TALLINNAS, LAI 25 PAIKNEVA LINNATEATRI
HOONE F KATUSEKONSTRUKTSIOONI
KONSTRUKTIIVNE LAHENDUS

ROOF’S STRUCTURAL SOLUTION FOR BUILDING F OF TALLINN CITY THEATRE
AT 25 LAI STREET IN TALLINN

Üliõpilane Karl Koemets
Juhendaja: Ragnar Pabort

Tartu, 2014.a.
ABSTRACT

Keywords: main project, restoration, medieval architecture, structure calculations, strength calculations.

The purpose of this master’s thesis is to offer an insulated structural solution for a medieval house which is a part of Tallinn City Theatre’s building complex. The building complex is situated in medieval Tallinn’s Old Town which is also listed as a UNESCO World Heritage Site and the building in question is building F. It is a one-storeyed building at the end of the real estate with one side facing to the inner yard and the other side to the Laboratoriumi street. The main goal of reconstructing the roof is to improve energy efficiency and to protect the historical facade of the building from weather conditions. Architectural project foresees the attic as a recreational room for actors and workers but at the moment there isn’t enough efficient space. The solution for access to the attic needs to be reevaluated as well.

Drawings and construction details were designed with AutoCad 2014. Autodesk Robot Structural Analysis 2013 was used to calculate structure’s internal forces. All the calculations were made according to standards which are valid in Republic of Estonia. Structural analysis offer a solution for rafters and supports. Rationality and historical essential value were taken account of while choosing the materials for the construction. The roof primarily consists of natural materials.
SISUKORD

Abstract ... 2

Sissejuhatus ... 6

1. Ajalooline ülevaade ... 8
 1.1. Lai 25 8

2. Töö lahenduskäik ... 13

3. Materjal ja metoodika ... 17
 3.1. Arvutusmetoodika ja põhimõtted ... 17
 3.2. Kasutatavad normdokumentid .. 18
 3.3. Kasutatud arvutiprogrammid ... 18

4. Hoone F soojustatud katusekonstruksiooni lahendus ... 19
 4.1. Lumekoormus .. 19
 4.1.1. Lumekoormus normaalolukorras ... 20
 4.1.2. Lumekoormus lume kuhumisel tulemüüri taha ... 20
 4.1.3. Normatiivsed lumekoormused ... 22
 4.2. Tuulekoormus .. 22
 4.2.1. Hoone karakteristikud (tuul katuse külgedelt) ... 22
 4.2.2. Tippkiirusrõhk .. 24
 4.2.3. Kahekaldelise katuse tuulerõhud (tuul hoovi poolt) .. 26
 4.2.4. Kahekaldelise katuse tuulerõhud (tuul Laboratooriumi tänava poolt) 27
 4.2.5. Kahekaldelise katuse tuulerõhud (tuul katuse otsast) ... 28
 4.3. Katusekonstruksiooni lahendus .. 30
 4.3.1 Katusekonstruksiooni omakaalukoormus ... 30
 4.3.2. Katusekonstruksiooni difusiooniarvutus ... 32
 4.3.3. Katusekonstruksiooni kogusoojustakistuse leidmine ... 35
 4.4. Joonkoormused .. 38
4.5. Koormuskombinatsioonid ja sisejõudude epüürid kriitilises lõikes.......................... 40

4.5.1. Kandepiirseisundi koormuskombinatsioonid .. 40

4.5.2. Kasutuspiirseisundi (Normkombinatsioon) koormuskombinatsioonid 48

4.6. Sarikate kandevõime arvutus .. 49

4.6.1. Nõrgestatud ristlõike kandepiirseisundi tõmbekandevõime pikikiudu koos paindega kriitilises lõikes ... 50

4.6.2. Nõrgestatud ristlõike kandepiirseisundi survekandevõime pikikiudu koos paindega kriitilises lõikes .. 53

4.6.3. Nõtke kandepiirseisundis .. 54

4.6.4. Nihkekandevõime kandepiirseisundis ... 56

4.6.5. Kandepiirseisundi survekandevõime kiudude suhtes nurga all (muljumine) 58

4.6.6. Sarikate piirläbipainde kontroll kasutuspiirseisundis 60

4.7. Toolvärgi kandevõime arvutus .. 61

4.7.1. Kriitilises lõikes paiknevate toolvärkide sisejõud ... 62

4.7.2. Ülemise võö paindekandevõime .. 65

4.7.3. Posti kandevõime ... 65

4.7.4. Alumise võö survekandevõime ristikiudu ... 67

4.7.5. Nihkekandevõime ... 68

4.7.6. Toolvärgi ülemise võö piirläbipainde kontroll kasutuspiirseisundis 69

4.8. Sõlmede kandevõime arvutus .. 70

4.8.1. Harja sõlm ... 70

4.8.2. Toolvärkide sõlmed ... 74

4.8.3. Räästa sõlm ... 75

4.9. Vintskapi kandevõime arvutus ... 79

4.9.1. Lumekoormus .. 79

4.9.2. Tuulekoormus .. 80

4.9.3. Omakaalu koormused ... 82
4.9.4. Vintskapi lahendus .. 84
4.9.5. Kandepiirseisundis mõjuvad koormused.. 84
4.9.6. Vintskapi aluse topeltsarika kandevõime kandepiirseisundis 85

Arutelu ... 94
Kokkuvõte ... 95
Kasutatud kirjandus ... 96
Lisad .. 98
SISSEJUHATUS

Arhitektuuril on suur roll ühiskonna kujunemisel. Igal riigil ja rahvusel on omanäoline arhitektuur, mis on mõjutatud selle riigi või rahvuse ajaloost. Eesti Vabariigi kääkäiku ning kindlasti ka arhitektuuri olemust on otseselt ja kaudselt mõjutanud läbi aegade mitmed välisvõimud. Sellest hoolimata on oluline mõelda tulevikku ning arhitektuuri olemus ning säilitada.

Antud magistritöö eesmärgiks on lahendada Tallinna Linnateatri (Tallinn, Lai 25) hoone F katusekonstruktiooni põhiprojekti staadiumis. Katusekonstruktiooni restaureerimise eesmärgiks on hoone energiatöhususe tõstmine ning olemasoleva fassaadi kaitsmine ilmastiku tingimuste eest. Parima energiatöhususe saavutamiseks oleks vaja restaureerida ka hoone fassaad, kuid Linnateatri piiratud majanduskond võimaldab hetkel teostada ainult katusekonstruktiooni restaureerimistöid. Kuna tegemist on muinsuskaitse aluse objektiga, on projekteerimisel lähtutud hoonekompleksile koostatud muinsuskaitse eritingimustest, mis seavad piirangud katuse ja vintskapi gabineti kasutamisest. Lisaks on arvesse võetud mõõdistusjooniseid ning arhitektuurset eelprojekti, mille on koostanud KOKO Arhitektid OÜ.

Arhitektuurses eelprojekts on pööningule ette nähtud puhkeruum, mis on ühendatud keerdtreppiga esimese korruse siseseelise läbi vahelal endise mantelkorstna kohalt. Keerdtrepi asukoht on muinsuskaitse eritingimustega määratletud, kuid selle alune osa jääb välja ruumi kasulikust pinnast, mille kõrguseks on 1,6 meetrit. Olemasoleva vintskapi keha restaureeritakse, kuid ukse taha paigaldatav aken ning vintskapp omab pigem dekoraatiivset otstarvet. Seega pole hetke andmete põhjal võimalik pööningule rakendust leida, kuna ruumile puudub loogiline juurdepääs. Katus projekteeritakse nii, et jääb võimalus pööningu rakendamiseks olmeliste ehitusvormide hulka, mille juurdepääsus vastavuses EVS-standardites ja ohutusnõuetega.

Magistritöö põhieesmärgiks on muinsuskaitse eritingimusi ja nõudeid silmas pidades välja pakkuda soojustatud katuse konstruktioonile lahendus, mis rahuldab kõiki asjakohastes EVS-satandardites esitatud nõudeid ning võimaldab sellest tulevikul mõjutada.

Käesoleva magistritöö autor soovib tänada Ragnar Pabortit (AS Resand) operatiivse koostöö ja asjakohaste ning professionaalsete konsultatsioonide eest lõputöö koostamise ajal. Samuti soovitakse tänada Annely Kuule (vanemteadur, TTÜ Tartu Kolledž), kes aitas lahendada kõiki vormistuslikku poolt puudutavaid küsimusi. Lisaks tänapäevatöö

6
Aime Ruusi (dotsent, TTÜ Tartu Kolledž) ehitusfüüsikaliste nõuannete eest ning Maari Idnurme (OÜ Ehitusekspertiisibüroo) magistritöö idee ja konkreetset objekti puudutavate materjalide eest, mis sisaldasid muinsuskaitse eritingimusi ning OÜ KOKO arhitektid arhitektuuribüroo poolt koostatud arhitektuurse eelprojekti jooniseid.
1. AJALOOLINE ÜLEVAADE

1.1. Lai 25

Joonis 1.1. Kinnistu 139 plaan. [3]

Lai 25 krundi praeguse hoonestuse moodustavad Laiale tänavale avanev peahoone, mis koosneb kahest osast A ja B, nendega liituvast kahest pikast hoovitiivast C ja D ning Laboratooriumi tänavale avanevast kahest abihoonest E ja F. [2]

Kinnistu kohta on varaseimad andmed 1371. aastast, kui see kuulus raehärra Hermannus de Lippe’le (Lyppe, Lippia). Temale kuulus Laia tänavad lääneküljel silmapaistvalt suur valdus, mis ulatus kuni Suurtüki tänavani. 1380. aastal eraldas härra Lippe oma valduse kõige lännapoolsemas osas (Lai 25) ja loovutas selle Nicolaus van Kolne’le. 1387.a. läks see viimase lesele. Linna kodanikeraamatus on valdust esmakordselt mainitud 1467.a., kui omanikuks oli raehärra Hinrick Schelewend. 15.sajandi II poolel Lai 23 krundiga kokkuliidetud valdus eraldus 1530. aastal uuesti. Ilmselt oli tegemist kõrge viiluga diele-dormse süsteemis elamuga, mis oli iseloomulik hilisgootika perioodile. Kinnistu kuulus

Plaanilahendusest nätab 1798. aasta joonis peahoone kui varasemat diele-dornse tüüpi elamut, millel oli tänava pool avar eeskoda ja hoovipool kõetav elutuba. Dornse lõunanurgast toodab eriti ülepool punast käiku ja ülepool korruseid läbiv ning katusest kõrgele tõusev mahukas mantelkorsten. Kalorifeerahju keriseruum asus dornse all ja see on praeguseni säilinud. Ka hoone kapitaalseinad on tänaseni põhiliselt säilinud. [2]

R. Kangropoli arhiivimaterjalide hulgas on üks Lai 25 kasarmuid kujutav joonis, millel näha ka hoonete lõiked. Sellest selgub, et peahoone A oli säilinud mantelkorsten ja kõrge
katusekonstruktsioon. Hoonel oli kaks elukorrust ja laokorrus nende peal. Ka hooneosa B oli kahekorruseline viilkatusega hoone. Sama situatsiooni kajastab üldjoontes ka 1825. aastast päinev fassaadijoonis, kuigi sellele ei ole esimese korruse keldripääse peaffasaadis märgitud. [2]

1913. aastast tegutses majades nii Tallinna I Tütarlastekool kui ka Linna Tütarlaste Kaubanduskool. 1920. aastal kasutas hooneid Linna II Algkool. [2]

1925. aasta kinnisvara hindamise aktis nimetatakse Lai 25 “linna põliseks kinnisvaraks pindalaga 1264,16 m². Hoone A on plekk-katusega ehitis, esimene korrus on paekivist,
millele 1887. aastal ehitati tellistest peale II ja III korrus. Paekivist trepp viib kuni III korruseni, pööningule viib edasi puittrepp.” [2]

Hoone B on kahekordne paekivist seintega, plekk-katusega koolihoone, millel kelder puutaladest laega. Ka hooned C ja D olid koolihooned, hoone E oli kojamehe korter ja F pesuköök. [2]

2. TÖÖ LAHENDUSKÄIK

13
Joonis 2.1. Olemasolev sarikate plaan [5]

Joonis 2.2. Vaade hoovist [5]
Joonis 2.3. Vaade Laboratooriumi tänavalt [5]

Joonis 2.4. Vaade hoovist [2]
Joonis 2.5. Vaade Laboratooriumi tänavalt [2]

3. MATERJAL JA METOODIKA

3.1. Arvutusmetodika ja põhimõtted

Koormuse F arvutusväärtsuse F_d üldkuju: [6, lk. 181]

$$F_d = \Psi \cdot \gamma_f \cdot F_k$$

Kus: Ψ – kombinatsioonitegur;

γ_f – koormuse osavarutegur;

F_k – koormuse normväärtsus.

Alaliste või ajutiste arvutusolukordade kandepiirseisundi koormuskombinatsioonid: [6, lk. 181]

$$\sum_{j=1}^{n} G_{k,j} \cdot G_{k,j}'' + \gamma_P \cdot P'' + \gamma_{Q,1} \cdot Q_{k,1}'' + \sum_{j=1}^{n} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i}$$

Normkombinatsioon rakendatuke taastumatute kasutuspiirseisundite puhul valemiga: [6, lk. 181]

$$\sum_{j=1}^{n} G_{k,j}'' + P'' + Q_{k,i}'' + \sum_{j=1}^{n} \psi_{0,i} \cdot Q_{k,i}$$
Puitmaterjali omaduse arvutusväärtus X_d määratakse kujul: [6, lk. 504]

$$X_d = k_{mod} \cdot \frac{x_k}{\gamma_m} \quad (4)$$

Kus: k_{mod} – koormuse kestuse ja konstruktsiooni niiskuse mõju arvestav tugevusparameetri modifikatsioonitegur;
γ_m – materjali osavarutegur.

3.2. Kasutatavad normdokumendid

Konstruktioonprojekt koostatakse Eesti Vabariigis kehtivate EVS-standardite alusel.

Üldine

Koormused

Puitkonstruktsioonid

3.3. Kasutatud arvutiprogrammid

- ARSAP 2013 (Autodesk Robot Structural Analysis Professional)
- MathCad 14
- AutoCad 2014
- MS Excel
4. HOONE F SOOJUSTATUD KATUSEKONSTRUKTSIOONI LAHENDUS

4.1. Lumekoormus

\[s = \mu_l s_k \] (5)

Kus:
- \(s \) – lumejoomuse normsuurus katusel, kN/m\(^2\);
- \(\mu_l \) – lumejoomuse kujutegur;
- \(s_k \) – lumejoomuse normsuurus maapinnal, kN/m\(^2\).
4.1.1. Lumekoormus normaalolukorras

Lumekoormus maapinnale (Tallinn)

\[s_k = 1,5 \text{ kN/m}^2 \]

Katuse serv lõppeb lumetõkkega, mille tõttu võetakse lumekoormuse kujuteguriks 0,8. [7, lk. 20]

\[\mu_1 = 0,8 \]

Normatiivne lumekoormus katusele normaalolukorras vastavalt valemile (5)

\[s_1 = 0,8 \cdot 1,5 = 1,2 \text{ kN/m}^2 \]

4.1.2. Lumekoormus lume kuhjumisel tulemüüri taha

- **Kujutegurid hangede kogunemisel eendite ja takistuste ümbruses**

Kuhjunud lume kujutegur eendite ja takistuste ümbruses on määratud vastavalt standardile: [7, lk. 26]

\[\mu_1 = 0,8 \]

\[\mu_2 = \frac{\gamma \cdot h}{s_k} \]

Tulemüüri kõrgus katuse harjast

\[h_h = 0,54 \text{ m} \]

Kuhjunud hange pikkus harjal

\[l_{sh} = 2h_h = 2 \cdot 0,54 = 1,08 \text{ m} \]

\[\gamma = 2 \text{ kN/m}^2 \]

\[0,8 \leq \mu_2 \leq 2,0 \]

\[\mu_{2h} = \frac{\gamma \cdot h_h}{s_k} = \frac{2 \cdot 0,54}{1,5} = 0,72 \]

Kuhjunud lume kujutegur katuse harjal

\[\mu_{2h} = 0,72 \]
Tulemüüri kõrgeus katuse räästast

\[h_r = 3,17 \text{ m} \]

Kuhjunud hange pikkus räästal

\[l_{sr} = 2 \cdot h_r = 6,34 \text{ m} \]

\[\gamma = 2 \text{ kN/m}^2 \]

\[0,8 \leq \mu_2 \leq 2,0 \]

\[\mu_{2r} = \frac{\gamma \cdot h_r}{s_k} = \frac{2 \cdot 3,17}{1,5} = 4,22 \]

\(\mu_{2r} \) ületab lubatud väärtust, mistõttu tuleks valida maksimaalne väärtus.

Kuhjunud lume kujutegur katuse räästal

\[\mu_{2r} = 2,0 \]

- **Kujutegurid hangede kogunemisel kõrgema hooneosaga külgnevale katusele**

Kuhjunud lume kujutegur kõrgema hooneosaga külgnevale katusele on määratud vastavalt: [7, lk. 31-32]

Hange pikkus

\[l_s = \min \begin{cases} 5h = 5 \cdot 3,17 = 15,85 \\ b_1 = 15 \\ 15 \end{cases} \]

Tegur \(\mu_3 \)

\[\mu_3 = \min \begin{cases} \frac{2h}{s_k} = \frac{2 \cdot 3,17}{1,5} = 4,2267 \\ \frac{2b}{l_s} = \frac{2 \cdot 8}{15} = 1,067 \\ \frac{2b}{l_s} = \frac{2 \cdot 8}{15} = 1,067 \end{cases} \]

Lume kujutegur Laboratooriiumi tänava pool (\(\alpha_2=22^\circ \))

\[\mu_1 = \mu_3 \left[(30 - \alpha_1) / 15 \right] = 1,067 \left[(30 - 22) / 15 \right] = 0,569 \]

\[\mu_2 = \mu_3 = 1,06 \]
Lume kujutegur hoovi pool ($\alpha_t=32^\circ$)

\[
\begin{align*}
\mu_1 &= 0 \\
\mu_2 &= \mu_3[(60 - \alpha_t)/30] = 1,067[(60 - 32)/30] = 0,996
\end{align*}
\]

4.1.3. Normatiivsed lumekoormused

Normatiivne lumekoormus katusele lume kuhjumise kohas räästal vastavalt valemile (5)

\[
s_{2r} = 2,0 \cdot 1,5 = 3,0 \text{ kN/m}^2
\]

Normatiivne lumekoormus katusele lume kuhjumise kohas harjal vastavalt valemile (5)

\[
s_{2h} = 0,72 \cdot 1,5 = 1,08 \text{ kN/m}^2
\]

4.2. Tuulekoormus

Tuulerõhkude väärtsed katuse pinnale leitakse vastavalt valemile: [6, lk. 192]

\[
w_e = q_p(z_e)c_{pe} \quad (6)
\]

Kus: w_e – kontruktsiooni välispinnale mõjuv tuulerõhk, kN/m2;

$q_p(z_e)$ – kiirusrõhk, kN/m2;

z_e – arvutuskõrgus, m;

c_{pe} – välisröhutegur.

