tr>
</tbody>
</table>

Allikas: autori koostatud

Tabel 20. „Reaalse“ Monte Carlo simulatsiooni statistilised näitajad (eurodes)

<table>
<thead>
<tr>
<th></th>
<th>Eesti</th>
<th>Läti</th>
<th>Leedu</th>
<th>Soome</th>
<th>Rootsi</th>
<th>Norra</th>
<th>Venemaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keskmene</td>
<td>183 182</td>
<td>141 699</td>
<td>104 555</td>
<td>291 249</td>
<td>304 643</td>
<td>420 610</td>
<td>1 527 528</td>
</tr>
<tr>
<td>Standardhälve</td>
<td>30 056</td>
<td>27 464</td>
<td>19 455</td>
<td>57 990</td>
<td>60 196</td>
<td>82 478</td>
<td>372 101</td>
</tr>
<tr>
<td>Miinimum</td>
<td>102 704</td>
<td>61 923</td>
<td>44 749</td>
<td>125 102</td>
<td>132 505</td>
<td>187 203</td>
<td>667 277</td>
</tr>
<tr>
<td>Maksimum</td>
<td>288 501</td>
<td>233 038</td>
<td>176 161</td>
<td>484 350</td>
<td>500 518</td>
<td>709 354</td>
<td>2 938 539</td>
</tr>
<tr>
<td>Mediaan</td>
<td>182 789</td>
<td>139 568</td>
<td>103 025</td>
<td>288 871</td>
<td>302 538</td>
<td>419 944</td>
<td>1 496 713</td>
</tr>
<tr>
<td>1.Kvartiil</td>
<td>161 371</td>
<td>122 346</td>
<td>91 225</td>
<td>248 155</td>
<td>261 171</td>
<td>361 989</td>
<td>1 253 554</td>
</tr>
<tr>
<td>3.Kvartiil</td>
<td>203 991</td>
<td>160 142</td>
<td>117 253</td>
<td>329 538</td>
<td>344 326</td>
<td>475 328</td>
<td>1 767 397</td>
</tr>
</tbody>
</table>

Allikas: autori koostatud

Tabel 21. „Esialgse“ Monte Carlo simulatsiooni statistilised näitajad (eurodes)

<table>
<thead>
<tr>
<th></th>
<th>Eesti</th>
<th>Läti</th>
<th>Leedu</th>
<th>Soome</th>
<th>Rootsi</th>
<th>Norra</th>
<th>Venemaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keskmene</td>
<td>250 340</td>
<td>193 992</td>
<td>143 024</td>
<td>400 040</td>
<td>418 332</td>
<td>577 331</td>
<td>2 086 812</td>
</tr>
<tr>
<td>Standardhälve</td>
<td>31 799</td>
<td>30 347</td>
<td>21 647</td>
<td>64 268</td>
<td>66 512</td>
<td>91 359</td>
<td>389 581</td>
</tr>
<tr>
<td>Miinimum</td>
<td>130 737</td>
<td>111 990</td>
<td>82 129</td>
<td>205 520</td>
<td>217 401</td>
<td>296 097</td>
<td>1 028 072</td>
</tr>
<tr>
<td>Maksimum</td>
<td>367 111</td>
<td>290 006</td>
<td>210 675</td>
<td>610 418</td>
<td>638 501</td>
<td>872 416</td>
<td>3 297 359</td>
</tr>
<tr>
<td>Mediaan</td>
<td>251 267</td>
<td>193 423</td>
<td>142 231</td>
<td>401 350</td>
<td>418 915</td>
<td>578 078</td>
<td>2 088 385</td>
</tr>
<tr>
<td>1.Kvartiil</td>
<td>228 535</td>
<td>173 593</td>
<td>128 013</td>
<td>355 499</td>
<td>372 512</td>
<td>513 953</td>
<td>1 818 986</td>
</tr>
<tr>
<td>3.Kvartiil</td>
<td>272 542</td>
<td>214 523</td>
<td>157 325</td>
<td>446 027</td>
<td>465 523</td>
<td>642 044</td>
<td>2 358 533</td>
</tr>
</tbody>
</table>

Allikas: autori koostatud
Lisa 6. Erinevad konverteerimismäärad

Tabel 22. 0,05% muutuse konverteerimismäärade mõju aastasele puhaskasumile vahemikus 1,00% - 2,00%

