Experimental Analysis of Combustion Characteristics of Estonian Oil Shale in Regular and Oxy-Fuel Atmospheres

LAURI LOO
TALLINN UNIVERSITY OF TECHNOLOGY
School of Engineering
Department of Energy Technology

This dissertation was accepted for the defence of the degree of Doctor of Philosophy in Engineering 03/07/2018

Supervisor: Professor Alar Konist
School of Engineering
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Professor Andres Siirde
School of Engineering
Tallinn University of Technology
Tallinn, Estonia

Opponents:
Professor Ben Anthony
Centre for Power Engineering
Cranfield University

Ants Martins, PhD

Defence of the thesis: 22/08/2018, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement, submitted for the doctoral degree at Tallinn University of Technology, has not been previously submitted for doctoral or equivalent academic degree.

Lauri Loo

signature

Copyright: Lauri Loo, 2018
ISSN 2585-6898 (publication)
ISBN 978-9949-83-300-9 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9949-83-301-6 (PDF)
Eesti põlevkivi põlemiskarakteristikute eksperimentaalne analüüs taivalises ja oxy-fuel keskkonnas

LAURI LOO
List of Publications

Author’s Contribution to the Publications

The author’s contributions to the publications in this thesis are as follows:

I The author contributed in the development of the calculation model and in the interpretation of results.

II The author was the first and corresponding author. Moreover, the author designed the experiments, interpreted the results, and had the leading role in writing the paper.

III The author designed and performed the experiments and contributed to the interpretation of results.

IV The author was the first and corresponding author and was a member of the experiment design and implementation team. The author also interpreted the results and had the leading role in writing the paper.

V The author was the first and corresponding author and was a member of the experiment design and implementation team. The author also interpreted the results and had the leading role in writing the paper.
Introduction

The increasing global population and improving living standards result in a growing demand for energy. The main energy source during the last century has been fossil fuels. This results in large emissions of carbon dioxide (CO₂), which is believed to be the main cause of climate change and global warming. Decreasing the CO₂ emission has been set on high priority internationally. There are various methods of decreasing the CO₂ emission (Figure 1). According to International Energy Agency predictions of primary energy supply for the next century, a combination of different CO₂ emission reduction methods could be used to limit the global warming to 2 °C by 2050. Increase in efficiency, renewables, and carbon capture and storage (CCS) are highlighted as solutions with the highest impact.

Figure 1. CCS contributes 14% of total emission reduction through 2050 in decreasing global warming pace to 2 °C compared to predicted 6 °C (business as usual scenario) [1].

CCS refers to a number of technologies that capture CO₂ at some stage from processes such as combustion or gasification. There are various CCS solutions proposed. CO₂ could be removed before or after combustion, but the most energy- and cost-effective CCS technology considered is the oxy-fuel technology [2]. The concept of oxy-fuel technology involves removing nitrogen (N₂) from the combustion process: combustion will occur in oxygen (O₂) and recycled flue gas. As a result, the formed flue gas mainly consists of CO₂ and water vapour. Oxy-fuel technology avoids the costly CO₂ separation from N₂; however, it entails additional expenditure on O₂ production. It is possible to retrofit existing combustors to oxy-fuel combustors, which avoids the cost of redesigning and building new facilities and allows faster transition to zero carbon emissions.

Estonia is a part of the European Union and all global trends, including the encountered challenges, are also valid here. The main energy provider and as well the largest CO₂ emitter in Estonia has been the oil shale industry [3]. In the light of climate change and decline of old equipment, new solutions for energy supply are required. It is even more alarming that not only Estonia, but also the entire Baltic Sea region is facing energy deficit: the old power units have been exhausted and new investments are not made due to uncertainties in regulatory policies [4], [5]. Despite concentrated research on different renewable solutions, none is ready to cover the base load of a developed cold and plain country. Applying CCS technology on oil shale combustion would enable a CO₂ emission-free power production.
The main difference of oxy-fuel combustion from regular firing is that the combustion occurs in a CO₂-based environment instead of N₂. This affects combustion of organic matter and reactions of mineral matter [6]. The pollutant content in flue gas may increase and cause difficulties in further processing the CO₂. The changes in properties of produced ash, particularly because Estonian oil shale has high content of mineral matter, may ease the use of waste. The most altered processes may require different designs of equipment to reach a complete burnout of fuel. To estimate the listed changes, theoretical calculations and a number of experiments were conducted, beginning from thermogravimetric analysis (TGA) using a few milligrams of sample per experiment, up to circulating fluidised bed combustion (CFBC) experiments firing 24 kg fuel per hour.