4.2.1. Hoone karakteristikud (tuul katuse külgedelt)

Joonisel 4.1. on välja toodud tuulerõhkude tsoonid. Joonisel 4.2. on esitatud katuse kalded kriitilises lõikes. Tuulerõhud hoone katusele on määratud vastavalt standardile EVS-EN
Üldkoormused. Tuulekoormus: [8, lk. 42-44]

\[
\begin{align*}
\theta &= 0^\circ \\
d &= 8 \text{ m} \\
b &= 15 \text{ m} \\
h &= 7 \text{ m} \\
2h &= 2 \cdot 7 = 14 \text{ m} \\
2h < b &\Rightarrow e = 2h = 14 \text{ m}
\end{align*}
\]

Joonis 4.1. Tuulerõhkude toonid
Joonis 4.2. Katusse kaled kriitilises lõikes

Tabelis 4.1. on esitletud maastikutüüpide määratlus. [8, lk. 20] Hoone maastikutüübiks on IV, kuna hoone paikneb Tallinna vanalinnas.

Tabel 4.1. Maastikutüübid

<table>
<thead>
<tr>
<th>Maastikutüüp</th>
<th>(z_0) (m)</th>
<th>(z_{\text{min}}) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Meri või kaldapiirkond, mis on avatud merele</td>
<td>0,003</td>
<td>1</td>
</tr>
<tr>
<td>II Järved või tasane horisontaalne maastik ilma olulise taimkatteta ja ilma takistusteta</td>
<td>0,01</td>
<td>1</td>
</tr>
<tr>
<td>III Maastik madala taimkattega (nagu rohi) ja üksikute takistustega (puud, hooned), mille vaheline kaugus võrdub vähemalt 20-kordse kõrgusega</td>
<td>0,05</td>
<td>2</td>
</tr>
<tr>
<td>IV Maastik, mis on kaetud ühtlase taimkatte või ehitistega või üksikute takistustega, mille vaheline kaugus ei ole suurem 20-kordse kõrgusest (nagu maa-asulad, äärelinnapiirkond, ühtlaselt metsaga kaetud alad)</td>
<td>0,3</td>
<td>5</td>
</tr>
<tr>
<td>IV Maastik, kus vähemalt 15% pinnast on kaetud hoonetega, mille keskmine kõrgus ületab 15 m</td>
<td>1,0</td>
<td>10</td>
</tr>
</tbody>
</table>

4.2.2. Tippkiirusrõhk

• Tippkiirusrõhk Ehituskonstruktori käsiraamatu järgi

\[z_{\text{min}} = 10 \, \text{m} \]

\[q_p = 15,15 \ln^2 z + 106,6 \ln z = 15,15 \cdot \ln^2 10 + 106,6 \cdot \ln 10 = 0,326 \, \text{kN/m}^2 \]

• Tippkiirusrõhk EVS-EN 1991-1-4:2007 Tuulekoormus standardi järgi

\[q_p(z) = [1 + 7 \cdot l_v(z)] \cdot \frac{1}{z} \cdot \rho \cdot v_m^2(z) = c_e(z) \cdot q_b \]

Keskmise tuulekiirus \(v_m(z) \) kõrgusel z maapinnast [8, lk. 17-18]

\[v_b = c_{d, \text{dir}} \cdot c_{\text{season}} \cdot v_{b,0} = 1 \cdot 1 \cdot 21 = 21 \, \text{m/s} \]

\[c_{d, \text{dir}} = 1,0 \]

\[c_{\text{season}} = 1,0 \]

\[c_{\text{prob}} = \left(\frac{1 - K \cdot \ln(-\ln(1-p))}{1 - K \cdot \ln(-\ln(0,98))} \right)^n \left(\frac{1 - 0,2 \cdot \ln(-\ln(1 - 0,02))}{1 - 0,2 \cdot \ln(-\ln(0,98))} \right)^{0,5} = 1 \]

Kus:

\[K = 0,2 \]

\[n = 0,5 \]

\[p = 0,02 \]

\[v_b = 21 \, \text{m/s} \]

Keskmise tuulekiirus kõrgusel z [8, lk. 19-20]

\[v_m(z) = c_r(z) \cdot c_0(z) \cdot v_b = 0,54 \cdot 1,0 \cdot 21 = 11,331 \, \text{m/s} \]

\[c_0(z) = 1,0 \]

\[c_r(z) = c_r(z_{\text{min}}), \text{kuna } z < z_{\text{min}} \]

\[z = 10 \]

\[z_0 = 1,0 \]

\[z_{0,1} = 0,05 \]

\[\rho = 1,25 \, \text{kg/m}^3 \]
Karedustegur

\[c_r(z) = k_r \cdot \ln \left(\frac{z}{z_0} \right) = 0,234 \cdot \ln \left(\frac{10}{1} \right) = 0,54 \]

Maastikutüübistegur

\[k_r = 0,19 \cdot \left(\frac{z_0}{z_{0,II}} \right)^{0,07} = 0,19 \cdot \left(\frac{1,0}{0,05} \right)^{0,07} = 0,234 \]

Turbulentsi intensiivsus kõrgusel \(z \) [8, lk. 22]

\[I_v(z) = I_v(z_{min}), \text{kuna } z < z_{min} \]

\[I_v(z) = \frac{\sigma_v}{v_m(z)} = \frac{4,921}{11,331} = 0,434 \]

\[\sigma_v = k_r \cdot v_b \cdot k_l = 0,234 \cdot 21,0 \cdot 1,0 = 4,921 \, m/s \]

\[k_r = 1,0 \]

\[q_p(z) = [1 + 7 \cdot I_v(z)] \cdot \frac{1}{2} \cdot \rho \cdot v_m^2(z) = [1 + 7 \cdot 0,434] \cdot \frac{1}{2} \cdot 1,25 \cdot 11,331^2 \]

\[= 0,324 \, kN/m^2 \]

Arvutustes kasutatakse tippkiirusrõhku, mis on saadud Ehituskonstruktori käsiraamatust, kuna see tulemus on varu kasuks.

4.2.3. Kahekaldelise katuse tuulerõhutegur (tuul hoovi poolt)

Tuulerõhutegurid

Tabel 4.2. Kahekaldelise katuse tuulerõhutegurid (hoovi poolt)

<table>
<thead>
<tr>
<th>(32^\circ)</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{pc,10})</td>
<td>-0,446</td>
<td>-0,446</td>
<td>-0,179</td>
<td>-0,4</td>
<td>-0,766</td>
</tr>
<tr>
<td>(0,7)</td>
<td>0,7</td>
<td>0,421</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Tuulerõhud katusele

Tabel 4.3. Tuulerõhud katusele (hoovi poolt)

<table>
<thead>
<tr>
<th>w_c (kN/m2)</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>-0,145</td>
<td>-0,145</td>
<td>-0,057</td>
<td>-0,13</td>
<td>-0,25</td>
</tr>
<tr>
<td>2)</td>
<td>0,228</td>
<td>0,228</td>
<td>0,137</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3)</td>
<td>0,228</td>
<td>0,228</td>
<td>0,137</td>
<td>-0,13</td>
<td>-0,25</td>
</tr>
<tr>
<td>4)</td>
<td>-0,145</td>
<td>-0,145</td>
<td>-0,057</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2.4. Kahekaldelise katuse tuulerõhutegurid (tuul Laboratooriumi tänava poolt)

Tuulerõhutegurid

Tabel 4.4. Kahekaldelise katuse tuulerõhutegurid (Laboratooriumi tänava poolt)

<table>
<thead>
<tr>
<th>22°</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0,713</td>
<td>-0,66</td>
<td>-0,253</td>
<td>-0,379</td>
<td>-0,479</td>
</tr>
<tr>
<td>$C_{pc,10}$</td>
<td>0,433</td>
<td>0,433</td>
<td>0,293</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tuulerõhud katusele

Tabel 4.5. Tuulerõhud katusele (Laboratooriumi tänava poolt)

<table>
<thead>
<tr>
<th>w_c (kN/m2)</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>-0,232</td>
<td>-0,215</td>
<td>-0,082</td>
<td>-0,123</td>
<td>-0,156</td>
</tr>
<tr>
<td>2)</td>
<td>0,141</td>
<td>0,141</td>
<td>0,095</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3)</td>
<td>-0,232</td>
<td>-0,215</td>
<td>-0,082</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4)</td>
<td>0,141</td>
<td>0,141</td>
<td>0,095</td>
<td>-0,123</td>
<td>-0,156</td>
</tr>
</tbody>
</table>

Määravaks saab koormuste juht, mille puhul on tuulerõhkude vahe erinevatel katusekülgidel kõige suurem, kuna sellisel juhul on oht, et toimub katus “ümber lükkamine”. Kõige kriitilisem on 32° kalde puhul kolmas koormuste juht, mille korral on tuulerõhkude vahe kõige suurem. 22° kalde puhul on kõige kriitilisem neljas koormuste
juht, mille korral on tuulerõhkuva hea kõige suurem. Kõige kriitilisemad juhud on tabelites esile toodud.

4.2.5. Kahekaldelise katuse tuulerõhuk (tuul katuse otsast)

Hoone karakteristikud

Joonisel 4.3. on välja toodud tuulrohkude tsoonid juhul kui tuul puhub katuse otsast. Tuulerõhud hoone katusele on määratud vastavalt standardile: [8, lk. 42-44]

\[\theta = 90^\circ \]

\[d = 15 \, m \]

\[b = 8 \, m \]

\[h = 7 \, m \]

\[2h = 2 \cdot 7 = 14 \, m \]

\[2h > b \Rightarrow e = b = 8 \, m \]

Joonis 4.3. Tuulerõhkude tsoonid

Kahekaldelise katuse tuulerõhtegurid (hoovi pool)

Tabelis 4.6. on välja toodud tuulerõhu tegevus hoovi poolsele katuse küljele, kui tuul puhub katuse otsast.
Tabel 4.6. Kahekaldelise katuse tuulerõhutegurid (tuul katuse otsast)

<table>
<thead>
<tr>
<th>32°</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{pe,10}</td>
<td>-1,49</td>
<td>-1,2</td>
<td>-1</td>
<td>-0,9</td>
</tr>
</tbody>
</table>

Tuulerõhud katusele (hoovi pool)

Tuulerõhutegurid on leitud vastavalt valemile (6).

\begin{align*}
 w_{e,F} &= 0,326 \cdot (-1,49) = -0,486 \text{ kN/m}^2 \\
 w_{e,G} &= 0,326 \cdot (-1,2) = -0,391 \text{ kN/m}^2 \\
 w_{e,H} &= 0,326 \cdot (-1,0) = -0,326 \text{ kN/m}^2 \\
 w_{e,I} &= 0,326 \cdot (-0,9) = -0,293 \text{ kN/m}^2
\end{align*}

Kahekaldelise katuse tuulerõhutegurid (Laboratooriumi tänava pool)

Tabelis 4.7. on välja toodud tuulerõhu tegurid Laboratooriumi tänava poolsele katuse küljele, kui tuul puhub katuse otsast.

Tabel 4.7. Kahekaldelise katuse tuulerõhutegurid (tuul katuse otsast)

<table>
<thead>
<tr>
<th>22°</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{pe,10}</td>
<td>-1,206</td>
<td>-1,346</td>
<td>-0,693</td>
<td>-0,5</td>
</tr>
</tbody>
</table>

Tuulerõhud katusele (Laboratooriumi tänava pool)

Tuulerõhutegurid on leitud vastavalt valemile (6).

\begin{align*}
 w_{e,F} &= 0,326 \cdot (-1,206) = -0,393 \text{ kN/m}^2 \\
 w_{e,G} &= 0,326 \cdot (-1,346) = -0,439 \text{ kN/m}^2 \\
 w_{e,H} &= 0,326 \cdot (-0,693) = -0,226 \text{ kN/m}^2 \\
 w_{e,I} &= 0,326 \cdot (-0,5) = -0,163 \text{ kN/m}^2
\end{align*}
Katusele mõjuv tõstev tuulerõhk määravaks ei saa, kuna katuse omakaal sisuliselt neutraliseerib katust tõstva jõu.

\[1,5 \cdot w_{e,F} < 1 \cdot \Sigma_G \]

\[1,5 \cdot 0,486 = 0,729 \, kN/m^2 \geq 0,7 \, kN/m^2 \]

4.3. Katuskonstruktsiooni lahendus

Katuse kandvaks konstruktsiooniks on 50X200 mm ristlõikega sarikas tugevusklassiga C24. Sarikate samm on varieeruv, kuid võimaluse korral on samm 600 mm. Sarikate peale, välja poole kinnituvad distantsliist ning tuulutusliist, mõlemad ristlõikega 50X50 mm ning tugevusklassiga C16. Valtspleki alla paigaldatakse roovi lauad ristlõikega 100X25 mm, sammuga 200 mm. Sarikatest sisse poole kinnitatakse lisasoojustuse karkass ristlõikega 100X50 mm ning sammuga 600 mm, millele omakorda kinnitub kipsi karkass koos kipsplaatidega. Oluline on jälgida, et sarika kaugus korstna välispinnast oleks vähemalt 100 mm. [9]

4.3.1 Katuskonstruktsiooni omakaalu koormus

Joonis 4.4. Katuskonstruksiooni ristlõige

Liiasoojustus paigaldatud 100x50 ristlõikega roovide vahele, mille samm on 600 mm.

Kipsplaadid (Gyproc) kinnituvad saepuidust lae karkassile. Lae karkass on 75X25 mm laudade laevamisega 600 mm. Laekarkass kinnitub omakorda saepuidust roovidele, mis asetsevad sarikatega risti.

Katus viimistletakse seestpoolt kahe kipsplaadi kihiga. Esimene kiht on Gyproc GN 13 kipsplaat ning teine kiht on Gyproc GKF 15 Fire-line Plus tuletõkkeplaat.

Tabel 4.8. Katuse omakaalukoormus

<table>
<thead>
<tr>
<th>Konstruksiooni kiht</th>
<th>Kõrgus (m)</th>
<th>Laius (m)</th>
<th>Samm (m)</th>
<th>Tihedus (kN/m³)</th>
<th>Normatiivne koormus (kN/m²)</th>
<th>Osavarutegeur</th>
<th>Arvutuslik koormus (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valtsplekk</td>
<td>0,005</td>
<td></td>
<td></td>
<td>6</td>
<td>0,1</td>
<td>1,2</td>
<td>0,18</td>
</tr>
<tr>
<td>Roovitis</td>
<td>0,025</td>
<td>0,1</td>
<td>0,2</td>
<td>6</td>
<td>0,08</td>
<td>1,2</td>
<td>0,09</td>
</tr>
<tr>
<td>Tuulutusliist</td>
<td>0,05</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,03</td>
<td>1,2</td>
<td>0,03</td>
</tr>
<tr>
<td>Aluskaate</td>
<td>0,0002</td>
<td></td>
<td>1</td>
<td>6</td>
<td>0,03</td>
<td>1,2</td>
<td>0,0002</td>
</tr>
<tr>
<td>Distantsliist</td>
<td>0,05</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,03</td>
<td>1,2</td>
<td>0,03</td>
</tr>
<tr>
<td>Isover VKL</td>
<td>0,013</td>
<td></td>
<td>1,2</td>
<td>6</td>
<td>0,03</td>
<td>1,2</td>
<td>0,02</td>
</tr>
<tr>
<td>Isover KL 35</td>
<td>0,3</td>
<td></td>
<td>0,2</td>
<td>6</td>
<td>0,06</td>
<td>1,2</td>
<td>0,07</td>
</tr>
<tr>
<td>Sarikas</td>
<td>0,2</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,10</td>
<td>1,2</td>
<td>0,12</td>
</tr>
<tr>
<td>Roovitis (lisasoojustus)</td>
<td>0,1</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,05</td>
<td>1,2</td>
<td>0,06</td>
</tr>
<tr>
<td>Kipsi karkass</td>
<td>0,025</td>
<td>0,075</td>
<td>0,4</td>
<td>6</td>
<td>0,03</td>
<td>1,2</td>
<td>0,03</td>
</tr>
<tr>
<td>Kips</td>
<td>0,013</td>
<td></td>
<td>8</td>
<td>6</td>
<td>0,10</td>
<td>1,2</td>
<td>0,12</td>
</tr>
<tr>
<td>Tuletõkke kips</td>
<td>0,015</td>
<td></td>
<td>8</td>
<td>6</td>
<td>0,12</td>
<td>1,2</td>
<td>0,14</td>
</tr>
</tbody>
</table>

$G_k = 0,7$
Omakaalukoormus kokku

$$\Sigma_g = 0,7 \text{ kN/m}^2$$

4.3.2. Katusekonstruktsiooni difusiooniarvutus

Piirdetarindi difusiooniarvutusega kontrollitakse õhuniiskuse kondenseerumist tarindis. Katusekonstruktsiooni niiskusrežiimi arvutus on tehtud Glaseri meetodi põhjal, mida kirjeldab Eesti Ehitusteave kaart ET-2 0404-0764. Raamtingimused on määratud DIN 4108-3 järgi, kus talvel välistemperatuur on -10° C (suhteline niiskus 80%) ning sisetemperatuur 20° C (relatiivne niiskus 50%). [14]