<table>
<thead>
<tr>
<th>Määr</th>
<th>Aasta 1</th>
<th>Aasta 2</th>
<th>Aasta 3</th>
<th>Aasta 4</th>
<th>Aasta 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00%</td>
<td>-20 975</td>
<td>31 960</td>
<td>-163 123</td>
<td>506 764</td>
<td>2 393 081</td>
</tr>
<tr>
<td>1,05%</td>
<td>-20 309</td>
<td>40 742</td>
<td>-147 559</td>
<td>570 502</td>
<td>2 551 135</td>
</tr>
<tr>
<td>1,10%</td>
<td>-19 644</td>
<td>49 524</td>
<td>-131 995</td>
<td>634 240</td>
<td>2 709 189</td>
</tr>
<tr>
<td>1,15%</td>
<td>-18 979</td>
<td>58 306</td>
<td>-116 431</td>
<td>697 979</td>
<td>2 867 243</td>
</tr>
<tr>
<td>1,20%</td>
<td>-18 314</td>
<td>67 088</td>
<td>-100 867</td>
<td>761 717</td>
<td>3 025 297</td>
</tr>
<tr>
<td>1,25%</td>
<td>-17 648</td>
<td>75 870</td>
<td>-85 303</td>
<td>825 455</td>
<td>3 183 351</td>
</tr>
<tr>
<td>1,30%</td>
<td>-16 983</td>
<td>84 652</td>
<td>-69 740</td>
<td>889 193</td>
<td>3 341 405</td>
</tr>
<tr>
<td>1,35%</td>
<td>-16 318</td>
<td>93 435</td>
<td>-54 176</td>
<td>952 931</td>
<td>3 499 459</td>
</tr>
<tr>
<td>1,40%</td>
<td>-15 653</td>
<td>102 217</td>
<td>-38 612</td>
<td>1 016 669</td>
<td>3 657 513</td>
</tr>
<tr>
<td>1,45%</td>
<td>-14 987</td>
<td>110 999</td>
<td>-23 048</td>
<td>1 080 408</td>
<td>3 815 567</td>
</tr>
<tr>
<td>1,50%</td>
<td>-14 322</td>
<td>119 781</td>
<td>-7 484</td>
<td>1 144 146</td>
<td>3 973 621</td>
</tr>
<tr>
<td>1,55%</td>
<td>-13 657</td>
<td>128 563</td>
<td>8 080</td>
<td>1 207 884</td>
<td>4 131 675</td>
</tr>
<tr>
<td>1,60%</td>
<td>-12 992</td>
<td>137 345</td>
<td>23 644</td>
<td>1 271 622</td>
<td>4 289 729</td>
</tr>
<tr>
<td>1,65%</td>
<td>-12 326</td>
<td>146 127</td>
<td>39 207</td>
<td>1 335 360</td>
<td>4 447 783</td>
</tr>
<tr>
<td>1,70%</td>
<td>-11 661</td>
<td>154 909</td>
<td>54 771</td>
<td>1 399 099</td>
<td>4 605 837</td>
</tr>
<tr>
<td>1,75%</td>
<td>-10 996</td>
<td>163 691</td>
<td>70 335</td>
<td>1 462 837</td>
<td>4 763 891</td>
</tr>
<tr>
<td>1,80%</td>
<td>-10 330</td>
<td>172 473</td>
<td>85 899</td>
<td>1 526 575</td>
<td>4 921 945</td>
</tr>
<tr>
<td>1,85%</td>
<td>-9 665</td>
<td>181 255</td>
<td>101 463</td>
<td>1 590 313</td>
<td>5 079 999</td>
</tr>
<tr>
<td>1,90%</td>
<td>-9 000</td>
<td>190 037</td>
<td>117 027</td>
<td>1 654 051</td>
<td>5 238 053</td>
</tr>
<tr>
<td>1,95%</td>
<td>-8 335</td>
<td>198 819</td>
<td>132 591</td>
<td>1 717 790</td>
<td>5 396 107</td>
</tr>
<tr>
<td>2,00%</td>
<td>-7 669</td>
<td>207 601</td>
<td>148 154</td>
<td>1 781 528</td>
<td>5 554 162</td>
</tr>
</tbody>
</table>

Allikas: autor koostatud