The ultimate goal of this research was to acquire base knowledge for oil shale oxy-fuel CFBC, i.e. to find and examine possible technological bottlenecks caused by peculiarities of Estonian oil shale. The objective set for this work was to investigate possible changes in Estonian oil shale CFBC in oxy-fuel mode compared to conventional CFB firing. To be more precise, this work aimed to analyse the following:

- combustion process of a particle,
- mineral matter behaviour,
- produced flue gas pollutant content, and
- CO₂ formation and emission.

In order to achieve the above goals, extensive experimental work was conducted on a thermogravimetric analyser, a batch reactor, and a CFB combustor.

This dissertation is based on five papers and consists of four chapters. Chapter 1 includes a literature overview of CCS and oxy-fuel combustion research as well as hypothesis applicable for Estonian oil shale utilisation. Chapter 2 describes the materials and details of experiments including devices, applied conditions, boundaries, and simplifications. Chapter 3 summarises the results of experiments and highlights the most important ones: at first, predictions from a theoretical study [Paper I]; then a research of reactions in mineral matter and combustion products [Paper II-III]; an investigation of ash properties, i.e. experimental work on a batch reactor [Paper III]; and combustion experiments on a circulating fluidised bed (CFB) combustor—acquiring data about real combustion, ash formation, and potential emissions [Paper IV–V]. Chapter 4 concludes the results of this research. The papers presented offered new information about oil shale oxy-fuel combustion, and for the first time, the results of oil shale oxy-fuel CFBC products.

Further studies concerning oxy-fuel combustion of oil shale should explore the possibilities of increasing O₂ content in combustion gas. This may decrease the measurements in the combustor and therefore lead to smaller capital cost. Oil shale ash and oxy-fuel environment influence sediment formation on heating surfaces and corrosion. Another interesting topic is oil shale and biomass co-firing in oxy-fuel CFB. This solution can lead to negative CO₂ net emissions, because CO₂ from biomass is considered neutral.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ash content</td>
</tr>
<tr>
<td>ar</td>
<td>As-received basis</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon capture and storage</td>
</tr>
<tr>
<td>CFB</td>
<td>Circulating fluidised bed</td>
</tr>
<tr>
<td>CFBC</td>
<td>Circulating fluidised bed combustion</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>D</td>
<td>Dry basis</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>ELPI+</td>
<td>Electrical low-pressure impactor</td>
</tr>
<tr>
<td>FC</td>
<td>Fixed carbon</td>
</tr>
<tr>
<td>LHV</td>
<td>Lower heating value</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass-to-charge ratio</td>
</tr>
<tr>
<td>N₂</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitric oxide and nitrogen dioxide as nitrogen dioxide</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>PC</td>
<td>Pulverised combustion</td>
</tr>
<tr>
<td>QMS</td>
<td>Quadrupole mass spectrometry</td>
</tr>
<tr>
<td>RFG</td>
<td>Recycled flue gas</td>
</tr>
<tr>
<td>SOₓ</td>
<td>Sulfur oxides as sulfur dioxide</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>W</td>
<td>Moisture content</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence spectrometer</td>
</tr>
</tbody>
</table>
1 LITERATURE REVIEW

1.1 CO₂ emissions

The world primary energy supply relies on three fossil fuels: oil, coal, and natural gas [7]. During the period from 1990 to 2015, the world’s primary energy supply increased by 60%. Renewable energy sources comprised a considerable part of the total supply, but replacing them with fossil fuels requires more time and breakthrough in technology.

To meet future targets for the reduction of greenhouse gas emissions, a number of simultaneous actions are necessary. Arrangements for reducing greenhouse gas emissions often reduce co-emitted air pollutants, bringing benefits to air quality and human health. Improvements in air quality and health benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future [8]. To attain the set objective, fuel and energy efficiency has to be increased and new renewable energy sources must be applied. Wind and solar energy are periodic and need energy storage solutions to maintain constant power. Fossil fuel power stations are able to vary their output in response to changes in demand, and thus, CCS reduces the need for large-scale energy storage that are still to be developed [1], [9]. CCS is a way of reducing CO₂ emissions from existing sources and coping with changing power demand.