<table>
<thead>
<tr>
<th></th>
<th>Sees</th>
<th>Väljas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatuur (C°)</td>
<td>20</td>
<td>-10</td>
</tr>
<tr>
<td>P_{max} (Pa)</td>
<td>2 338</td>
<td>260</td>
</tr>
<tr>
<td>RH, %</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>P_{ag} (Pa)</td>
<td>1169.09</td>
<td>207.90</td>
</tr>
</tbody>
</table>
Tabel 4.10. Piirdetarindi niiskusrežiimi arvutus Glaseri meetodil

<table>
<thead>
<tr>
<th>Soojjustatud katus</th>
<th>Kihi paksus (m)</th>
<th>Soojuserijuhtivus (W/mK)</th>
<th>Temperatuur (K)</th>
<th>Δ t</th>
<th>μ</th>
<th>S_d</th>
<th>P_teg (Pa)</th>
<th>P_max (Pa)</th>
<th>S_d summa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarindi osa</td>
<td>d</td>
<td>λ</td>
<td>R=d/λ</td>
<td>%R</td>
<td>0,42</td>
<td>0,38</td>
<td>20,00</td>
<td>1169,09</td>
<td>2338</td>
</tr>
<tr>
<td>Välispind</td>
<td>0,13</td>
<td>1,39</td>
<td>1,39</td>
<td>1</td>
<td>0,13</td>
<td>207,90</td>
<td>270</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tuuletõke VKL</td>
<td>0,01</td>
<td>0,032</td>
<td>0,41</td>
<td>4,34</td>
<td>-8,28</td>
<td>0,013</td>
<td>302</td>
<td>0,013</td>
<td></td>
</tr>
<tr>
<td>Isover KL 35</td>
<td>0,30</td>
<td>0,035</td>
<td>8,57</td>
<td>91,60</td>
<td>27,48</td>
<td>19,20</td>
<td>333333,33</td>
<td>50</td>
<td>50,31</td>
</tr>
<tr>
<td>Aurutõke</td>
<td>0,0002</td>
<td>1,000</td>
<td>0,00</td>
<td>0,00</td>
<td>19,20</td>
<td>0,00</td>
<td>2225</td>
<td>50,61</td>
<td></td>
</tr>
<tr>
<td>2X Kipsplaat</td>
<td>0,03</td>
<td>0,25</td>
<td>0,12</td>
<td>1,28</td>
<td>19,58</td>
<td>0,3</td>
<td>2279</td>
<td>50,31</td>
<td></td>
</tr>
<tr>
<td>Sisepind</td>
<td>0,13</td>
<td>1,39</td>
<td>0,42</td>
<td>19,36</td>
<td>9,36</td>
<td>100,00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kus:

- d – materjali kihi paksus, m;
- λ – soojuserijuhtivus, W/mK;
- R – materjalikihi soojatakistus, m^2K/W;
- Δ t – temperatuuridiferents, K;
- μ – difusioonitakistuskonstant;
- S_d – aurutakistus, (S_d=μ·d), m;
- P_teg – tegelik veeauru rõhk, Pa;
- P_max – küllastusrõhk, Pa.
Joonisel 4.5. on esitletud tegeliku veearu rõhu ja küllastusrõhu graafikud. Joonte lõikumisel esineb veearu kondenseerumine. Kuna sirged graafikul ei ristu, võib järeldada, et veearu kondenseerumist piirdes ei teki ja piire on niiskustehniliselt toimiv.

Joonis 4.5. Veearu tegeliku osarõhu ja küllastusrõhu graafikud

4.3.3. Katusekonstruktsiooni kogusoojustakistuse leidmine

Soojuslikult mittehomogeense piirdetarindi kogusoojustakistus leidmisel on lähtutud standardist EVS 908-1:2010 Hoone piirdetarindi soojuhtivuse arvutusjuhend. Osa 1: Välisõhuga kontaktis olev läbipaistmatu piire: [16]

\[
R_T = \frac{R_T' + R_T''}{2}
\]

Kus: \(R_T\) – piirdetarindi kogusoojustakistus, \(m^2\text{K/W}\);

\(R_T'\) – mittehomogeensete kihtidega piirdetarindi kogusoojustakistuse ülemine piirväärtus, \(m^2\text{K/W}\);

\(R_T''\) – mittehomogeensete kihtidega piirdetarindi kogusoojustakistuse alumine piirväärtus, \(m^2\text{K/W}\).

Kandekonstruktsiooni (puit) sektiooni soojastakistus

\[
R_{T1} = 0.13 + \frac{0.013 + 0.2 + 0.1}{0.15} + 0.16 + \frac{0.03}{0.25} + 0.13 = 2.627
\]
Soojustuse sektsiioni soojustakistus

\[R_{T2} = 0,13 + \frac{0,013}{0,032} + 0,3 \frac{0,03}{0,035} + 0,16 \frac{0,03}{0,25} + 0,13 = 9,53 \]

Kogusoojustakistuse ülemine piirväärtsus

Kogusoojustakistuse ülemine piirväärtsus leitakse vastavalt valemile:

\[R'_{T} = \frac{A_{a} + A_{b} + \ldots + A_{n}}{R_{T_{a}} + R_{T_{b}} + \ldots + R_{T_{n}}} \]

Kus:
A_{a} ... A_{n} – piirde üksikute sektsooni osapindalad (osakaalud), m^{2};
R_{T_{a}} ... R_{T_{n}} – piirde üksikute sektsooni soojustakistused, m^{2}K/W.

Kogusoojustakistuse ülemine piirväärtsus vastavalt valemile (8).

\[R'_{T} = \frac{0,025 + 0,55 + 0,025}{(0,025) + (9,53) + (0,025)} = 7,811 \]

Mittehomogeense materjalikihi soojustakistus

Materjalikihi soojustakistus leitakse vastavalt valemile:

\[R_{x} = \frac{A_{xa} + A_{xb} + \ldots + A_{xn}}{R_{xa} + R_{xb} + \ldots + R_{xn}} \]

Kus:
R_{x} – iga kihi soojustakistus, mis arvutatakse soojuslikult homogeensena või mittehomogeensena, m^{2}K/W;
A_{xa} ... A_{xn} – mittehomogeense kihi üksikute osade pindalad (osakaalud), m^{2};
R_{xa} ... R_{xn} – mittehomogeense kihi üksikute osade soojustakistused, m^{2}K/W.

Mittehomogeense materjalikihi soojustakistus leitakse vastavalt valemile (9).

\[R_{puut.soojustus} = \frac{0,025 + 0,55 + 0,025}{\frac{0,200}{0,15} + \frac{0,200}{0,035} + \frac{0,200}{0,15}} = 4,486 \]

\[R_{puut.taulitõke} = \frac{0,025 + 0,55 + 0,025}{\frac{0,013}{0,15} + \frac{0,013}{0,035} + \frac{0,013}{0,15}} = 0,292 \]
Kogusoojustakistuse alumine piirväärtus alamist

Kogusoojustakistuse alumine piirväärtus arvutatakse piirdetarindi pinnaga paralleelselt olevate kihtide ühemõõtmeliste soojusvoogude summana valemist:

\[R''_T = R_{si} + R_1 + R_2 + \cdots + R_n + R_{se} \] \hspace{1cm} (10)

Kus: \(R''_T \) – kogusoojustakistuse alumine piirväärtus, m²K/W;

\(R_{si} \) – piirde sisepinna soojusvoogude summa, m²K/W;

\(R_1; R_x; R_n \) – iga kihi soojusvoogude summa, mis arvutatakse soojuslikult homogeensena või mitte homogeensena, m²K/W;

\(R_{se} \) – välispinna soojusvoogude summa, m²K/W.

Piirdetarindi kogusoojustakistuse alumine piirväärtus vastavalt valemile (10)

\[R''_T = 0,13 + R_{puit,soojustus} + R_{puit,tuuletõke} + \frac{0,1}{0,035} + 0,16 + \frac{0,03}{0,25} + 0,13 = 8,175 \]

Piirdetarindi kogusoojustakistus vastavalt valemile (7)

\[R_T = \frac{7,811 + 8,175}{2} = 7,993 \]

Maksimaalne suhteline arvutusviga

\[e = \frac{R'_T - R''_T}{2 \cdot R_T} \cdot 100\% = \frac{7,811 - 8,175}{2 \cdot 7,993} \cdot 100 = -2,27\% \]

Piirdetarindi soojusjuhtivus e. U-väärtus

\[U = \frac{1}{R_T} = \frac{1}{7,993} = 0,125 \]

U-väärtus vastab Energiatõhususe miinimumnõuetes toodud soovituslikele väärtustele. [17]
4.4. Joonkoormused

Normaalolukoraks loetakse sarikaid (SN), mille samm on 600 mm ning mille kohal ei esine lume kuhjumist.

Kriitiliseks olukoraks loetakse sarikaid (SK), mis paiknevad tulemüüri poolses otsas, kuna seal esineb lume kuhjumine tulemüüri taha. Kõige kriitilisema sildega sarika puhul on sarikate samm Laboratooriumi tänava poolse katuse külje räästal 1200 mm ning harjal 600 mm. Hoovi poolse katuse külje sarikate sammu võib võrdseks võtta 600 mm-ga.

- **Lumekoormus normaalolukorras (SN)**
 \[q_{\text{tumi1}} = s_1 \cdot s = 1,2 \cdot 0,6 = 0,72 \, kN/m \]

- **Lumekoormus Laboratooriumi tänava poolsel küljel kriitilises rõikis räästal (SK)**
 \[q_{\text{tumi2r}} = s_{2r} \cdot s = 3,0 \cdot 1,2 = 3,6 \, kN/m \]

- **Lumekoormus Laboratooriumi tänava poolsel küljel kriitilises rõikis harjal (SK)**
 \[q_{\text{tumi2h}} = s_{2h} \cdot s = 1,08 \cdot 0,6 = 0,648 \, kN/m \]

- **Lumekoormus hoovi poolsel küljel kriitilises rõikis harjal (SK)**
 \[q_{\text{tumi3h}} = s_{2h} \cdot s = 1,08 \cdot 0,6 = 0,648 \, kN/m \]

- **Lumekoormus hoovi poolsel küljel kriitilises rõikis räästal (SK)**
 \[q_{\text{tumi3r}} = s_{2r} \cdot s = 3,0 \cdot 0,6 = 1,8 \, kN/m \]

- **Tuulekoormus normaalolukorras (SN)**

 Tuul hoovi poolt:

 Tsoonid F ja G: \[q_{dw}^+ = q_{dw+}^+ \cdot s = 0,228 \cdot 0,6 = 0,137 \, kN/m \]
 Tsoon H: \[q_{dw}^+ = q_{dw+}^+ \cdot s = 0,137 \cdot 0,6 = 0,082 \, kN/m \]
 Tsoon I: \[q_{dw}^- = q_{dw-}^- \cdot s = -0,13 \cdot 0,6 = -0,078 \, kN/m \]
 Tsoon J: \[q_{dw}^- = q_{dw-}^- \cdot s = -0,25 \cdot 0,6 = -0,15 \, kN/m \]

 Tuul Laboratooriumi tänava poolt:

 Tsoonid F ja G: \[q_{dw}^+ = q_{dw+}^+ \cdot s = 0,141 \cdot 0,6 = 0,085 \, kN/m \]
 Tsoon H: \[q_{dw}^+ = q_{dw+}^+ \cdot s = 0,095 \cdot 0,6 = 0,057 \, kN/m \]
Tsoon I: \[q_{d\text{w}} = q^{+}_{d\text{w}} \cdot s = -0,123 \cdot 0,6 = -0,0738 \text{ kN/m} \]
Tsoon J: \[q_{d\text{w}} = q^{-}_{d\text{w}} \cdot s = -0,156 \cdot 0,6 = -0,094 \text{ kN/m} \]

- **Tuulekoormus kriitilises olukorras (SK)**

Tuul hoovi poolt:

Tsoonid F ja G: \[q^{+}_{d\text{w}} = q^{+}_{d\text{w}} \cdot s = 0,228 \cdot 0,6 = 0,137 \text{ kN/m} \]
Tsoon H: \[q^{+}_{d\text{w}} = q^{+}_{d\text{w}} \cdot s = 0,137 \cdot 0,6 = 0,082 \text{ kN/m} \]
Tsoon I: \[q_{d\text{w}} = q^{-}_{d\text{w}} \cdot s = -0,13 \cdot 1,2 = -0,156 \text{ kN/m} \]
Tsoon J: \[q_{d\text{w}} = q^{-}_{d\text{w}} \cdot s = -0,25 \cdot 0,6 = -0,15 \text{ kN/m} \]

Tuul Laboratooriumi tänava poolt:

Tsoonid F ja G: \[q^{+}_{d\text{w}} = q^{+}_{d\text{w}} \cdot s = 0,141 \cdot 1,2 = 0,169 \text{ kN/m} \]
Tsoon H: \[q^{+}_{d\text{w}} = q^{+}_{d\text{w}} \cdot s = 0,095 \cdot 0,6 = 0,057 \text{ kN/m} \]
Tsoon I: \[q_{d\text{w}} = q^{-}_{d\text{w}} \cdot s = -0,123 \cdot 0,6 = -0,0738 \text{ kN/m} \]
Tsoon J: \[q_{d\text{w}} = q^{-}_{d\text{w}} \cdot s = -0,156 \cdot 0,6 = -0,094 \text{ kN/m} \]

- **Konstruktsiooni omakaal normaalolukorras (SN)**

\[G_{\text{katus},N} = 0,7 \cdot 0,6 = 0,42 \text{ kN/m} \]

- **Konstruktsiooni omakaal kriitilises lõikes Laboratooriumi tänava poolsel küljel räästal (SK)**

\[G_{\text{katus},lr} = 1,2 \cdot 0,7 = 0,84 \text{ kN/m} \]

- **Konstruktsiooni omakaal kriitilises lõikes Laboratooriumi tänava poolsel küljel harjal (SK)**

\[G_{\text{katus},lh} = 0,6 \cdot 0,7 = 0,42 \text{ kN/m} \]

- **Konstruktsiooni omakaal kriitilises lõikes hoovi poolsel küljel (SK)**

\[G_{\text{katus},H} = 0,6 \cdot 0,7 = 0,42 \text{ kN/m} \]
4.5. Koormuskombinatsioonid ja sisejõudude epüürid kriitilises lõikes

4.5.1. Kandepiirseundikombinatsioonid

1) Maksimaalne lumekoormus + tuul hoovi poolt

\[1,2 \cdot G_{katus} + 1,5 \cdot Q_{tumi} + 0,6 \cdot 1,5 \cdot Q_{tuul} \]

Joonistel 4.6.; 4.7. ja 4.8. on välja toodud sarika kriitilise lõike esimese koormuskombinatsiooni sisejõud ja toereaktsioonid.
Joonis 4.6. Põikjõu epüür ja toereaktsioonid (kN)

Joonis 4.7. Pikijõu epüür (kN)

Joonis 4.8. Paindemomendi epüür (kNm)
2) Maksimaalne lumekoormus + tuul Laboratooriumi tänava poolt

\[1,2 \cdot G_{katus} + 1,5 \cdot Q_{tumi} + 0,6 \cdot 1,5 \cdot Q_{tuul} \]

Joonistel 4.9.; 4.10. ja 4.11. on välja toodud sarika kriitilise lõike teise kandepiirseisundi koormuskombinatsiooni sisejõud ja toereaktsioonid.

Joonis 4.9. Põikjõu epüür ja toereaktsioonid (kN)

Joonis 4.10. Pikijõu epüür (kN)
Joonis 4.11. Paindemomendi epüür (kNm)

3) Tuul hoovi poolt (domineeriv)

\[
1,2 \cdot G_{katus} + 0,5 \cdot 1,5 \cdot Q_{tuml} + 1,5 \cdot Q_{tuul}
\]

Joonis 4.12. Põikjõu epüür ja toereaktsioonid (kN)
4) Tuul Laboratooriumi tänav poolt (domineeriv)

\[1,2 \cdot G_{katus} + 0,5 \cdot 1,5 \cdot Q_{tumi} + 1,5 \cdot Q_{tuul} \]

Joonistel 4.15.; 4.16. ja 4.17. on välja toodud sarika kriitilise lõike neljanda kandepiiriseisundi koormuskombinatsiooni sisejõud ja toereaktsioonid.
Joonis 4.15. Põikjõu epüür ja toereaktsioonid (kN)

Joonis 4.16. Pikijõu epüür (kN)

Joonis 4.17. Paindemomendi epüür (kNm)
5) Täis lumi hoovi pool + pool lund Laboratooriumi tänava pool + tuul hoovi poolt

\[1,2 \cdot G_{katus} + 1,5 \cdot Q_{tumi} + 0,5 \cdot 1,5 \cdot Q_{tumi} + 0,6 \cdot 1,5 \cdot Q_{tuul} \]

Joonistel 4.18.; 4.19. ja 4.20. on välja toodud sarika kriitilise lõike viienda kandepeirseisundi koormuskombinatsiooni sisejõud ja toereaksioonid.

Joonis 4.18. Põikjõu epüür ja toereaksioonid (kN)

Joonis 4.19. Pikijõu epüür (kN)
Joonis 4.20. Paindemomendi epūr (kNm)

6) Täis lumi Laboratooriumi tänava pool + pool lund hoovi pool + tuul Laboratooriumi tänava poolt

\[1,2 \cdot G_{katus} + 1,5 \cdot Q_{lume} + 0,5 \cdot 1,5 \cdot Q_{lume} + 0,6 \cdot 1,5 \cdot Q_{tuul} \]

Joonistel 4.21.; 4.22. ja 4.23. on välja toodud sarika kriitilise lõike kuuenda kandepiirseisundi koormuskombinatsiooni sisejõud ja toereaktsioonid.

Joonis 4.21. Põikjõu epūr ja toereaktsioonid (kN)
4.5.2. Kasutuspiirseisundi (Normkombinatsioon) koormuskombinatsioonid

Kasutuspiirseisundis on leitud sisejõud nelja erineva koormuskombinatsiooni puhul, lähtudes valgemist (3). Esimese kahe kombinatsiooni puhul arvestatakse lund domineerivalt ning tuulekoormust kas ühel pool katust või teisel pool katust. Kahes viimases kombinatsioonis on domineerivaks muutuvkoormuseks tuul ühele katuse küljele ja seejärel teisele katuse küljele.

1) Lumi (domineeriv) + tuul hoovi poolt

\[G_{katus} + Q_{lumi} + 0.6 \cdot Q_{tuul} \]

2) Lumi (domineeriv) + tuul Laboratooriumi tänava poolt

\[G_{katus} + Q_{lumi} + 0.6 \cdot Q_{tuul} \]

3) Tuul (domineeriv) hoovit poolt + lumi

\[G_{katus} + 0.5 \cdot Q_{lumi} + Q_{tuul} \]
4) Tuul Laboratooriumi (domineeriv) tänava poolt + lumi

\[G_{katu} + 0.5 \cdot Q_{lumi} + Q_{tuul} \]

4.6. Sarikate kandevõime arvutus

- **Osavarutegur** saepuidule - \(\gamma_M = 1,30 \)
- **Modifikatsioonitegur** - \(k_{mod} = 0,9 \)
- **Normatiivne surve tugevus pikikiudu** - \(f_{c,90,k} = 21 \, N/mm^2 \)
- **Normatiivne surve tugevus ristikiudu** - \(f_{c,90,k} = 2,5 \, N/mm^2 \)
- **Normatiivne nihk tugevus** - \(f_{v,g,k} = 4,0 \, N/mm^2 \)
- **Normatiivne paindetugevus** - \(f_{m,g,k} = 24 \, N/mm^2 \)
- **Tihedus** - \(\rho_{g,k} = 420 \, kg/m^3 \)
- **Elastsusmoodul** - \(E_{0,05} = 7400 \, N/mm^2 \)

Liidete valmistamiseks kasutatakse kruvisid 6mm ja polte M8 (4.6):

- **Polttiite tugevuse osavarutegur** - \(\gamma_{M,kinmitt} = 1,25 \)
Poldi tömbetugevus - $f_{ub(4,6)} = 400 \, N/mm^2$

Kruvi tömbetugevus - $f_u = 600 \, N/mm^2$

Joonisel 4.24. on illustratiivne sarikate plaan, kus punasega on välja toodud kriitilises lõikes asetsevad sarikad. Lisaks on hoone keskel rohelisega märgitud vana säilitatav toolvärk ning sinisega uued toolvärgid.

![Joonis 4.24. Hoone sarikate plaan](image)

4.6.1. Nõrgestatud ristlöike kandepiirseisundi tömbekandevõime pikikiudu koos paindega kriitilises lõikes

Määrvaks saab kuues kandepiirseisundi koormuskombinatsioon (joonis 4.22. ja jonis 4.23.), mille puhul esineb maksimaalne lumekoormus Laboratooriumi tänava poolsel küljel, hoovi poolsel küljel esineb pool maksimaalsest lumekoormuse väärusest ning tuul puhub Laboratooriumi tänava poolt. Sellisel juhul on toel (sarika nõrgestatud ristlöige) suurim painemomendi väärus. Sarika ristlöike kontroll tehakse vastavalt valemile: [18, lk. 39]
\[
\frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} \leq 1 \quad (11)
\]
Kus: \(\sigma_{t,0,d} \) – arvutusliku tõmbepinge väärtus pikikiudu, N/mm\(^2\);
\(f_{t,0,d} \) – arvutusliku tõmbetugevuse väärtus pikikiudu, N/mm\(^2\);
\(\sigma_{m,y,d} \) – arvutusliku paindepinge väärtus y-telje suhtes, N/mm\(^2\);
\(f_{m,y,d} \) – arvutusliku paindetugevuse väärtus y-telje suhtes, N/mm\(^2\).

Tsentrilise tõmbejõu arvutusväärtsus

\[N_{t,sd} = 2,53 \, kN \]

Arvutuslik paindemoment

\[M_{sd} = 3,06 \, kNm \]

Arvutuslik paindetugevus vastavalt avaldisele (4)

\[f_{m,y,d} = 0,9 \cdot \frac{24}{1,3} = 16,6 \, N/mm^2 \]

Arvutuslik tõmbetugevus pikikiudu vastavalt avaldisele (4)

\[f_{t,0,d} = 0,9 \cdot \frac{14}{1,3} = 9,69 \, N/mm^2 \]

Nõrgestatud netoristlõike pindala

Kriitiliseks saab ristlõige, mis on nõrgestatud tapiga, mille kõrgeim mõõde ristlõikes on 37,5 mm. Lisaks on ristlõige nõrgestatud kahe 6 mm kruviga, millest ühe võib välja jätta, kuna see asetseb samas kõrgustasapinnas nõrgestusega.

\[A_{net} = (200 - 37,5 - 6) \cdot 50 = 7825 \, mm^2 \]

Nõrgestatud ristlõike inertsimoment

\[I_{y,ef} = \frac{50 \cdot 200^3}{12} - \frac{50 \cdot 37,5^3}{12} - 50 \cdot 37,5 \cdot 81,25^2 - \frac{50 \cdot 6^3}{12} - 50 \cdot 37,5 \cdot 11^2 \]
\[= 20510000 \, mm^4 \]

Nõrgestatud ristlõike vastupanumoment

Nõrgestatud ristlõike vastupanumoment inertsimomendi ja ristlõike lokaalteljestikust \(y_e \) ekstreemsel kaugusel oleva punkti jagatise kaudu.
Nõrgestatud ristlõike vastupanumoment lihtsustatud avaldise kaudu, mille puhul on nõrgestuste kõrgeused ristlõike kõrgusest maha lahutatud.

\[W_{y,ef} = \frac{50 \cdot (200 - 37.5 - 6)^2}{6} = 204100 \text{ mm}^3 \]

Arvutustes kasutatakse lihtsustatud meetodi abil leitud vastupanumomenti, kuna saadud tulem on tagavara kasuks.

Arvutuslik painepinge y – telje suhtes leitakse avaldisega: [6, lk. 517]

\[\sigma_{m,y,d} = \frac{M_{sd}}{W_{y,ef}} \quad \text{(12)} \]

Kus: \(M_{sd} \) – painemendi arvutusväärtus y-telje suhtes, kN·m;
\(W_{y,ef} \) – ristlõike vastupanumoment y-telje suhtes, mm³.

Arvutuslik painepinge vastavalt valemile (12)

\[\sigma_{m,y,d} = \frac{3.06 \cdot 10^6}{204100} = 14,992 \text{ N/mm}^2 \]

Arvutuslik tõmbepinge leitakse avaldisega: [6, lk. 514]

\[\sigma_{t,0,d} = \frac{F_{td}}{A} \quad \text{(13)} \]

Kus: \(F_{td} \) – tsentrilise tõmbejõu arvutusväärtus, kN;
\(A \) – netoristlõike pindala, mm².

Arvutuslik tõmbepinge pikikiudu vastavalt valemile (13)

\[\sigma_{t,0,d} = \frac{2.53 \cdot 10^3}{7825} = 0,323 \text{ N/mm}^2 \]

Tala paindekandevöime koos tõmbega pikikiudu vastavalt avaldisele (11)

\[\frac{0.323}{9,69} + \frac{14,99}{16,6} = 0.936 < 1 \]

Tala kandevöime on tagatud vastavalt tingimusele (11).
4.6.2. Nõrgestatud ristlöike kandepiirseisundi survekandevöime pikikiudu koos paindega kriitilises lõikes

Määravaks saab kuues kandepiirseisundi koormuskombinatsioon (joonis 4.22. ja joonis 4.23.), mille puhul esineb maksimaalne lumekoormus Laboratooriumi tänava poolsel külgel, hoovi poolsel külgel esineb pool maksimaalsest lumekoormuse väärtusest ning tuul puhub Laboratooriumi tänava poolt. Sellisel juhul on toel (sarika nõrgestatud ristlöige) suurim paindemomendi väärtus. Sarika ristlöike kontroll tehakse vastavalt valemile: [18, lk. 40]

\[
\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}} \right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} \leq 1 \quad (14)
\]

Kus: \(\sigma_{c,0,d} \) – arvutuslik survepinge väärtus pikikiudu, N/mm\(^2\);
\(f_{c,0,d} \) – arvutuslik survetugevuse väärtus pikikiudu, N/mm\(^2\);
\(\sigma_{m,y,d} \) – arvutuslik paindepinge väärtus y-telje suhtes, N/mm\(^2\);
\(f_{m,y,d} \) – arvutuslik paindetugevuse väärtus y-telje suhtes, N/mm\(^2\).

Arvutuslik survejõud pikikiudu

\[N_{c,sd} = 3,25 \text{ kN} \]

Arvutuslik paindemoment

\[M_{sd} = 2,81 \text{ kNm} \]

Arvutuslik paindetugevus vastavalt avaldisele (4)

\[f_{m,y,d} = 0,9 \cdot \frac{24}{1,3} = 16,6 \text{ N/mm}^2 \]

Arvutuslik survetugevus pikikiudu vastavalt avaldisele (4)

\[f_{c,0,d} = 0,9 \cdot \frac{21}{1,3} = 14,54 \text{ N/mm}^2 \]

Nõrgestatud netoristlöike pindala

\[A_{net} = (200 - 37,5 - 6) \cdot 50 = 7825 \text{ mm}^2 \]

Nõrgestatud ristlöike vastupanumoment

Kriitiliseks saab ristlöige, mis on nõrgestatud tapiga, mille kõrgeim mõõde ristlöikes on 37,5 mm. Lisaks on ristlöige nõrgestatud kahe 6 mm kruviga, millest ühe võib välja jätta,
kuna see asetseb samas kõrgustasapinnas nõrgestusega. Nõrgestatud ristlöike vastupanumoment lihtsustatud avaldise kaudu, mille puhul on nõrgestuste kõrgused ristlöike kõrgusest maha lahusatud.

\[W_{y,ef} = \frac{50 \cdot (200 - 37,5 - 6)^2}{6} = 204100 \text{ mm}^3 \]

Arvutustes kasutatakse lihtsustatud avaldise kaudu, mille puhul on nõrgestuste kõrgused ristlöike kõrgusest maha lahutatud.

Arvutuslik paindepinge vastavalt valemile (12)

\[\sigma_{m,y,d} = \frac{2,81 \cdot 10^6}{204100} = 13,768 \text{ N/mm}^2 \]

Arvutuslik survepinge leitakse avaldisega: [6, lk. 514]

\[\sigma_{c,d} = \frac{F_{cd}}{A_{net}} \tag{15} \]

Kus: \(F_{cd} \) – tsentrilise survejõu arvutusväärtus, kN;
\(A_{net} \) – netoristlõike pindala, mm².

Arvutuslik survepinge pikikiudu vastavalt avaldisele (15)

\[\sigma_{c,0,d} = \frac{3,25 \cdot 10^3}{7825} = 0,415 \text{ N/mm}^2 \]

Tala paindekandevöime koos survega pikikiudu vastavalt avaldisele (14)

\[\left(\frac{0,415}{14,5} \right)^2 + \frac{13,768}{16,6} = 0,829 < 1 \]

Tala kandevöime on tagatud vastavalt avaldisele (14).

4.6.3. Nõtke kandepiireseisundis

Mää ravaks saab teine kandepiireseisundi koormuskombinatsioon (joonis 4.10. ja joonis 4.11.), mille puhul esineb katusel maksimaalne lumekoormus ning tuul puhub Laboratooriumi tänavalt poolt, kuna sellisel juhul esineb avas suurim paindemoment. Sarika nõtkumist kontrollitakse vastavalt valemile: [18, lk. 40-41]

\[\frac{\sigma_{c,0,d}}{k_{c,y}f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} \leq 1 \tag{16} \]
Kus: \(\sigma_{c,0,d} \) – arvutusliku survepinge väärtus pikikiudu, N/mm\(^2\);

\(k_{c,y} \) – nõtketegur;

\(f_{c,0,d} \) – arvutusliku surveugevuse väärtus pikikiudu, N/mm\(^2\);

\(\sigma_{m,y,d} \) – arvutusliku paindepinge väärtus y-telje suhtes, N/mm\(^2\);

\(f_{m,y,d} \) – arvutusliku paindetugevuse väärtus y-telje suhtes, N/mm\(^2\).

Arvutuslik paindetugevus vastavalt avaldisele (4)

\[
f_{m,y,d} = 0,9 \cdot \frac{24}{1,3} = 16,6 \text{ N/mm}^2
\]

Arvutuslik surveugevus pikikiudu vastavalt avaldisele (4)

\[
f_{c,0,d} = 0,9 \cdot \frac{21}{1,3} = 14,5 \text{ N/mm}^2
\]

Suhteline saledus

\[
l = l_{ef} = 3,2 \text{ m}
\]

Terve ristlöike inertsimoment

\[
l_y = \frac{a \cdot b^3}{12} = \frac{50 \cdot 200^3}{12} = 33333333,33 \text{ mm}^4
\]

Terve ristlöike pindala

\[
A = a \cdot b = 50 \cdot 200 = 10000 \text{ mm}^2
\]

Terve ristlöike inertsiraadius

\[
i_y = \sqrt{\frac{l_y}{A}} = \sqrt{\frac{33333333,33}{10000}} = 57,7 \text{ mm}
\]

Paindesaledus

\[
\lambda_y = \frac{l_{ef,y}}{i_y} = \frac{3200}{57,7} = 55,46
\]

Suhteline saledus

\[
\lambda_{rel,y} = \frac{\lambda_y}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,05}}} = \frac{55,46}{\pi} \cdot \sqrt{\frac{21}{7400}} = 0,94
\]

55
\[\lambda_{rel,y} > 0,3 \]

Nõtketegur \(k_{c,y} \) leidmine

\[\beta_c = 0,2 \]

\[k_y = 0,5 \cdot [1 + \beta_c (\lambda_{rel,y} - 0,3) + \lambda_{rel,y}^2] = 0,5 \cdot [1 + 0,2(0,94 - 0,3) + 0,94^2] = 1,006 \]

\[k_{c,y} = \frac{1}{k_y + \sqrt{k_y^2 + \lambda_{rel,y}^2}} = \frac{1}{1,006 + \sqrt{1,006^2 + 0,94^2}} = 0,733 \]

Terve ristlöike vastupanumoment

\[W_y = \frac{h^2 \cdot b}{6} = \frac{200^2 \cdot 50}{6} = 333333,33 \text{mm}^3 \]

Arvutuslik paindmoment avas

\[M_{sd} = 3,03 \text{kNm} \]

Arvutuslik paindepinge vastavalt valemile (6)

\[\sigma_{m,y,d} = \frac{3,03 \cdot 10^6}{333333,33} = 9,09 \text{N/mm}^2 \]

Arvutuslik tsentriline survejõud pikikiudu

\[N_{sd} = 0,13 \text{kN} \]

Arvutuslik survepinge vastavalt valemile (15)

\[\sigma_{c,0,d} = \frac{0,13 \cdot 10^3}{10000} = 0,013 \text{N/mm}^2 \]

Tala nõtkumise kandevõime vastavalt valemile (16)

\[\frac{0,013}{0,733 \cdot 14,5} + \frac{9,09}{16,6} = 0,548 < 1 \]

Vastavalt avaldisele (16) on nõtkumine välistatud.

4.6.4. Nihkekandevöime kandepiirseisundis

Määrevaks saab teine kandepiirseisundi koormuskombinatsioon (joonis 4.9.), mille puhul esineb maksimaalne lumekoormus Laboratooriumi tänava poolsel küljel, hoovi poolsel küljel esineb pool maksimaalsest lumekoormuse väärtusest ning tuul puhub
Laboratooriumi tänava poolt. Sellisel juhul esineb toel (tala nõrgestatud ristlõige) suurim põikjõu väärtus. Sarika ristlõike kontroll tehakse vastavalt valemile: [18, lk. 49-50]

\[
\tau_d = \frac{1.5 V_d}{b h_{ef}} \leq k_v \cdot f_{v,d}
\]

(17)

Kus: \(\tau_d\) – arvutuslik nihkepinge, N/mm\(^2\);

\(V_d\) – põikjõu arvutusväärtus, kN;

\(b\) – ristlõike laius, m;

\(h_{ef}\) – tala ristlõike kõrgus sisselõike kohal, m;

\(k_v\) – sisslõike kujust sõltuv vähendustegur;

\(f_{v,d}\) – nihketugevuse arvutusväärtus, N/mm\(^2\).

Arvutuslik nihketugevus vastavalt valemile (4)

\[
f_{v,d} = 0.9 \cdot \frac{4}{1.3} = 2.77 \text{ N/mm}^2
\]

Tala kõrgus

\[h = 200 \text{ mm}\]

Tala kõrgus sisselõike kohal

\[h_{ef} = 200 - 37.5 - 6 = 156.5 \text{ mm}\]

Tala laius

\[b = 50 \text{ mm}\]

Põikjõu rakenduspunkt kaugus sisselõike servast

\[x = 50 \text{ mm}\]

\[\alpha = \frac{h_{ef}}{h} = \frac{0.1565}{0.2} = 0.782\]

Sisselõike kalle

\[\varepsilon = 22^\circ\]

\[i = \tan \varepsilon = \tan(22^\circ) = 0.404\]

\[k_n = 5.0\]
Tegur k_v

\[
k_v = \min \left\{ \sqrt{\frac{\alpha}{(1 - \alpha) + 0,8 \cdot \frac{x}{h} \sqrt{\frac{1}{\alpha} - \alpha^2}}} \right\}
\]

\[
k_v = \frac{k_n \left(1 + \frac{1,1 \cdot i^{1,5}}{\sqrt{h}} \right)}{\sqrt{\alpha (1 - \alpha) + 0,8 \cdot \frac{x}{h} \sqrt{\frac{1}{\alpha} - \alpha^2}}}
\]

\[
k_v = \frac{5 \left(1 + \frac{1,1 \cdot 0,404^{1,5}}{\sqrt{200}} \right)}{\sqrt{200 \left(0,782(1 - 0,782) + 0,8 \cdot \frac{50}{200} \cdot \sqrt{\frac{1}{0,782} - 0,782^2} \right)}} = 0,626
\]

Põjkjõu arvutusväärtus

\[
V_{sd} = 7,87 \text{ kN}
\]

Nihkekandevõime kontroll vastavalt valemile (17)

\[
\tau_d = \frac{1,5 \cdot 7,87 \cdot 10^3}{50 \cdot 156,5} = 1,509 \text{ N/mm}^2
\]

\[
k_v \cdot f_{v,d} = 0,626 \cdot 2,77 = 1,735 \text{ N/mm}^2
\]

\[
\tau_d = 1,509 \leq 1,735
\]

Nihkekandevõime on tagatud vastavalt tingimusele (17).