According to the International Energy Agency [10], global CO₂ emissions reached 32.3 GtCO₂ in 2015, which is 0.1% less than that in 2014. The decrease was achieved by changes in fuel mix. In the USA and EU, the share of coal in energy mixture decreased: it was replaced by natural gas. Over 40% of the global anthropogenic CO₂ emissions were caused by power and heat generation. Most of the world’s electricity is produced in pulverised coal combustion plants [11]. Coal combustion was responsible for approximately 45% of CO₂ emissions, with 31% emitted from coal-fired power plants [7]. Coal will remain a major energy resource for the next few decades, especially in China and India.

For pulverised combustion (PC), the solid fuel is ground below 70 μm and fired in the furnace at temperatures of 1300–1400 °C. Such high temperatures promote formation of nitrogen oxides (NOₓ), and due to ash slagging and fouling, deposits form on heat exchangers; hence, active methods are required to maintain heat transmission. For pollution control, sulfur oxide (SOₓ), NOₓ, and particulate matter removal equipment is required. When firing solid fuel in a CFB boiler, the fuel has to be ground to 3–6 mm. Circulating solid matter allows reaching burnout at considerably lower temperatures (760 to 930 °C) [12]. The lower temperatures and circulating solid matter result in decreased pollutant generation, and thus, the investments into pollutant control equipment are smaller. Regardless of the combustion technology, CO₂ emissions will continue to be a major environmental concern.

1.2 Solid fuel combustion in Estonia

Power in Estonia is mainly produced from oil shale [3], [13]. Combustion of Estonian oil shale is challenging [14], [15]. The combustion technologies applied for Estonian oil shale have been following the development of solid fuel combustion systems. Oil shale firing in Estonia started with grate firing in the 1920s, when grate firing was the only known industrial combustion technology. Large-scale industrial firing of Estonian oil shale in PC boilers started in 1959. An advantage of PC is higher heat flux (MW/m²), which leads to
reduced dimensions and higher efficiency [16]. The first oil shale power plants with high steam parameters were utilising PC technology. The power plants had consistent problems with deposits formation. The calcium-rich ash melts at relatively low temperatures and forms bound sediments on heating surfaces. High alkali and chlorine content of oil shale ash caused significant corrosion and fouling problems in the PC units [17]. SO₂ and particulate matter emission were high (2100 mg/Nm³ @ 6% O₂) [18]. The high ash content of the fuel (over 50%) is an environmental and technical challenge [19], [20]. Even today, most of the alkali ash is still landfilled, but on the positive side, the ash at the landfills sequestrates up to 10% of previously emitted CO₂ from the atmosphere [21], [22].

The introduction of CFB boilers for oil shale combustion has resolved many of the oil shale firing problems. No significant fouling or corrosion of convective heat exchangers has occurred during the more than ten-year exploitation period. Due to the inherent lime content of oil shale and suitable temperature in the CFB furnace, SO₂ emission was reduced considerably (the concentration was nearly zero) [23], [24]. Moreover, because of the relatively low furnace temperatures and low N₂ content in Estonian oil shale, no deNOx facilities are required. The improved efficiency, decreased carbonate decomposition, and improved steam turbines in CFB power units have decreased the specific CO₂ emission of power production by nearly 24% [23].

For power production from Estonian oil shale, two different combustion technologies are still in use: PC and the newer CFBC. In addition, a new 300 MWₐl CFB unit is under commissioning. The new boiler will be fuel flexible by design: it will be capable of burning 10% of oil shale retort gas, 50% of biomass, and 20% of peat in oil shale blend [25]. In addition, there are areas reserved for future installation of CCS solution for the new power plant.

1.3 Carbon capture and storage

CCS involves three main steps [6], [26]–[28]: CO₂ capture; compression and transport by pipeline or tankers; and storage or utilisation. Capture is possible either before combustion or after combustion using different processes (see Figure 2).

Pre-combustion capture from coal and gas and CO₂ separation by physical absorption are options that could be applied to integrated coal gasification combined cycle and natural gas combined cycle plants.

Post-combustion capture options include CO₂ chemical absorption from flue gas and oxy-fuel combustion. The issues concerning oxy-fuel combustion will be discussed later. Other separation methods such as using membranes are being considered as a potential longer-term option for both pre-/post-combustion capture, alone or in combination with other absorption techniques.