4.6.5. Kandepiiriseundisurve kandevõime kiudude suhtes nurga all (muljumine)

Suurim toereaktsioon esineb teises kandepiiriseundis koormuskombinatsioonis (joonis 4.9.), mille puhul esineb maksimaalne lumekoormus Laboratooriumi tänava poolsel küljel, hoovi poolsel küljel esineb pool maksimaalsest lumekoormuse väärtusest ning tuul puhub Laboratooriumi tänava poolt. Sarika ristlõike kontroll tehakse vastavalt valemile: [18, lk. 39]

\[
\sigma_{c,\alpha,d} \leq \frac{f_{c,d}}{\sqrt{\frac{f_{c,90,d}}{k_{c,90,d} \sin^2 \alpha + \cos^2 \alpha}}} \quad (18)
\]

Kus: $\sigma_{c,\alpha,d}$ – arvutuslik survepinge kiudude suhtes nurga α all, N/mm2;

58
\[f_{c,0,d} - \text{arvutuslik survegevus pikikiudu, N/mm}^2; \]
\[f_{c,90,d} - \text{arvutuslik survegevus ristikiudu, N/mm}^2; \]
\[k_{c,90} - \text{tegur, mis arvestab ristikiudu pingete mõju.} \]

Survejõu ning sarika kiudude suuna vahelise nurga suurus on 68°.
\[\alpha = 68^\circ \]

Teguri \(k_{c,90}\) valik

Tegemist on kohttoega ning materjaliks on okaspuit (saepuit).

\[l = 100 \, \text{mm} \]
\[l_1 = 3200 \, \text{mm} \]
\[2 \cdot h = 2 \cdot 200 = 400 \, \text{mm} \]
\[l_1 > 2h \]

Seega tegur \(k_{c,90}\):
\[k_{c,90} = 1,5 \]

Arvutuslik toereaktsioon toel

\[F_{s,d} = 14,57 \, kN \]

Toetuspinna pikkus

\[h_{ef} = 100 \, \text{mm} \]

Arvutuslik survegevus pikikiudu vastavalt valemile (4)

\[f_{c,0,d} = 0,9 \cdot \frac{21}{1,3} = 14,54 \, N/mm^2 \]

Arvutuslik survegevus ristikiudu vastavalt valemile (4)

\[f_{c,90,d} = 0,9 \cdot \frac{2,5}{1,3} = 1,73 \, N/mm^2 \]

Arvutuslik survepinge kiudude suhtes nurga all \(\alpha\) vastavalt valemile (15)

\[\sigma_{c,a,d} = \frac{14,57 \cdot 10^3}{100 \cdot 50} = 2,914 \, N/mm^2 \]
Kiudude suhtes nurga α all möjuv survepinge peab rahuldama tingimust (18)

\[\sigma_{c,a,d} \leq \frac{14,54}{1,5 \cdot 1,73 \cdot \sin^2 68^\circ + \cos^2 68^\circ} = 3,087 \]

\[2,914 < 3,087 \]

Vastavalt avaldisele (18) on survekandevõime tagatud.

4.6.6. Sarikate piirläbipainde kontroll kasutuspiirseisundis

Sarikate piirläbipaindeid kontrollitakse teises kasutuspiirseisundi juhtumis, mille puhul on domineerivaks mututuvkoormuseks lumekoormus ning tuul esineb Laboratooriumi tänava poolt. Piirläbipainet kontrollitakse sarika suurima silde kohal, mis paikneb Laboratooriumi tänava poolses katuse külgis ning jääb vana säilitatava ning uue toolvärgi vahele, mille puhul on sildeava pikkuseks 3200 mm. Algdeformatsioonide väärtused saadakse Autodesk Robot Structural Analysis Professional arvutusskeemist. Lõplik deformatsioon leitakse vastavalt valemile: [14, lk. 20]

\[u_{fin} = u_{fin,G} + u_{fin,Q_1} + \sum u_{fin,Q_i} \] (19)

Kus:
\[u_{fin,G} \] – lõplik läbipaine alalise koormuse G korral, cm;
\[u_{fin,Q_1} \] – lõplik läbipaine domineeriva muutuvkoormuse Q_1 korral, cm;
\[u_{fin,Q_i} \] – lõplik läbipaine muude muutivate koormuste Q_i korral, cm.

Teguri k_{def} määramine [18, lk. 29]

Kuna tegemist on kasutusklassiga 2 ning saepuiduga, siis:

\[k_{def} = 0,8 \]

Lõplik läbipaine alalise koormuse korral

\[u_{inst, G} = 0,1 \text{ cm} \]

\[u_{fin,G} = u_{inst,G}(1 + k_{def}) = 0,1 \cdot (1 + 0,8) = 0,18 \text{ cm} \]
Lõplik läbipaine domineeriva muutuvkoormuse korral (lumekoormus Laboaratooriumi tänavas)

\[u_{\text{inst},Q_1} = 0,3 \text{ cm} \]

\[u_{\text{fin},Q_1} = u_{\text{inst},Q_1}(1 + \psi_{2,1}k_{\text{def}}) = 0,3 \cdot (1 + 0,8) = 0,3 \text{ cm} \]

Lõplik läbipaine domineeriva muutuvkoormuse korral (lumekoormus hoovis)

\[u_{\text{inst},Q_1} = -0,1 \text{ cm} \]

\[u_{\text{fin},Q_1} = u_{\text{inst},Q_1}(1 + \psi_{2,1}k_{\text{def}}) = (-0,1) \cdot (1 + 0,8) = -0,1 \text{ cm} \]

Lõplik läbipaine mittedomineeriva muutuvkoormuse korral (tuul Laboratooriumi tänavas)

\[u_{\text{inst},Q_1} = 0,1 \text{ cm} \]

\[u_{\text{fin},Q_1} = u_{\text{inst},Q_1}(\psi_{0,1} + \psi_{2,i}k_{\text{def}}) = 0,1 \cdot (0,6 + 0,8) = 0,06 \text{ cm} \]

Lõplik läbipaine valemi (19) põhjal

\[u_{\text{fin}} = 0,18 + 0,3 - 0,1 + 0,06 = 0,44 \text{ cm} \]

Lubatud lõplik tala piirläbipaine [18, lk. 53]

\[w_{\text{net,fin}} = \frac{l}{250} = \frac{320}{250} = 1,28 \text{ cm} \]

\[u_{\text{fin}} < w_{\text{net,fin}} \]

Sarika lõplik läbipaine jäeb lubatud piiridesse.

4.7. Toolvärgi kandevõime arvutus

Toolväärkide alumine võõ on 100X100 C24 saepuidust tala. Postideks on 1,2 meetrise sammuga 100X100 C24 saepuidust postid, postide kõrguseks on 1,2 meetrit. Toolväärkide ülemine võõ on 100X100 C24 saepuidust tala. Toolvärgi arvutus tehakse kriitilises lõikes, kus esineb lume kuhjumine. Juhul kui kriitilises lõikes on kandevõime tagatud, on kandevõime tagatud ka teiste toolväärkide puhul. Tulemüüri pool paiknevatele toolväärkidele mõjuvad suuremad koormused, kuna selles piirikonas on sarikatel suurem samm ning esineb lume kuhjumine.
4.7.1. Kriitilises lõikes paiknevate toolvärkide sisejõud

Laboratooriumi tänava poolne toolvärk

Joonistel 4.25.; 4.26. ja 4.27. on esitletud Laboratooriumi tänava poolse toolvärgi sisejõud ja toereaktsioonid kriitilises piirkonnas, kus esineb lume kuhjumine ning suurem sarikate samm.

Joonis 4.25. Põikjõu epüür ja toereaktsioonid (kN)

Joonis 4.26. Pikijõu epüür (kN)
Joonis 4.27. Paindemomendi epüür (kNm)

Hoovi poolne toolvärk

Joonistel 4.28., 4.29. ja 4.30. on näidatud hoovi poolse toolvärgi sisejõud ja toereaktsioonid kriitilises piirkonnas, kus esineb lume kuhjumine ning suurem sarikate samm.

Joonis 4.28. Pöökjõu epüür (kN)
Joonis 4.29. Pikijõu epüür (kN)

Joonis 4.30. Paindemomendi epüür (kNm)
4.7.2. Ülemise vöö paindekandevõime

Määrvaks saab Laboratooriumi tänava poolses toolvärgis tekkiva paindemomendi arvutusväärtus (joonis 4.27.) Ristlõike paindekandevõime leitakse vastavalt valemile: [18, lk. 37]

\[\frac{\sigma_{m,y,d}}{f_{m,y,d}} \leq 1 \quad (20) \]

Kus: \(\sigma_{m,y,d} \) – arvutuslik paindepinge, N/mm²;
\(f_{m,y,d} \) – arvutuslik paindetugevus, N/mm².

Arvutuslik paindemoment

\[M_{sd} = 2,72 \, kNm \]

Arvutuslik paindetugevus vastavalt valemile (4)

\[f_{m,y,d} = 0,9 \cdot \frac{24}{1,3} = 16,6 \, N/mm^2 \]

Ristlõike vastupanumoment

\[W_{yp} = \frac{b \cdot h^2}{6} = \frac{100 \cdot 100^2}{6} = 166666,67 \, mm^3 \]

Arvutuslik paindepinge vastavalt valemile (12)

\[\sigma_{m,y,d} = \frac{2,28 \cdot 10^6}{166666,67} = 16,32 \, N/mm^2 \]

Paindekandevõime vastavalt valemile (20)

\[\frac{16,32}{16,6} = 0,982 < 1 \]

Paindekandevõime ülemisele vööle on tagatud vastavalt valemile (20).

4.7.3. Posti kandevõime

Määrvaks saab Laboratooriumi tänava poolse toolvärgi postis esinev survejõud (joonis 4.26.). Posti survekandevõimet kontrollitakse valemile (16). Kuna paindemomenti postis ei esine, võetakse paindepinge väärtuseks valemis 0.
Arvutuslik survejõud

\[N_{sd} = 20,12 \, kN \]

Posti ristlöike pindala

\[A = a \cdot b = 100 \cdot 100 = 10000 \, mm^2 \]

Ristlöike telginertsimoment

\[I_y = \frac{b \cdot h^3}{12} = \frac{100 \cdot 100^3}{12} = 8333333,3 \, mm^4 \]

Ristlöike inertsiraadius

\[i_y = \sqrt{\frac{I_y}{A}} = \sqrt{\frac{8333333,3}{10000}} = 28,87 \, mm \]

Kuna sõlmedega momente vastu ei võeta, on posti nõtkepikkuseks \(l_{ef} = 1 \cdot 1 \).

Nõtkepikkus

\[l_{ef} = 1200 \, mm \]

Saledus

\[\lambda_y = \frac{l_{ef}}{i_y} = \frac{1200}{28,87} = 41,6 \]

Suhteline saledus

\[\lambda_{rel,y} = \frac{\lambda_y}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,95}}} = \frac{41,6}{\pi} \cdot \sqrt{\frac{21}{7400}} = 0,705 \]

\[\lambda_{rel,y} > 0,3 \]

Nõtketeguri \(k_{cy} \) leidmine

\[\beta_c = 0,2 \]

\[k_y = 0,5 \cdot [1 + \beta_c (\lambda_{rel,y} - 0,3) + \lambda_{rel,y}^2] = 0,5 \cdot [1 + 0,2(0,705 - 0,3) + 0,705^2] = 0,789 \]

\[k_{cy} = \frac{1}{k_y + \sqrt{k_y^2 + \lambda_{rel,y}^2}} = \frac{1}{0,789 + \sqrt{0,789^2 + 0,705^2}} = 0,875 \]

66
Arvutuslik survepeegel pikikiudu vastavalt valemile (4)

\[f_{c,0,d} = 0,9 \cdot \frac{21}{1,3} = 14,54 \, N/mm^2 \]

Arvutuslik survepinge pikikiudu vastavalt valemile (15)

\[\sigma_{c,0,d} = \frac{20,12 \cdot 10^3}{10000} = 2,012 \, N/mm^2 \]

Posti survekandevõime vastavalt valemile (16)

\[\frac{2,012}{0,875 \cdot 14,5} = 0,158 < 1 \]

Toolvärgi posti survekandevõime on tagatud vastavalt valemile (16).

4.7.4. Alumise vöö survekandevõime ristikiudu

Määravaks saab Laboratoriumi tänava poolses toolvärgis esinev toereaktsioon (joonis 4.25.). Alumise vöö surve kandevõimet kontrollitakse vastavalt standardile: \[[18, lk. 35-36] \]

\[\frac{\sigma_{c,90,d}}{k_{c,90} f_{c,90,d}} \leq 1 \] (21)

Kus:
\(\sigma_{c,90,d} \) – efektiivse kontaktpinna arvutuslik survepinge ristikiudu, N/mm\(^2\);

\(k_{c,90} \) – tegur, mis arvestab koormuse konfiguratsiooni, lõhestumisvõimalusi ning survedeformatsiooni taset;

\(f_{c,90,d} \) – arvutuslik survepeegel ristikiudu, N/mm\(^2\).

Teguri \(k_{c,90} \) valik

Tegemist on kohttoega ning materjaliks on okaspuit (saepuit).

\[l = 100 \, mm \]
\[l_1 = 1200 \, mm \]
\[2h = 2 \cdot 100 = 200 \, mm \]
\[l_1 > 2h \]
\[k_{c,90} = 1,5 \]
Efektiivne kontaktpiikkus

\[l_{ef} = 100 + 30 + 30 = 160 \, mm \]

Efektiivne kontaktpind

\[A_{ef} = l_{ef} \cdot b = 160 \cdot 100 = 16000 \, mm^2 \]

Arvutuslik toereaksioon

\[F_{c,d} = 20,12 \, kN \]

Efektiivse kontaktpinna arvutuslik survepinge ristikiudu vasavalt valemile (15)

\[\sigma_{c,90,d} = \frac{20,12 \cdot 10^3}{16000} = 1,258 \, N/mm^2 \]

Survetugevus ristikiudu vastavalt valemile (4)

\[f_{c,90,d} = 0,9 \cdot \frac{2,5}{1,3} = 1,731 \, N/mm^2 \]

Survekandevõime kontroll vastavalt valemile (21)

\[\frac{1,258}{1,5 \cdot 1,731} = 0,484 < 1 \]

Toolvärgi alumise võö survekandevõime on tagatud vastavalt valemile (21).

4.7.5. Nihkekandevõime

Määravaks saab Laboratoriumi tänava poolses toolvärgis esinev põikjõud (joonis 4.25.).

Nihkekandevõime kontroll tehaksee vastavalt valemile: [18, lk. 37]

\[\frac{\tau_d}{f_{v,d}} \leq 1 \quad (22) \]

Kus: \(\tau_d \) – arvutuslik nihkepinge, N/mm²;
\(f_{v,d} \) – aruvutslik nihketugevus, N/mm².

Ristlõike kõrgus

\[h = 100 \, mm \]
Ristlöike efektiivlaius

\[k_{cr} = 0,67 \]

\[b_{ef} = k_{cr} \cdot b = 0,67 \cdot 100 = 67 \text{ mm} \]

Põikjõu arvutusväärtus

\[V = 12,35 \text{ kN} \]

Nihketugevuse arvutusväärtus vastavalt valemile (4)

\[f_{v,d} = 0,9 \cdot \frac{4,0}{1,3} = 2,769 \text{ N/mm}^2 \]

Arvutuslik nihkepinge vastavalt valemile (17)

\[\tau_d = \frac{1,5 \cdot 12,35 \cdot 10^3}{67 \cdot 100} = 2,765 \text{ N/mm}^2 \]

Nihkekandevõime kontroll vastavalt valemile (22)

\[\frac{2,765}{2,769} = 0,998 < 1 \]

Toolvärgi ülemise vöö nihkekandevõime on tagatud vastavalt valemile (22).

4.7.6. Toolvärgi ülemise vöö piirläbipainde kontroll kasutuspiiriseisundis

Toolvärgi ülemise vöö piirläbipaindeid kontrollitakse teises kasutuspiiriseisundi juhtumis, mille puhul on domineerivaks muutuvkoormuseks lumekoormus Laboratooriiumi tänav poole ning tuul esineb samuti Laboratooriiumi tänav poole. Hoovi poolse katuseosa lumekoormus on jäetud arvestamata, kuna see annab tulemuse varu kasuks. Piirläbipainet kontrollitakse toolvärile, mis paikneb Laboratooriiumi tänav pool tulemüüri poolses otsas, kuna seal esineb lume kuhjumine. Toolvärgi postide samm ja seega ka ülemise vöö sille on 1200 mm. Algdeformatsioonide väärtsused saadakse Autodesk Robot Structural Analysis Professional arvutusskeemist. Lõplik deformatsioon leitakse vastavalt valemile (19).