After capture or separation, CO₂ must be compressed and transported by pipeline or tankers. CO₂ storage, or sequestration, can be accomplished through geologic storage, ocean storage, industrial use, or mineral sequestration [29]. The options for storage and utilisation of CO₂ will be introduced later. Several CCS technologies are likely to co-exist in the future, but all the options require further research and development to improve efficiency and reduce cost.
1.4 Oxy-fuel combustion

Designs of oxy-fuel CO₂ recovery power plants for pulverised coal were already proposed by a number of authors in the 80s [30], [31]. It was found that the process is more economical than other CO₂ recovery techniques [32]. The recovered CO₂ can be sequestered into deep ocean [33] or underground [34], [35]. More feasible options would be using the CO₂ for enhanced oil recovery [36] or utilising for other solutions explained briefly in section 1.5 on page 17.

Extensive overviews of oxy-fuel combustion and oxy-fuel CFBC development and status are available [6], [26], [27], [37], [38]. The concept of oxy-fuel technology involves the removal of N₂ from the combustion process. Air is replaced with a mixture of O₂ and recycled flue gas. The O₂ is supplied by a cryogenic air separation process, which is the only commercially available mature technology. The general flowsheet of the oxy-fuel technology power generation is shown in Figure 3. O₂ is produced in an air separation unit (ASU). The combustion occurs in a boiler where O₂ and recycled flue gas are used for combustion. The flue gas is cleaned and part of it is recycled into the boiler. As a result, the formed flue gas mainly consists of CO₂ and water vapour, and the volume of flue gas decreases considerably. This makes it easier to compress and transport CO₂ to the storage or utilisation site [39], [40].
Figure 3. Schematics of entire oxy-fuel combustion power plant for carbon capture and storage [41].

Because the CFBC technology is relatively young and the majority of world power plants are using PC, most of research projects in oxy-fuel combustion are associated with pulverised coal combustion [6], [27]. Fluidised bed or CFB combustion could be an alternate technology to PC, when employing oxy-fuel technology. The synergy of the technologies allows controlling combustion temperatures despite relatively low flue gas recycle ratios. Fans and blowers consume less power because the draft system handles higher molecular weight gas. O_2 concentration in the recycled flue gas can be kept to a low and safe level, while additional O_2 can be introduced through O_2 nozzles separate from the burner or in the secondary gas inserting points. Transition from air to oxy-fuel combustion is potentially easier relative to oxy-fuel PC, because in a CFB, there is a large amount of inert bed material that helps to control the bed temperature [38].

Although functioning oxy-fuel CFB pilot plant units are still limited in number (see Figure 4), studies are being undertaken in many countries. To date, most test works have been performed at small scale (in < 100 kW range), and/or using bottled gases to supply the suitable combustion gas, instead of recycling flue gas, to achieve the necessary gas velocity and solid circulation rate in terms of heat transfer requirement [9].

Figure 4. Historical progression of scale of oxy-fuel CFB pilot and demonstration plants [6].
1.4.1 Changes in combustion
The main causes of differences between conventional air and oxy-fuel combustion are the different physical properties of CO$_2$ and N$_2$: thermal conductivity, density, specific heat capacity, gas emissivity, and O$_2$ diffusivity. The solid fuel in combustion is usually investigated at first in small scale (TGA and different batch reactors) and then in laboratory scale combustors (10–200 kW$_{th}$). The results from laboratory experiments allows moving on with the industrial design. Oxy-fuel combustion experiments with coal have proved that the oxy-fuel atmosphere considerably changes the combustion process [42]–[47]. Compared to combustion in air, the particle burnout is reached later and ignition is delayed in oxy-fuel mode. Increasing the O$_2$ content decreases the difference. Niu et al. [42] suggested higher O$_2$ concentration to reach burnout in sufficient time. O$_2$ enrichment elevates temperatures and improves combustion efficiency [48], but experiments of Czakiert et al. [49] at elevated O$_2$ partial pressure (35%) resulted in increased pollutant formation. The N$_2$ and sulfur conversion ratios to oxides increased due to the considerably elevated temperature in the furnace. Generally, it is considered that the optimum flue gas recycle ratio is 0.7. This results in an oxidant environment that typically contains 25 to 30% O$_2$ and leads to similar heat transfer characteristics to those of air [9]. This allows obtaining ignition properties and combustor temperatures that are similar to those for conventional combustion in air [26], [39], [50].