Teguri \(k_{def} \) määramine [18, lk. 29]

Kuna tegemist on kasutusklassiga 2 ning saepuiduga, siis:

\[k_{def} = 0,8 \]
Lõplik läbipaine alalise koormuse korral

\[u_{\text{inst},G} = 0,03 \, \text{cm} \]
\[u_{\text{fin},G} = u_{\text{inst},G}(1 + k_{\text{def}}) = 0,03 \cdot (1 + 0,8) = 0,054 \, \text{cm} \]

Lõplik läbipaine domineeriva muutuvkoormuse korral (lumekoormus Laboratooriumi tänava pool)

\[u_{\text{inst},Q_1} = 0,11 \, \text{cm} \]
\[u_{\text{fin},Q_1} = u_{\text{inst},Q_1}(1 + \psi_{z,1}k_{\text{def}}) = 0,11 \cdot (1 + 0 \cdot 0,8) = 0,11 \, \text{cm} \]

Lõplik läbipaine mittedomineeriva muutuvkoormuse korral (tuul Laboratooriumi tänava poolt)

\[u_{\text{inst},Q_i} = 0,01 \, \text{cm} \]
\[u_{\text{fin},Q_i} = u_{\text{inst},Q_i}(\psi_{z,i} + \psi_{z,i}k_{\text{def}}) = 0,01 \cdot (0,6 + 0 \cdot 0,8) = 0,006 \, \text{cm} \]

Lõplik läbipaine valemi (19) põhjal

\[u_{\text{fin}} = 0,054 + 0,11 + 0,006 = 0,15 \, \text{cm} \]

Lubatud lõplik tela piirläbipaine [18, lk. 53]

\[w_{\text{net},\text{fin}} = \frac{l}{250} = \frac{120}{250} = 0,48 \, \text{cm} \]
\[u_{\text{fin}} < w_{\text{net},\text{fin}} \]

Toolvärgi ülemise võö lõplik läbipaine jääb lubatud piiridesse.

4.8. Sõlmede kandevõime arvutus

4.8.1. Harja sõlm

Suurim jõud harja sõlmes esineb viienda koormuskombinatsiooni (joonis 4.18.) esinemise korral. Sõlm lahendatud ühelõikelise puit-puiduga kruviliitega. Puidust käsitsi tahutud plaadi paksus on minimaalselt 50 mm ning tugevusklass C24. Kruvide läbimõõt on 6 mm. Kruvialugud puuritakse ette.
Erinevalt standardist rakendatakse valemites puidu muljumistugevuse ja kinnituselemendi voolavusmomendi normväärtsuse asemel arvutusväärtusi, mis annavad tulemuse tagavara kasuks. Kinnitite kandevõime arvutus tehakse vastavalt ühelõikelise puit-puiduga kruviliite arvutusliku kandevõime valemile: [18, lk. 57-59]

\[
F_{v,Rd} = \min \left\{ \frac{f_{h,1,d} \cdot t_1 \cdot d}{1 + \beta}, \frac{f_{h,2,d} \cdot t_1 \cdot d}{1 + \beta}, \frac{f_{h,1,d} \cdot t_1 \cdot d}{2 + \beta} \left[\sqrt{2 \cdot \beta (1 + \beta) + \frac{4 \beta (2 + \beta) M_{Y,Rd}}{f_{h,1,d} \cdot t_1^2}} - \beta \right] \right. \\
1,05 \cdot \frac{f_{h,1,d} \cdot t_2 \cdot d}{2 + \beta} \left[\sqrt{2 \cdot \beta (1 + \beta) + \frac{4 \beta (2 + \beta) M_{Y,Rd}}{f_{h,1,d} \cdot t_1^2}} - \beta \right] \\
1,15 \cdot \frac{2 \beta}{1 + \beta} \cdot \sqrt{2 \cdot M_{Y,Rd} \cdot f_{h,1,d} \cdot d}
\]

Kus: \(F_{v,Rd} \) – ühe kinnituselemendi arvutuslik kandevõime ühe nihkepinna kohta, N;
\(t_i \) – puidu või laua paksus või süvistussügavus, mm;
\(f_{h,1,d} \) – muljumistugevuse arvutusväärtsus puitlelemendis, N/mm2;
\(d \) – kinnituselemendi läbibimõõte, mm;
\(M_{Y,Rd} \) – kinnituselemendi voolavusmomendi arvutusväärtsus, Nmm;
\(\beta \) – elementide muljumistugevuste suhe.

Resultantjõu väärtus harjas

\[
N_{t,sd} = 0,95 \, kN \\
V_{sd} = 1,32 \, kN
\]

\[
F_{vd} = \sqrt{N_{t,sd}^2 + V_{sd}^2} = \sqrt{0,95^2 + 1,32^2} = 1,626 \, kN
\]

- Ühelõikelise puit-puiduga kruviliite ühe kinnituselemendi normkandevõime ühe nihkepinna kohta

Kuna tegemist on 6mm läbibimõõduga kruvidega, siis arvutatakse liidet kui naelliidet. Köieefekti mõju võetakse võrdseks nulliga, kuna see annab kandevõime tulemuse varu kasuks.
\[t_1 = 50 \text{ mm} \]
\[t_2 = 50 \text{ mm} \]
\[d = 6 \text{ mm} \]

Puidu muljumistugevuse normväärts leitakse valemiga: [6, lk. 532]

\[f_{h,k} = 0,082 \cdot \rho_k \cdot d^{-0,3} \quad (24) \]

Kus: \(f_{h,k} \) – puidu muljumistugevuse normväärts, N/mm²;
\(\rho_k \) – puidu tihedus, kg/m³;
\(d \) – kruvi läbimõõt, mm.

Puidu muljumistugevuse normväärts vastavalt valemile (24)

\[\rho_k = 350 \text{ kg/m}^3 \]
\[f_{h,1,k} = f_{h,2,k} = 0,082 \cdot 350 \cdot 6^{-0,3} = 16,766 \text{ N/mm}^2 \]

Puidu muljumistugevuse arvutusväärts vastavalt valemile (4)

\[f_{h,1,d} = f_{h,2,d} = 0,9 \cdot \frac{16,766}{1,3} = 11,6 \text{ N/mm}^2 \]
\[\beta = \frac{f_{h,2,d}}{f_{h,1,d}} = \frac{11,6}{11,6} = 1 \]

Kruvi voolupiirile vastava paindemomendi normväärts leitakse valemiga: [6, lk. 533]

\[M_{y,Rk} = 0,3 \cdot f_u \cdot d^{2.6} \quad (25) \]

Kus: \(M_{y,Rk} \) – kruvi voolupiirile vastava paindemomendi normväärts, Nmm;
\(f_u \) – naela tõmbetugevus, N/mm²;
\(d \) – kruvi läbimõõt, mm.

Kruvi voolupiirile vastava paindemomendi normväärts lähtudes valemist (25)

\[f_u = 600 \text{ N/mm}^2 \]
\[M_{y,Rk} = 0,3 \cdot 600 \cdot 6^{2.6} = 18990 \text{ Nmm} \]
Kruvi voolupiirile vastava paindemomendi arvutusväärtus

\[\gamma_{M,kinniti} = 1,25 \]

\[M_{y,Rd} = \frac{M_{y,Rk}}{\gamma_{M,kinniti}} = \frac{18990}{1,25} = 15190 \text{ Nmm} \]

Ühelõikelise puiduga kruviliite ühe kinnituselemendi normkandevõime ühe nihkepinna kohta vastavalt valemile (23)

\[
F_{v,Rd}=\min \left\{ \begin{array}{l}
\frac{11,6 \cdot 50 \cdot 6}{1+1} \sqrt{1 + 2 \cdot 1^2 \left[1 + \frac{50}{50} + \left(\frac{50}{50} \right)^2 \right] + 1^3 \left(\frac{50}{50} \right)^2 - 1 \left(\frac{50}{50} \right)} = 961,57 \text{ N} \rightarrow \text{min} \\
1,05 \cdot \frac{11,6 \cdot 50 \cdot 6}{2+1} \sqrt{2 \cdot 1(1+1) + \frac{4 \cdot 1(2+1) \cdot 15190}{11,6 \cdot 50 \cdot 6^2} - 1} = 1519 \text{ N} \\
1,05 \cdot \frac{11,6 \cdot 50 \cdot 6}{2+2 \cdot 1} \sqrt{2 \cdot 1(1+1) + \frac{4 \cdot 1(2+1) \cdot 15190}{11,6 \cdot 50 \cdot 6^2} - 1} = 1519 \text{ N} \\
1,15 \cdot \frac{2 \cdot 1}{1+1} \sqrt{2 \cdot 15190 \cdot 11,6 \cdot 6} = 1183 \text{ N} \\
\end{array} \right.
\]

- **Kinnitite arv sõlmes**

Ühe nihkepinna kandevõime

\[F_{v,Rk} = 961,6 \text{ N} \]

Seega on ühe nihkepinna kandevõime tagamiseks vajalik kinnitite arv \(n \):

\[n = \frac{F_{vd}}{F_{v,Rk}} = \frac{1,626}{0,9616} = 1,69 \rightarrow n=2 \]

Kuna kinnitus paiknevad pikikiudu ühes reas, on oluline kontrollida kinnitite efektiivset arvu reas.

Kinnitite efektiivne arv reas [18, lk. 62-63]

\[a_1 = 200 \text{ mm} \]

\[14d = 14 \cdot 8 = 84 \text{ mm} \]

\[a_1 > 14d \]
\[k_{ef} = 1,0 \]
\[n_{ef} = n_{k_{ef}} = 2^1 = 2 \]

Harja sõlme kandevõime tagavad 4 kinnitit, 2 kinnitit kummaski lõikes.

- **Kinnitite minimaalsed vahekaugused ja kaugused elemendi otsast või servast**

Kinnitite minimaalsete vahekauguste valemites esineva jõu resultandi ning puidu kiudude suuna vahelisest nurgast tingitud trigonomeetrilise teguri väärtus võetakse maksimaalne (võrdne ühega), kuna see annab tulemuse varu kasuks. Seega arvestatakse jõu resultandi ja puidu kiudude vahelist nurgavaleteme suuruse halvimat võimalikku väärtust. Kinnitite vahekaugused leitakse vastavalt standardile: [18, lk. 65]

Kinnitite vahekaugus pikikiudu

\[a_1 = (4 + \vert \cos \alpha \vert) \cdot d = (4 + 1) \cdot 6 = 30 \text{ mm} \]

Kinnitite vahekaugus ristikiudu

\[a_2 = (3 + \vert \sin \alpha \vert) \cdot d = (3 + 1) \cdot 6 = 24 \text{ mm} \]

Kaugus koormatud otsast

\[a_{3,\ell} = (7 + 5 \cdot \cos \alpha) \cdot d = (7 + 5 \cdot 1) \cdot 6 = 72 \text{ mm} \]

Kaugus koormamata otsast

\[a_{3,c} = 7d = 7 \cdot 6 = 42 \text{ mm} \]

Kaugus koormatud servast

\[a_{4,\ell} = (3 + 4 \cdot \sin \alpha) \cdot d = (3 + 4 \cdot 1) \cdot 6 = 42 \text{ mm} \]

Kaugus koormamata servast

\[a_{4,c} = 3d = 3 \cdot 6 = 18 \text{ mm} \]

4.8.2. Toolvärkide sõlmed

Sarikas toetub toolvärgile sisselõikega, mille tulemusena kantakse jõud toolvärgile üle muljumispinnaga. Tööde käigus fikseeritakse sarikad toolvärkidele nurgikute ja kruvidega. Toolvärkide postid fikseeritakse alumise ja ülemise vöö külge nurgikute ja kruvidega.
4.8.3. Räästa sõlm

- Ühelõikelise teras-puiduga liite normkandevõime

Erinevalt standardist rakendatakse valemites puidu muljumistugevuse ja kinnituselemendi voolavusmomendi normväärtsuste asemel arvutusväärtsusi, mis annavad tulemuse tagavara kasuks. Ühelõikelise teras-puiduga liite arvutuskandevõime leitakse vastavalt valmile: [18, lk. 59]

\[
F_{v,Rd} = \left\{ \begin{array}{l}
0.4 \cdot f_{h,1,d} \cdot t_1 \cdot d \\
1,15 \sqrt{2 \cdot M_{y,Rd} \cdot f_{h,1,d} \cdot d}
\end{array} \right. \quad (26)
\]

Kus: \(F_{v,Rd} \) – ühe kinnituselemendi arvutuskandevõime ühe nihkepinna kohta, N;
\(t_1 \) – puidu või laua paksus või süvistussügavus, mm;
\(f_{h,1,d} \) – muljumistugevuse arvutusväärtsus puitemendis, N/mm²;
\(d \) – kinnituselemendi läbimõõte, mm;
\(M_{y,Rd} \) – kinnituselemendi voolavusmomendi arvutusväärtsus, Nmm.

Horisontaalse toereaktsiooni väärts

Määra vaks saab kolmas kandepiiriseund koormuskombinatsioon, mille puhul on horisontaalse toereaktsiooni väärts kõige suurem (joonis 4.12.).

\(F_{vd} = 1,09 \) kN

Puidu muljumistugevuse normväärts vastavalt valmile (24)

\[
\rho_k = 350 \text{ kg/m}^3
\]

\[
f_{h,1,k} = 0,082 \cdot 350 \cdot 6^{-0,3} = 16,766 \text{ N/mm}^2
\]
Puidu muljumistugevuse arvutusväärtus vastavalt valemile (4)

\[f_{h,1,d} = 0,9 \cdot \frac{16,766}{1,3} = 11,6 \, N/mm^2 \]

Kruvi voolupiirile vastava paindemomendi normväärtus vastavalt valemile (25)

\[f_u = 600 \, N/mm^2 \]

\[M_{y,Rk} = 0,3 \cdot 600 \cdot 6^{2,6} = 18990 \, Nmm \]

Kruvi voolupiirile vastava paindemomendi arvutusväärtus

\[\gamma_{M2} = 1,25 \]

\[M_{y,Rd} = \frac{M_{y,Rk}}{\gamma_{M,teras}} = \frac{18990}{1,25} = 15190 \, Nmm \]

Ühelõikelise teras-puiduga liite arvutuslik kandevõime

Kuna \(t=2,5 \, mm \) ja \(0,5d=0,5\cdot6=3 \, mm \), siis rakendub tingimuse \(t<0,5d \) tõttu valem (26):

\[t = 2,5 \, mm \]

\[0,5d = 0,5 \cdot 6 = 3 \, mm \]

\[t < 0,5d \]

\[F_{v, RK} = \begin{cases}
0,4 \cdot 11,6 \cdot 50 \cdot 6 = 1393 \, N \\
1,15 \sqrt{2} \cdot 15190 \cdot 11,6 \cdot 6 = 1673 \, N
\end{cases} \]

- **Kinnitite arv sõlmes**

Ühe nihkepinna kandevõime

\[F_{v, RK} = 1393 \, N \]

Seega on ühe nihkepinna kandevõime tagamiseks vajalik kinnitite arv \(n \):

\[n = \frac{\sigma_{vd}}{\sigma_{v,RK}} = \frac{1090}{1393} = 0,78 \rightarrow n=1 \]

Kuna ühe kinnitiga sõlme ei paigaldata, kinnitatakse nurgikud sarika külge kahe kruviga.
• **Poldi arvutuslik kandevõime liites**

Müürivöö karkassi ja betoonist müürivöö sõlmes kasutatakse polti M8, tugevusklassiga 4.6 ja sammuga 600 mm. Poldi kandevõime lõikele leitakse vastavalt valemile: [6, lk. 446]

\[F_{v,Rd} = 0,6 \frac{f_{ub}A_s}{\gamma_{M2}} \quad (27) \]

Kus:
- \(F_{v,Rd} \) – poldi arvutuslik kandevõime liites, N;
- \(f_{ub} \) – poldi normatiivne tõmbetugevus, N/mm\(^2\);
- \(A_s \) – poldi keermestatud osa netopindala, mm\(^2\);
- \(\gamma_{M2} \) – polti liite tugevuse osavarutegur.

Poldi keermestamata osa brutopindala

\[A = 50,3 \, mm^2 \]

Poldi keermestatud osa netopindala

\[A_s = 35,5 \, mm^2 \]

Poldi normatiivne tõmbetugevus

\[f_{ub} = 400 \, N/mm^2 \]

Poldi kandevõime lõikele vastavalt valemile (27)

\[F_{v,Rd} = 0,6 \frac{400 \cdot 37,5}{1,25} = 7200 \, N \]

\[\frac{F_{vd}}{F_{v,Rd}} = \frac{1090}{7200} = 0,15 < 1 \]

Poldi lõikekandevõime sõlmes on tagatud.

• **Poldiaugu ääre muljumiskandevõime**

Sarikate kinnitamiseks müürivööle kasutatakse terasnurgikuid (tugevusklass S355) mõõtmetega 80X80X60mm. Teraselehe paksus on 2,5 mm. Poldiaugu ääre muljumiskandevõime leitakse vastavalt valemile: [6, lk. 446]

\[F_{b,Rd} = k_1 a_b \frac{f_{udt}}{\gamma_{M2}} \quad (28) \]

Kus:
- \(F_{b,Rd} \) – poldiaugu ääre muljumiskandevõime, N;
f_u – terase normtõmbetugevus, N/mm2;

d – poldi läbimõõt, mm;

t – teraslehe paksus, mm;

γ_{M2} – polttiite tugevuse osavarutegur.