1.4.2 Nitrogen oxides
Nitrogen oxides are considered to be formed by three pathways [51]: thermal, prompt, and fuel nitrogen-caused nitric oxide (NO). Thermal NO formation results from N$_2$ and O$_2$ reacting at high temperatures (above 1500 °C) to form NO. Prompt NO is formed when hydrocarbon radicals in fuel-rich zones attack molecular N$_2$ to form cyanide species, which subsequently form NO. Fuel NO is derived from N$_2$ in the fuel. The formed NO is later oxidised to NO$_2$; thus, the emissions are expressed as NO$_x$, i.e. nitrogen oxides as NO$_2$.

One advantage of oxy-fuel technology is its potentially lower NO$_x$ production. Significant reduction in NO$_x$ emission rate can be achieved with oxy-fuel combustion compared with air PC, as thermal and prompt NO$_x$ formations are eliminated owing to the absence of air N$_2$ [40]. CFBC already offers low NO$_x$ emissions due to low furnace temperature, which prevent thermal and prompt NO$_x$ formations. Results from different oxy-fuel CFB experimental facilities are relatively diverse [52]–[57]. Overall, the results indicate that N$_2$ behaviour in oxy-fuel CFB will be similar to that of firing in regular CFB, and no drastic changes are expected in fuel N$_2$ conversion to oxides.

N$_2$ content in the Estonian oil shale is low: below 0.1% in dry fuel. Owing to this and the low temperatures in CFB combustor, no problems with excess NOx formation have been recorded in utility boilers [23]. Applying oxy-fuel CFBC on Estonian oil shale should result in similar pollutant formation as from conventional CFBC.

1.4.3 Sulfur oxides
SO$_x$ is an important pollutant generated by combustion including oxy-fuel combustion. The flue gas of oxy-fuel combustion is meant for storage or utilisation, but SO$_x$ in the flue gas causes problems in its further use [58, p. 2]. One of the advantages of CFBC is its in situ sulfur capture ability [59]. The SO$_2$ concentration can be reduced by injecting sorbents, such as limestone or dolomite, into the furnace. The calcination process depends on the CO$_2$ partial pressure and temperature (Figure 5). If the CO$_2$ partial
pressure is lower than the equilibrium pressure, limestone decomposes and forms CaO and CO₂ (Eq. 1). CaO then reacts with SO₂ (Eq. 2). This process is called indirect sulfation.

\[
\text{CaCO}_3(s) \leftrightarrow \text{CaO}(s) + \text{CO}_2(g) \quad \text{(Eq. 1)}
\]

\[
\text{CaO}(s) + \text{SO}_2(g) + 0.5\text{O}_2 \leftrightarrow \text{CaSO}_4(s) \quad \text{(Eq. 2)}
\]

If the calcination process does not take place, then SO₂ may react directly with CaCO₃ (Eq. 3).

\[
\text{CaCO}_3(s) + \text{SO}_2(g) + 0.5\text{O}_2 \leftrightarrow \text{CaSO}_4(s) + \text{CO}_2(g) \quad \text{(Eq. 3)}
\]

![Figure 5. Equilibrium CO₂ pressure over limestone [60].](image)

Estonian oil shale has a high content of carbonate minerals (mostly calcite and dolomite). In air-fired atmospheric units, sulfur capture occurs via relatively rapid calcination and much slower sulfation reactions. In oxy-fuel CFB combustors, sulfation can occur directly without the calcination step [61]. Theoretical calculations [38], [62]–[64] and experiments [65], [66] suggest that carbonate minerals do not fully decompose under oxy-fuel combustion environment and the sulfur binding rate decreases. On the contrary, some other experiments [52], [61], [67] show a decrease in sulfur emissions or increased sulfur capture efficiency when applying oxy-combustion. If the sulfur binding rate decreases, then an additional deSOₓ facility may be necessary.

1.4.4 Behaviour of mineral matter

When solid fuel is fired in a combustor, the mineral matter in the fuel forms ash, which separates into different ash flows with different particle size distributions and chemical-mineralogical compositions. The mineral matter in fuel is influenced by the temperature and gas composition in the furnace. In a CFB combustor, the temperatures are relatively low (< 900 °C) compared to PC furnaces, where temperatures may extend to 1400 °C. Due to lower temperatures, fewer reactions involving mineral matter occur. In a CFB combustor, absorbed and crystal water is released from minerals; carbonate minerals and marcasite decompose and sulfur is bound into anhydrite [16], [68]. When firing fuel in a PC boiler, the mineral matter is subjected to various reactions: thermal decomposition, volatilisation, and formation of novel minerals [69]–[71]. Estonian oil shale has a high ash content, and thus, the processes occurring in mineral matter become even more important.

As mentioned before, carbonate minerals (dolomite and limestone) have an important part in SO₂ binding from flue gas. Rahiala et al. [63] modelled the limestone particle behaviour in an oxy-fuel CFBC process. Limestone and dolomite calcination reaction in oxy-fuel atmosphere has been studied widely [72]–[76], but usually in
contents of additive/sorbent for SO$_2$ binding. Estonian oil shale already contains a considerable amount of calcite and dolomite; thus, no additive is necessary.

In general, it has been noted that there are no major changes in ash composition, although the relative amount of mineral phases changes [77]–[79]. The results of different drop tube experiments indicate that the furnace temperature and fuel mineral part are the major factors affecting formation of gaseous compounds and ash rather than the main gas, which still seems to affect the fine ash (submicron) composition and the ash deposition mechanisms [80]. Mapping the ash produced is important in finding solutions to turn ash or part of it into products [81].

1.5 Carbon storage and utilisation

Carbon capture solutions are only one side of CCS: CO$_2$ needs to be utilised or stored safely and stably. Oxy-fuel combustion simplifies CO$_2$ transportation and utilisation by already creating a concentrated CO$_2$ flow.

CO$_2$ can be stored into depleted oil/gas reservoirs and coal seams, but the largest capacities and most widespread locations are offered by deep saline aquifers [35]. Storage of CO$_2$ with enhanced industrial production has great potential to enable large-scale CO$_2$ storage at reasonable cost. The solution can help in storing CO$_2$ and enhancing industrial production at the same time. CO$_2$ injection can enhance oil [82], natural gas [83], coal bed methane [84], and shale gas recovery [35]. Injecting CO$_2$ into the ground could also be used for improving geothermal power generation [85] and even for in situ uranium leaching [86]. Most of the technologies are still in the phase of research, except for enhanced oil recovery. This solution has been successfully used already for decades [87].

The goal of CO$_2$ mineralisation and industrial utilisation is to trap CO$_2$ permanently in stable minerals. CO$_2$ can be used as a feedstock for chemical engineering and various innovative construction materials can be manufactured. For example, concentrated CO$_2$ flow could be used for precipitated calcium carbonate production [88]–[90]. Overall, the carbonisation industry is still in a demonstration phase.
2 EXPERIMENTAL METHODS

This dissertation is based on five papers. The materials and methods used are described in detail in the papers, but an overview of the materials, experimental devices, and methods applied is presented here. First is a short description of the material used—the Estonian oil shale. This is followed by an overview of the methods and experiments conducted to investigate the oxy-fuel combustion: the theoretical study [Paper I], research on oil shale oxy-fuel combustion in TGA [Paper II], batch reactor experiments [Paper III], description of real combustion experiments in a CFB combustor [Paper IV–IV], and accelerated calcination experiments [Paper V].

2.1 Materials

2.1.1 Oil shale

Oil shale is generally rich in bituminous organic matter that is processed worldwide in few countries including China, Brazil, Jordan, and Estonia as an energy resource, although the large reserves are known also in the U.S.A., Australia, Russia, and elsewhere [91]. However, the increasing need for energy, depletion of easily accessible oil reserves, and concurrently increasing oil prices have significantly raised the interest in oil shale mining and processing in the last decades.

In this research, Estonian kukersite oil shale from Estonia and Ojamaa underground mines were used. The oil shale is a solid fuel and its organic matter has a relatively high H/C molecular ratio resulting in smaller CO₂ emission compared to coals. The oil shales worldwide are as diverse as coals. Estonian oil shale has a high content of mineral matter, which consists of carbonaceous, sandy-clay-carbonaceous, and sandy-clay parts [16]. The molar ratio of Ca/S is 7–10 in oil shale; this exceeds by over 2–3 times the ratio of Ca/S sufficient to complete the capture of SO₂ [24]. The thermal decomposition of carbonaceous minerals liberates CO₂. A higher CO₂ concentration during combustion may change the decomposition reactions of carbonates and decrease the CO₂ emission [76]. Therefore, implementation of oxy-fuel technology offers many benefits.