Terase normtõmbetugevus

$$f_u = 510 - 680 \text{ N/mm}^2$$

Poldi normatiivne tõmbetugevus

$$f_{ub} = 400 \text{ N/mm}^2$$

Poldiaugu läbimõõt

$$d_0 = 10 \text{ mm}$$

Poldiaugu kaugus nurgiku servast

$$e_1 = 30 \text{ mm}$$

$$e_2 = 40 \text{ mm}$$

Tegurite α_b ja k_1 leidmine

$$\alpha_b = \min \left\{ \frac{e_1}{3d_0} = \frac{30}{3 \cdot 10} = 1 \right\}$$

$$\frac{f_{ub}}{f_u} = \frac{400}{600} = 0,66 \rightarrow \min$$

$$k_1 = \min \left\{ 2,8 \frac{e_2}{d_0} - 1,7 = 2,8 \frac{40}{10} - 1,7 = 9,5 \right\}$$

$$2,5 \rightarrow \min$$

Poldiaugu ääre muljumiskandevõime vastavalt valemile (28)

$$F_{b,Rd} = 2,5 \cdot 0,66 \cdot \frac{600 \cdot 8 \cdot 2,5}{1,25} = 15,8kN$$

$$\frac{F_{vd}}{F_{b,Rd}} = \frac{1090}{15800} = 0,069 < 1$$

Poldiaugu ääre kandevõime on tagatud.
4.9. Vintskapi kandevõime arvutus

4.9.1. Lumekoormus

- **Lumekoormus vintskapi katusel**

\[\alpha_1 = 56,8^\circ \]

Lumekoormus maapinnale (Tallinn)

\[s_k = 1,5 \, kN/m^2 \]

Kuna katuse serv lõpeb lumetõkkega, võetakse lumekoormuse kujuteguriks 0,8. [7, lk. 20]

\[\mu_1 = 0,8 \]

Normatiivne lumekoormus vintskapi katusele vastavalt valemile (5)

\[s_1 = 0,8 \cdot 1,5 = 1,2 \, kN/m^2 \]

- **Lumekoormus neelusarika kohal (saagkatus)**

Lumekoormuse kujutegur leitakse vastavalt lumekoormuse standardile: [7, lk. 21-22]

\[\alpha_1 = 56,8^\circ \]

\[\alpha_2 = 32^\circ \]

\[\alpha = \frac{(\alpha_1 + \alpha_2)}{2} = \frac{(56,8 + 33,7)}{2} = 45,45^\circ \]

Lumekoormus maapinnale (Tallinn)

\[s_k = 1,5 \, kN/m^2 \]

\[\mu_2 = 1,6 \]

Normatiivne lumekoormus neelusarikale vastavalt valemile (5)

\[s_2 = 1,6 \cdot 1,5 = 2,4 \, kN/m^2 \]
• Lumekoormus kujutegur lume kuhjumisest vintskapi seina taha

Lumekoormuse kujutegur lume kuhjumisest vintskapi seina taha leitakse, lähtudes lume kuhjumisest takistite ja eendite taha: [7, lk. 26]

Vintskapi seina kõrgus

\[h = 1 \text{ m} \]

Lumekoormus maapinnale (Tallinn)

\[s_k = 1,5 \text{ kN/m}^2 \]

Kuhjunud hange pikkus

\[l_s = 2h = 2 \cdot 1 = 2 \text{ m} \]

\[\gamma = 2 \text{ kN/m}^3 \]

\[0.8 \leq \mu_w \leq 2.0 \]

\[\mu_w = \frac{\gamma h}{s_k} = \frac{2 \cdot 1}{1,5} = 1,33 \]

Vintskapi seina taha kuhjunud lume kujutegur

\[\mu_3 = \mu_w = 1,33 \]

Normatiivne lumekoormus vintskapi seina taga vastavalt valemile (5)

\[s_3 = 1,33 \cdot 1,5 = 2 \text{ kN/m}^2 \]

4.9.2. Tuulekoormus

• Tuulekoormus vintskapi katusele

Tippkiirusrõhk Ehituskonstruktori käsiraamatujärgi: [6, lk. 199]

\[z_{min} = 10 \text{ m} \]

\[q_p = 15,15ln^2z + 106,6lnz = 15,15 \cdot ln^210 + 106,6 \cdot ln10 = 0,326 \text{ kN/m}^2 \]

Tabelis 4.10. on välja toodud tuulerõhutegurid vintskapi katusele. Tabelis 4.11. on esitletud tuulerõhkude väärtused vintskapi katusele. Tuulerõhud on leitud vastavalt valemile (6). Kuna vintskapi katusse pind on tühiselt väike, kasutatakse Autodesk Robot Structural Analysis Professional’i sisestatava arvutusskeemis ekstreemseid tuulerõhkude väärtusi.
Tabel 4.10. Kahekaldelise vintskapi katuse tuulerõhutegurid

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°</td>
<td>0,17</td>
<td>0,17</td>
<td>0,07</td>
<td>-0,13</td>
<td>-0,23</td>
</tr>
<tr>
<td>Cpe.10</td>
<td>0,70</td>
<td>0,70</td>
<td>0,67</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Tabel 4.11. Tuulerõhud vintskapi katusele

<table>
<thead>
<tr>
<th>we (kN/m²)</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>0,05</td>
<td>0,05</td>
<td>0,02</td>
<td>-0,04</td>
<td>-0,08</td>
</tr>
<tr>
<td>2)</td>
<td>0,05</td>
<td>0,05</td>
<td>0,02</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>3)</td>
<td>0,23</td>
<td>0,23</td>
<td>0,22</td>
<td>-0,04</td>
<td>-0,08</td>
</tr>
<tr>
<td>4)</td>
<td>0,23</td>
<td>0,23</td>
<td>0,22</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Määravaks saab koormuste juht, mille puhul on tuulerõhkude vahe erinevatel katusel kõige suurem, kuna sellisel juhul on oht, et toimub katuse „ümber lükamine”. Kõige kriitilisem on kolmas koormuste juht, mille korral on tuulerõhkude vahe kõige suurem.

- **Tuulekoormus vintskapi seinale**

Tuulekoormus vintskapi seintele leitakse vastavalt tuulekoormuse standardile: [8, lk. 36-37]

Algandmed

\[
\begin{align*}
 h &= 2 \text{ m} \\
 d &= 1,4 \text{ m} \\
 b &= \frac{1,9}{2} = 0,95 \text{ m} \\
 e &= b = 0,95 \text{ m} \\
 \frac{h}{d} &= \frac{2}{1,4} = 1,45
\end{align*}
\]
Tippkiirusrõhk Ehituskonstruktori käsiraamatu järgi: [6, lk. 199]

\[z_{\text{min}} = 10 \, m \]

\[q_p = 15,15 \ln^2 z + 106,6 \ln z = 15,15 \cdot \ln^2 10 + 106,6 \cdot \ln 10 = 0,326 \, kN/m^2 \]

Tabel 4.12. Tuulerõhutegurid vintskapi seintele

<table>
<thead>
<tr>
<th>(h/d)</th>
<th>1,43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsoon</td>
<td>(c_{pe})</td>
</tr>
<tr>
<td>A</td>
<td>-1,2</td>
</tr>
<tr>
<td>B</td>
<td>-0,8</td>
</tr>
<tr>
<td>C</td>
<td>-0,5</td>
</tr>
<tr>
<td>D</td>
<td>+0,8</td>
</tr>
<tr>
<td>E</td>
<td>-0,5</td>
</tr>
</tbody>
</table>

Tabel 4.13. Tuulerõhud vintskapi seintele

<table>
<thead>
<tr>
<th>Tsoon</th>
<th>kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0,39</td>
</tr>
<tr>
<td>B</td>
<td>-0,26</td>
</tr>
<tr>
<td>C</td>
<td>-0,16</td>
</tr>
<tr>
<td>D</td>
<td>0,26</td>
</tr>
<tr>
<td>E</td>
<td>-0,16</td>
</tr>
</tbody>
</table>

4.9.3. Omakaalu koormused

Tabel 4.14. Vintskapi seina omakaal

<table>
<thead>
<tr>
<th>Konstruktsiooni kiht</th>
<th>Kõrgus (m)</th>
<th>Laius (m)</th>
<th>Samm (m)</th>
<th>Tihedus (kN/m³)</th>
<th>Normatiivne koormus (kN/m²)</th>
<th>Osav artugus</th>
<th>Arvutuslik koormus (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laudis</td>
<td>0,025</td>
<td></td>
<td></td>
<td>6</td>
<td>0,15</td>
<td>1,2</td>
<td>0,18</td>
</tr>
<tr>
<td>Laudise karkass</td>
<td>0,1</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,05</td>
<td>1,2</td>
<td>0,06</td>
</tr>
<tr>
<td>Isover VKL</td>
<td>0,013</td>
<td></td>
<td></td>
<td>1,2</td>
<td>0,02</td>
<td>1,2</td>
<td>0,02</td>
</tr>
<tr>
<td>Isover KL 35</td>
<td>0,3</td>
<td></td>
<td></td>
<td>0,2</td>
<td>0,06</td>
<td>1,2</td>
<td>0,07</td>
</tr>
<tr>
<td>Seina karkass</td>
<td>0,1</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,05</td>
<td>1,2</td>
<td>0,06</td>
</tr>
<tr>
<td>Lisasoojustuse karkass</td>
<td>0,1</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,05</td>
<td>1,2</td>
<td>0,06</td>
</tr>
<tr>
<td>OSB plaat</td>
<td>0,008</td>
<td></td>
<td></td>
<td>7</td>
<td>0,056</td>
<td>1,2</td>
<td>0,07</td>
</tr>
<tr>
<td>Aurutõke</td>
<td>0,00005</td>
<td></td>
<td></td>
<td>1</td>
<td>0,0001</td>
<td>1,2</td>
<td>0,0001</td>
</tr>
<tr>
<td>Kipsi karkass</td>
<td>0,025</td>
<td>0,075</td>
<td>0,4</td>
<td>6</td>
<td>0,03</td>
<td>1,2</td>
<td>0,03</td>
</tr>
<tr>
<td>Tuletökke kips</td>
<td>0,015</td>
<td></td>
<td></td>
<td>8</td>
<td>0,12</td>
<td>1,2</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gₖ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,58</td>
</tr>
</tbody>
</table>

Tabel 4.15. Vintskapi katuse omakaal

<table>
<thead>
<tr>
<th>Konstruktsiooni kiht</th>
<th>Kõrgus (m)</th>
<th>Laius (m)</th>
<th>Samm (m)</th>
<th>Tihedus (kN/m³)</th>
<th>Normatiivne koormus (kN/m²)</th>
<th>Osav artugus</th>
<th>Arvutuslik koormus (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valtsplekk</td>
<td>0,0005</td>
<td></td>
<td></td>
<td>0,10</td>
<td>1,2</td>
<td>0,12</td>
<td></td>
</tr>
<tr>
<td>Roovitis</td>
<td>0,025</td>
<td>0,1</td>
<td>0,2</td>
<td>6</td>
<td>0,08</td>
<td>1,2</td>
<td>0,09</td>
</tr>
<tr>
<td>Tuulutusliist</td>
<td>0,05</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,03</td>
<td>1,2</td>
<td>0,03</td>
</tr>
<tr>
<td>Aluskate</td>
<td>0,0002</td>
<td></td>
<td></td>
<td>1</td>
<td>0,00</td>
<td>1,2</td>
<td>0,00</td>
</tr>
<tr>
<td>Distantsliist</td>
<td>0,05</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,03</td>
<td>1,2</td>
<td>0,03</td>
</tr>
<tr>
<td>Isover VKL</td>
<td>0,013</td>
<td></td>
<td></td>
<td>1,2</td>
<td>0,02</td>
<td>1,2</td>
<td>0,02</td>
</tr>
<tr>
<td>Isover KL 35</td>
<td>0,3</td>
<td></td>
<td></td>
<td>0,2</td>
<td>0,06</td>
<td>1,2</td>
<td>0,07</td>
</tr>
<tr>
<td>Sarikas</td>
<td>0,2</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,10</td>
<td>1,2</td>
<td>0,12</td>
</tr>
<tr>
<td>OSB</td>
<td>0,008</td>
<td></td>
<td></td>
<td>7</td>
<td>0,06</td>
<td>1,2</td>
<td>0,07</td>
</tr>
<tr>
<td>Penn</td>
<td>0,1</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,05</td>
<td>1,2</td>
<td>0,06</td>
</tr>
<tr>
<td>Lisasoojustuse karkass</td>
<td>0,1</td>
<td>0,05</td>
<td>0,6</td>
<td>6</td>
<td>0,05</td>
<td>1,2</td>
<td>0,06</td>
</tr>
<tr>
<td>Aurutõke</td>
<td>0,00005</td>
<td></td>
<td></td>
<td>1</td>
<td>0,0001</td>
<td>1,2</td>
<td>0,0001</td>
</tr>
<tr>
<td>Kipsi karkass</td>
<td>0,025</td>
<td>0,075</td>
<td>0,4</td>
<td>6</td>
<td>0,03</td>
<td>1,2</td>
<td>0,03</td>
</tr>
<tr>
<td>Kips</td>
<td>0,013</td>
<td></td>
<td></td>
<td>8</td>
<td>0,10</td>
<td>1,2</td>
<td>0,12</td>
</tr>
<tr>
<td>Tuletökke kips</td>
<td>0,015</td>
<td></td>
<td></td>
<td>8</td>
<td>0,12</td>
<td>1,2</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td>Gₖ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,81</td>
</tr>
</tbody>
</table>
4.9.4. Vintskapi lahendus

4.9.5. Kandepiirseisundis möjuvad koormused

Kandepiirseisundis on vaadeldud olukorda, mille puhul domineerivaks muutuvkoormuseks on lumekoormus, kuna lume kuhjumisest tingituna on lumekoormuse väärtused oluliselt suuremad, kui tuulekoormuse väärtused. Kandepiirseisundi koormuskombinatsioon on koostatud vastavalt valemile (2).

Lumekoormus domineeriva muutuvkoormusena + tuul

\[1,2 \cdot G_{\text{katus}} + 1,5 \cdot Q_{\text{tumi}} + 0,6 \cdot 1,5 \cdot Q_{\text{tuul}} \]
Sisejöud topeltsarikale

Joonisel 4.31. on esitletud paindemomendi ja pikijõu epüürid topeltsarikale, millele toetub vintskapp. Joonisel 4.32. on esitletud topeltsarika põikjõu epüür ja toereaktsioonid.

Joonis 4.31. Topeltsarika paindemomendi (kNm) ja pikijõu (kN) epüür

Joonis 4.32. Topeltsarika põikjõu epüür ja toereaktsioonid (kN)

4.9.6. Vintskapi aluse topeltsarika kandevõime kandepiirseisundis

4.9.6.1. Nõrgestatud ristlõike kandepiirseisundi tõmbekandevõime pikikiudu koos paindega

Tsentrilise tõmbejõu arvutusväärtsus

\[N_{t,\text{sd}} = 11,62 \text{ kN} \]
Arvutuslik paindemoment

\[M_{sd} = 2,42 \text{ kNm} \]

Arvutuslik paindetugevus vastavalt avaldisele (4)

\[f_{m,y,d} = 0,9 \cdot \frac{24}{1,3} = 16,6 \text{ N/mm}^2 \]

Arvutuslik tõmbetugevus pikikiudu vastavalt avaldisele (4)

\[f_{t,0,d} = 0,9 \cdot \frac{14}{1,3} = 9,69 \text{ N/mm}^2 \]

Nõrgestatud netoristlõike pindala

Kriitiliseks saab ristlõige, mis on nõrgestatud tapiga, mille kõrgeim mõõde ristlõikes on 53 mm. Lisaks on ristlõige nõrgestatud kahe 6 mm kruviga, millest ühe võib välja jätta, kuna see asetseb samas kõrgustasapinnas nõrgestusega.

\[A_{net} = 2(200 - 53 - 6) \cdot 50 = 14100 \text{ mm}^2 \]

Nõrgestatud ristlõike vastupanumoment lihtsustatud avaldise kaudu, mille puhul on nõrgestuste kõrgused ristlõike kõrgusest maha lahatatud.

\[W_{y,ef} = \frac{50 \cdot (200 - 53 - 6)^2}{6} = 331300 \text{ mm}^3 \]

Arvustutes kasutatakse lihtsustatud meetodi abil leitud vastupanumomenti, kuna saadud tulem on tagavara kasuks.

Arvutuslik paindepinge vastavalt valemile (12)

\[\sigma_{m,y,d} = \frac{2,42 \cdot 10^6}{14100} = 7,303 \text{ N/mm}^2 \]

Arvutuslik tõmbepinge pikikiudu vastavalt valemile (13)

\[\sigma_{t,0,d} = \frac{11,62 \cdot 10^3}{7825} = 0,824 \text{ N/mm}^2 \]

Tala paindekandevöime koos tõmbega pikikiudu vastavalt avaldisele (11)

\[\frac{0,824}{9,69} + \frac{7,303}{16,6} = 0,525 < 1 \]

Tala paindekandevöime koos survega on tagatud vastavalt avaldisele (11).
4.9.6.2. Nõrgestatud ristlõike kandepiirseisundi survekandevõime pikikiudu koos paindega

Määravaks saab topeltsarika sildes esinev suurim paindmoment ning sellele vastav survejõu arvutusväärts (joonis 4.31.). Kandevõime arvutus tehakse vastavalt valemile (14).

Arvutuslik survejõud pikikiudu

\[N_{csd} = 2,33 \, kN \]

Arvutuslik paindemoment

\[M_{sd} = 8,61 \, kNm \]

Arvutuslik paindetugevus vastavalt avaldisele (4)

\[f_{m,y,d} = 0,9 \cdot \frac{24}{1,3} = 16,6 \, N/mm^2 \]

Arvutuslik surveugevus pikikiudu vastavalt avaldisele (4)

\[f_{c,0,d} = 0,9 \cdot \frac{21}{1,3} = 14,54 \, N/mm^2 \]

Ristlõike pindala

\[A_{net} = 200 \cdot 100 = 20000 \, mm^2 \]

Ristlõike vastupanumoment

\[W_{y,ef} = \frac{100 \cdot 200^2}{6} = 666666,66 \, mm^3 \]

Arvutustes kasutatakse lihtsustatud meetodi abil leitud vastupanumomenti, kuna saadud tulem on tagavara kasuks.

Arvutuslik paindepinge vastavalt valemile (12)

\[\sigma_{m,y,d} = \frac{8,61 \cdot 10^6}{666666,66} = 12,95 \, N/mm^2 \]

Arvutuslik survepinge pikikiudu vastavalt avaldisele (15)

\[\sigma_{c,0,d} = \frac{2,33 \cdot 10^3}{20000} = 0,116 \, N/mm^2 \]
Tala paindekandevõime koos survega pikikiudu vastavalt avaldisele (14)

\[
\left(\frac{0,116}{14,5} \right)^2 + \frac{12,95}{16,6} = 0,777 < 1
\]

Tala paindekandevõime koos survega on tagatud vastavalt valemile (14).

4.9.6.3. Nõtte kandepiiriseisundis

Määravaks saab situatsioon, mille puhul esineb suurim avamoment ning sellele vastav survejõu arvutusvärtus (joonis 4.31.). Nõtkumist kontrollitakse vastavalt valemile (16).