Estonian oil shale for the oxy-fuel experiments [Paper II and III] was sampled from crushed oil shale mined in Estonia underground mine. The sample was collected from fuel flow to utility power plants. The oil shale was dried and crushed by passing through a 2 mm sieve opening. The median size of the oil shale was 0.25 mm. In CFB experiments [Paper IV–V], oil shale from Ojamaa underground mine was used. The fuel was sieved to pass through 3 mm openings.

Table 1. Proximate and ultimate analysis of the underground mine Ojamaa oil shale.

<table>
<thead>
<tr>
<th>LHV, MJ/kg</th>
<th>Proximate analysis, wt. %</th>
<th>Ultimate analysis, wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qₜₙₑₜ, Wₐr, *Vₐr₂r, FC₂r, A₂r, C₂d, N₂d, S₂d, H₂d, TOC₂d, (CO₂)₂₂₉₉₉₉, mineral</td>
<td></td>
</tr>
<tr>
<td>8.56</td>
<td>0.5, 47.5, 1.3, 50.7, 27.4, 0.1, 1.6, 2.7, 21.8, 20.6</td>
<td></td>
</tr>
</tbody>
</table>

* VM₂r includes mineral CO₂ from decomposition of carbonate minerals

The CFBC experiments [Paper IV–V] were carried out with typical Estonian oil shale from Ojamaa underground mine. The fuel was dried, crushed, and sieved through 3 mm openings. The fuel ultimate and proximate analyses are listed in Table 1. The laboratory ash composition is presented in Table 2. The Ca/S molar ratio in the oil shale was 8.0.
Table 2. Chemical composition of oil shale laboratory ash, wt. %.

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>SO₃</th>
<th>MgO</th>
<th>Fe₂O₃</th>
<th>K₂O</th>
<th>Cl</th>
<th>Na₂O</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43.9</td>
<td>27.5</td>
<td>8.6</td>
<td>5.5</td>
<td>4.9</td>
<td>4.8</td>
<td>3.3</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

2.2 Equipment and methods

2.2.1 Calculation model for oil shale oxy-fuel CFBC

The calculations of the flue gas volumes in oxy-fuel CFBC of oil shale were performed under a steady-state regime, implementing a process for which the schematic is shown in Figure 6. The flue gas was recycled after a water vapour condenser [Paper I].

![Figure 6. Schematic of the proposed oxy-fuel combustion process [Paper I].](image)

The temperature in the CFB boiler furnace was presumed to be in the range of 750–850 °C. This ensures sufficient sulfur binding. The bed temperature in the CFB boiler was mainly controlled by adjusting the ash recirculating ratio and temperature. This feature can be used to reduce the recycled flue gas (RFG) ratio in the CFB when retrofitting to oxy-fuel combustion [92].

Based on an overview article [40], the O₂ content after the ASU was assumed to be 95%vol with 5%vol of N₂. The oil shale calculations were performed for an excess O₂ constant value of 5%vol at the boiler outlet. In the steady-state regime, the CO₂ content per kg fuel at the boiler outlet for different RFG ratios was calculated. The gas volume calculations for oil shale oxy-fuel CFBC for different oil shale LHV s and different recycled flue gas ratios were performed.

2.2.2 TGA, DSC, and QMS analyses

TGA, differential scanning calorimetry (DSC), and quadrupole mass spectrometry (QMS) were used to obtain data with high precision from different processes that occur in the oil shale during the thermal treatment [Paper II]. TGA is a common technique to rapidly investigate and compare thermal events and kinetics during the combustion and pyrolysis of a material. The gas environment in TGA was well controlled and even water vapour could be added to the gas mixture in the analyser. TGA measured the mass loss of the sample as a function of time and temperature. QMS improved the analyses of the processes by adding information about the evolving gases. The temperatures at which the mass changes occurred were viewed using TGA. DSC added thermal information about the processes that took place during the measurement.