Arvutuslik paindetugevus vastavalt avaldisele (4)

\[f_{m,y,d} = 0,9 \cdot \frac{24}{1,3} = 16,6 \, N/mm^2 \]

Arvutuslik survetugevus pikikiudu vastavalt avaldisele (4)

\[f_{c,0,d} = 0,9 \cdot \frac{21}{1,3} = 14,5 \, N/mm^2 \]

Suhteline saledus

\[l = l_{ef} = 2,25 \, m \]

Terve ristlõike inertsimoment

\[I_y = \frac{a \cdot b^3}{12} = \frac{100 \cdot 200^3}{12} = 66666666,67 \, mm^4 \]

Terve ristlõike pindala

\[A = a \cdot b = 100 \cdot 200 = 20000 \, mm^2 \]

Terve ristlõike inertsiraadius

\[i_y = \sqrt{\frac{I_y}{A}} = \sqrt{\frac{66666666,67}{20000}} = 57,7 \, mm \]

Paindesaledus

\[\lambda_y = \frac{l_{ef,y}}{i_y} = \frac{2250}{57,7} = 38,99 \]
Suhteline saledus

\[\lambda_{rel,y} = \frac{\lambda_y}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,05}}} \cdot \sqrt{\frac{21}{7400}} = 0,661 \]

\[\lambda_{rel,y} > 0,3 \]

Nõtketegur \(k_{c,y} \) leidmine

\[\beta_c = 0,2 \]

\[k_y = 0,5 \cdot [1 + \beta_c (\lambda_{rel,y} - 0,3) + \lambda_{rel,y}^2] = 0,5 \cdot [1 + 0,2(0,66 - 0,3) + 0,66^2] = 0,754 \]

\[k_{c,y} = \frac{1}{k_y + \sqrt{k_y^2 + \lambda_{rel,y}^2}} = \frac{1}{0,754 + \sqrt{0,754^2 + 0,66^2}} = 0,894 \]

Terve ristlöike vastupanumoment

\[W_y = \frac{h^2 \cdot b}{6} = \frac{200^2 \cdot 100}{6} = 666666,66 \, mm^3 \]

Arvutuslik paindmoment avas

\[M_{sd} = 8,61 \, kNm \]

Arvutuslik paindepinge vastavalt valemile (12)

\[\sigma_{m,y,d} = \frac{8,61 \cdot 10^6}{666666,66} = 12,95 \, N/mm^2 \]

Arvutuslik tsentriline survejõud pikikiudu

\[N_{sd} = 2,33 \, kN \]

Arvutuslik survepinge vastavalt valemile (15)

\[\sigma_{c,0,d} = \frac{2,33 \cdot 10^3}{20000} = 0,116 \, N/mm^2 \]

Tala nõtkumise kandevõime vastavalt valemile (16)

\[\frac{0,116}{0,894 \cdot 14,5} + \frac{12,95}{16,6} = 0,786 < 1 \]

Tala nõtkumine on välistatud vastavalt valemile (16).
4.9.6.4. Nihkekandevõime kandepiirseisundis

Määravaks saab topelsarika toetus toolvärgile, mille puhul on tegemist nõrgestusega ning esineb suurim põikjõu arvutusväärtus (joonis 4.32.). Nihkekandevõime kontroll tehakse vastavalt valemile (17).

Arvutuslik nihketugevus vastavalt valemile (4)

\[f_{v,d} = 0,9 \cdot \frac{4}{1,3} = 2,77 \, N/mm^2 \]

Tala kõrgus

\[h = 200 \, mm \]

Tala kõrgus sisselõike kohal

\[h_{ef} = 200 - 53 - 6 = 141 \, mm \]

Tala laius

\[b = 100 \, mm \]

Põikjõu rakenduspunkti kaugus sisselõike servast

\[x = 50 \, mm \]

\[\alpha = \frac{h_{ef}}{h} = \frac{0,141}{0,2} = 0,705 \]

Sisselõike kalle

\[\varepsilon = 32^\circ \]

\[i = \tan \varepsilon = \tan(32^\circ) = 0,624 \]

\[k_n = 5,0 \]

Tegur \(k_v \)

\[k_v = \min \left\{ \frac{1}{k_n \left(1 + \frac{1,1 - i^{1,5}}{v_h} \right)} \right\} \]

\[\left(\sqrt{n} \left(\sqrt{\alpha (1 - \alpha)} + 0,8 \frac{\varepsilon}{\pi} \frac{1}{\alpha} a^2 \right) \right) \]
\[k_v = \frac{k_n \left(1 + 1.1 \cdot \frac{i^{1.5}}{\sqrt{h}} \right)}{\sqrt{h} \left(\sqrt{\alpha (1-\alpha)} + 0.8 \cdot \frac{x}{h} \cdot \sqrt{\frac{1}{\alpha} - \alpha^2} \right)} = \frac{5 \left(1 + 1.1 \cdot 0.624^{1.5} \right)}{\sqrt{200} \left(\sqrt{0.705(1-0.705)} + 0.8 \cdot \frac{50}{200} \cdot \sqrt{\frac{1}{0.705} - 0.705^2} \right)} = 0.567 \]

Põikjõu arvutusväärtus

\[V_{sd} = 10.59 \text{ kN} \]

Nihkekandevõime kontroll vastavalt valemile (17)

\[\tau_d = \frac{1.5 \cdot 10.59 \cdot 10^3}{100 \cdot 141} = 1.127 \text{ N/mm}^2 \]

\[k_v \cdot f_{v,d} = 0.567 \cdot 2.77 = 1.569 \text{ N/mm}^2 \]

\[\tau_d = 1.127 \leq 1.569 \]

Tala nihkekandevõime on vastavalt avaldisele (17) tagatud.

4.9.6.5. Kandepiirseisundi survekandevõime kiudude suhtes nurga all (muljumine)

Määravaks saab sarika toetuspunkt toolvärgil, kus esineb suurim toereaktsioon (joonis 4.32.). Survekandevõimet kiudude suhtes nurga all kontrollitakse valemile (18).

Survejõu ning sarika kiudude suuna vahelise nurga suurus on 58°.

\[\alpha = 58^\circ \]

Teguri \(k_{c,90} \) valik

Tegemist on kohttoega ning materjaliks on okaspuit (saepuit).

\[l = 100 \text{ mm} \]

\[l_1 = 2250 \text{ mm} \]

\[2 \cdot h = 2 \cdot 200 = 400 \text{ mm} \]

\[l_1 > 2h \]

Seega tegur \(k_{c,90} \):

\[k_{c,90} = 1.5 \]
Arvutuslik toereaktsioon toel

\[F_{s,d} = 18,62 \, kN \]

Toetuspinna pikkus

\[h_{ef} = 100 \, mm \]

Arvutuslik survetugevus pikikiudu vastavalt valemile (4)

\[f_{c,0,d} = 0,9 \cdot \frac{21}{1,3} = 14,54 \, N/mm^2 \]

Arvutuslik survetugevus ristikiudu vastavalt valemile (4)

\[f_{c,90,d} = 0,9 \cdot \frac{2,5}{1,3} = 1,73 \, N/mm^2 \]

Arvutuslik survepinge kiudude suhtes nurga all \(\alpha \) vastavalt valemile (15)

\[\sigma_{c,\alpha,d} = \frac{18,62 \cdot 10^3}{100 \cdot 100} = 1,862 \, N/mm^2 \]

Kiudude suhtes nurga \(\alpha \) all mõjuv survepinge peab rahuldama tingimust (18)

\[\sigma_{c,\alpha,d} \leq \frac{14,54}{1,5 \cdot 1,73 \cdot \sin^2 58^\circ + \cos^2 58^\circ} = 2,627 \]
\[1,862 < 2,627 \]

Tala survekandevõime on tagatud vastavalt valemile (18).

4.9.6.6. Topeltsarikate piirläbipainde kontroll kasutuspiirseisundis

Teguri \(k_{def} \) määramine [18, lk. 29]

Kuna tegemist on kasutusklassiga 2 ning saepuiduga, siis:

\[k_{def} = 0,8 \]
Lõplik läbipaine alalise koormuse korral

\[u_{inst.G} = 0,2 \, \text{cm} \]

\[u_{fin.G} = u_{inst.G}(1 + k_{def}) = 0,2 \cdot (1 + 0,8) = 0,36 \, \text{cm} \]

Lõplik läbipaine domineeriva muutuvkoormuse korral (lumekoormus)

\[u_{inst.Q_1} = 0,4 \, \text{cm} \]

\[u_{fin.Q_1} = u_{inst.Q_1}(1 + \psi_{2,1}k_{def}) = 0,4 \cdot (1 + 0 \cdot 0,8) = 0,4 \, \text{cm} \]

Lõplik läbipaine valemi (19) põhjal

\[u_{fin} = 0,36 + 0,4 = 0,76 \, \text{cm} \]

Lubatud lõplik tala piirläbipaine [18, lk. 53]

\[w_{net.fin} = \frac{l}{250} = \frac{400}{250} = 1,6 \, \text{cm} \]

\[u_{fin} < w_{net.fin} \]

Topeltsarika lõplik läbipaine jääb lubatud piiridesse.
ARUTELU

KOKKUVÕTE

Käesoleva magistritöö tulemusena lahendati põhiprojekti staadiumis Tallinna Linnateatri hoone F soojjustatud katuslaekonstruktsioon. Tallinna Linnateater asub Tallinna vanalinna, mis on üks paremini säilinud keskaegseid südalinnasid Euroopas, mistõttu omab töös käsitletud hoone esteetilist väärtust nii eestlaste kui ka eurooplaste silmis. Töö tegemisel on arvestatud hoonele esitatud muinsuskaitsete eritingimusi. Projekteerimise aluseks võeti arhitektuurne eelprojekt ning Eesti Vabariigis kehtivad seadused, standardid ning määrused. Töö käigus on minetatud katuslaele olmeliste rakenduste leidmine, kuna muinsuskaitse eritingimuste järgi säilitamist vajav vana toolvärk paikneb kasuliku pinna keskel ning muinsuskaitse eritingimuste järgi on siseruumi lubatud ühendada pööninguga läbi vahelae endise mantelkorstna kohalt, mis on kasulikust pinnast väljaspool ja muudab seetõttu lahenduse ebapraktileiseks. Siiski pakutakse töö tulemusena välja katuskonstruktsiooni soojjustatud lahendus, mis jätab võimaluse katuslaele alternatiivsete olmeliste rakenduste leidmiseks.

Hoone on ebakorrapärase seinte plaaniga, mis on tingitud keskaegsest tänavavõrgustikust. Seetõttu on sarikate samm, pikkus ja paigutus varieeruvad. Sarikad toetatakse müürivöö karkassile ning toolvärkidele. Katus soojjustatakse ja kaetakse valtsplekiga ning olemasolev vintskapp taastatakse võimalikult algupäraste mõõtmetega.

Antud magistritöö lisades on välja toodud autori poolt projekteeritava katuskonstruktsiooni joonised ja konstruktiksnes põhilahendused.
KASUTATUD KIRJANDUS

1. Vanalinn [Online]. Kättesaadav:
 http://www.tourism.tallinn.ee/est/esi/vaatamis/vaatamis/vanalinn [04.01.2014].
5. Büroohoone eelprojekt, Lai tn. 25/Laboratoriumi tn. 12, Tallinn, KOKO Arhitektid OÜ.
10. Gyproc paigaldusjuhised [Online]. Kättesaadav:
 http://espak.ee/vvfiles/0/Gyproc%20paigaldusjuhised.pdf [04.01.2014]
12. Isover toodete koondtabel [Online]. Kättesaadav:
 http://www.isover.ee/projekteerimine [05.01.2014]
13. Ruukki valtsprofiili paigaldusjuhend [Online]. Kättesaadav:
16. EVS 908-1:2010 Hoone piirdetarindi soojusjuhtivuse arvutusjuhend. Osa 1:
Välisõhuga kontaktis olev läbipaistmatu piire. 38 lk.
17. Energiatõhususe miinimumnõuded [Online]. Kättesaadav:
https://www.riigiteataja.ee/akt/105092012004 [05.01.2014]
LISAD
MÄRKUSED:
- PUIDU TUGEVUSKLASS C24
- TELGESID A JA B ON VÖRRELDES ARHITEKTUURSE PROJEKTIGA KOHANDATUD NING VIIDUD MÜÜRIVÖÖ TSENTRISSE
- VANA TOOLVÄRGI POSTID, MÜÜRIVÖÖ KARKASSI ALUMINE VÖÖ NING TOOLVÄRKIDE ALUMINE VÖÖ ERALDADA KIVIST HÜDROISOLATSIOONIKA

SARIKATE PLAAN
1:100

Nimi: Allkiri: Kuupäev:
Koostas: K. Koemets
Juht: R. Pabori

TTÜ Tartu Kolledž

Objekt: Tallinna Linnaateatri hoone F

Nimi: Tallinna Linnaateatri hoone F
Allkiri: Sarikate plaan
Kuupäev: 1.000
MÄRKUSED:
- PUIDU TUGEVUSKLAASS C24
- TOOLVÄRGI ALUMINE JA ÜLEMINE VÕO ON 100X100 RISTLÕIKEGA EHIITUSPUIDUST, TOOLVÄRGI POSTID ON 100X100 RISTLÕIKEGA EHIITUSPUIDUST, s=1200 mm, l=1200 mm.
- TELGESI A JA B ON VÖRRELDES ARHITEKTUURSE PROJEKTIGA KOHANDATUD NING VIIDUD MÜÜRIVÕO TSENTRISSE
- VANA TOOLVÄRGI POSTID, MÜÜRIVÕO KARKASSI ALUMINE VÕO NING TOOLVÄRKIDE ALUMINE VÕO ERALDADA KIVIST HÜDROISOLATSIOONIGA
- MÜÜRIVÕO KARKASSI ALUMINE VÕO JA TOOLVÄRKIDE ALUMINE VÕO ON SÜGAVIMMUTATUD PUIDUST
- MÜÜRIVÕO BETOONI KLASSE C25/30
- MÜÜRIVÕO KARKASS KINNITATAKSE BETOONI M8 KEEMILISE ANKRUGA, TUGEVUSKLAASS 4.6

TOOLVÄRKIDE PLAAAN
1:100

TTÜ Tartu Kolledž
MÄRKUSED:
- SARIKATE, TOOLVÄRKLIDE JA MÜÜRIVÖÖ KARKASSI PUIDU TUGEVUSKLASS ON C24
- SARIKATE FIKSEERIMISEKS KASUTATAKSE NURGIKUID 80X80X60X2,5; S355
- VANA TOOLVÄRGI POSTID, TOOLVÄRKLIDE ALUMISED VÖÖD JA MÜÜRIVÖÖ KARKASSI ALUMINE VÖÖ TULEB ERALDADA KIVIST HÜDROISOLATSIOONIGA
- MÜÜRIVÖÖ KARKASSI ALUMISE VÖÖ KINNITAMISEKS BETOONI KASUTATAKSE MB KEEMILISI ANKRUID TUGEVUSKLASSIGA 4.6
- KATUSE KONSTRUKTSIOONI KIHID ON ESITLETUD FRAGMENDINA KATUS K-1, MÕÖTKAVA 1:10
- NURGIKUTE FIKSEERIMISEKS KASUTATAKSE KRUVISID, d=6 mm

KATUS K-1
1. Valtsplek
2. Roovi laud 100X25 mm, C16, s=200 mm
3. Tuulestärist 50X50 mm, C16
4. Allustraat
5. Tuulestärist VKL 13 mm/Distantsiplaat 50X50 mm, C16
6. Isover KL 35 200 mm/Sarikas 50X200 mm, C24
7. Isover KL 35 100 mm/Karkass 100X50, C16, s=600 mm
8. Aurulõõk 0,22 mm
9. Kipsi karkass 25 mm, C16, s=4,00 mm
10. Kipsiplaat 13 mm
11. Tulestöökkreips 15 mm

SARIKA LÕIGE A-A

TTÜ Tartu Kolledž
MÄRKUSED:
- SARIKATE, NEELUSARIKATE, VEKSELTALA JA VINTSKAPI SEINA KARKASSI PUIDU TUGEVUSKLASS ON C24
- TÖPELTSAKAD ÜHENDATAKSE KEERMELOATTIDEGA M8, TUGEVUSKLASSIGA 4,6
- SARIKATE FIKSEERIMISEKS KASUTATAKSE NURGIKUID 80X80X60X2,5, S355
- NURGIKUTE FIKSEERIMISEKS KASUTATAKSE KRUVISID, d=6 mm
- KATUSKONSTRUKTSIOONI KIHID ON ESITLETUD FRAGMENDINA KATUS K-1, MÕÖTKAVAS 1:10
- SEINAKONSTRUKTSIOONI KIHID ON ESITLETUD FRAGMENDINA SEIN S-1, MÕÖTKAVAS 1:10
MÄRKUSED:
- SARIKATE JA MÜÜRIVÕÓ KARKASSI PUIDU TUGEVUSKLASS ON C24
- SARIKATE FIKSEERIMISEKS KASUTATAKSE NURGIKUID 80X80X60X2,5; S355
- NURGIKUD FIKSEERITAKSE KRUVIDEGA, d=6 mm
- MÜÜRIVÕÓ KARKASSI ALUMINE VÕÓ TULEB ERALDADA BETOONIST HÜDROISOLATSIOONIGA
- MÜÜRIVÕÓ KARKASSI ALUMINE VÕÓ ON SÜGAVIMMUTATUD PUIDUST
- MÜÜRIVÕÓ KARKASSI ALUMINE VÕÓ KINNITAMISEKS BETOONI KASUTATAKSE M8 KEEMILISI ANKRUID, TUGEVUSKLASSIGA 4.6

RAÄSTA SÕLM
1:10

TTÜ Tartu Kolledž
MÄRKUSED:
- TEGEMIST ON KONSTRUKTIIVSE JOONISEGA
- HARJA SÕLMES KASUTATAKSE KASITSI TAHUTUD PUIDUST LAPPI TUGEVUSKLAASIGA C24, t=50 mm
- HARJA SÕLME FIKEERIMISEKS KASUTATAKSE KRUVISID, d=6 mm