The thermal analyses were performed on Netzsch STA 449 F3 Jupiter Simultaneous Thermal Analyser (TG-DSC/DTA Apparatus) coupled with a Netzsch QMS 403D Aeolos (mass 1–300 amu). The samples were analysed in Pt/Rh crucibles with lid and removable liner of thin walled Al₂O₃ in the gas. A standard sample mass of 20±1 mg was used. The total gas flow during all the measurements was 60 ml/min. Different gas mixtures...
(see Figure 7) were used to simulate oxy-fuel and conventional combustion conditions in TGA. The samples were equilibrated at 40 °C for 45 min, and then heated at 10 °C/min up to 1240 °C. The temperature and enthalpy measurements were calibrated with In, Sn, Zn, Al, and Au standards. The evolved gas was analysed using QMS. Mass/charge (m/z) values from 8 to 150 were collected with a sampling rate of 0.2 s. All measurements were performed at least twice for sufficient reproducibility.

Figure 7. Gas mixtures used in TGA experiments [Paper II].

2.2.3 Batch reactor experiments
Experiments in simulated oxy and regular CFB furnace conditions were conducted in a batch reactor to investigate the produced ash [Paper III]. The batch reactor (Figure 8) was designed to burn up a portion of solid fuel in a controlled environment. The experimental facility consists of a reactor-heater, temperature control system, gas mixing-control system, steam generator-insertion system, flue gas analyser, and data acquisition and control system. The gas mixing-control system consisted of mass flow controllers, calibrated according to the gas to be used, with check valves. Water vapour of up to 25% was added to the gas mixture with the steam generator. To prevent water vapour condensation in the gas pipes, a heated supply channel was used. The batch reactor was designed to meet working temperatures of up to 950 °C.

Figure 8. Schematic of batch reactor and a sample holder.
Combustion experiments were performed at temperatures of 800 °C, 850 °C, and 900 °C while varying N₂, O₂, and CO₂ ratios. In addition to different temperatures and air composition variation, the furnace was injected with water vapour to determine the moisture influence on formation of solid combustion products.

Approximately 5 g of oil shale was loaded to the sample holder (Figure 8) for each experiment. A stainless steel bound net sample holder was used. In each run, the sample holder with sample was loaded together into the balance chamber. The balance chamber was filled with gas mixture used in the experiment. Then the sample holder was dropped into the reactor. Because the combustion and reactions with oil shale mineral part and coke takes some time, the sample was removed from the reactor after 1.5 h. The holding time was selected according to earlier studies on the behaviour of oil shale carbonates [93].

The mineral composition of crystalline phases in ash and raw oil shale was determined using powder X-ray diffraction (XRD) method with a Bruker D8 diffractometer. The micromorphology of ash was investigated using scanning electron microscopy (SEM) imaging, and analysis of samples was performed on a variable pressure Zeiss EVO MA15 SEM equipped with Oxford X-MAX energy dispersive detector system and AZTEC software for element analysis.

2.2.4 Experimental oxy-fuel circulating fluidised bed (CFB) combustor

The combustion experiments [Paper IV] were conducted on a 60 kWth CFB combustor, which was designed and constructed for fuels with high (up to 60 wt. %) ash content. The main components of the test facility are shown in Figure 9. The height of the riser was 4.90 m and the inner diameter was 0.12 m. The combustion chamber was isolated with ceramics and a high-temperature thermal isolation material. To minimise leaks, the combustor was enclosed by a stainless steel shell. The fuel was fed using a screw conveyer at a height of 0.49 m and the recirculated solids were fed back at a height of 0.86 m. The secondary and tertiary air inlet ports were located at heights of 0.49 m and 0.86 m respectively.

The combustion air was supplied by a compressor. The simulation of RFG was performed using bottled CO₂ and O₂. All gas lines, i.e. O₂, CO₂, and compressed air, were equipped with mass flow controllers for exact control of the mass flow rates and the ratio of O₂/CO₂. The oxidiser lines were equipped with electrical heaters to maintain the required gas temperature.
Figure 9. The circulating fluidised bed combustion test facility [Paper IV–V].

The test facility was equipped with three independent fuel/bed material feed silos and a gas burner. The main fuel silo was mounted on load cells, which enabled the determination of mass flow rates for solid materials and the calibration of fuel main screw feeder. The control and data acquisition of the test facility was fully automated and operated with a LabVIEW system.

The flue gas composition was simultaneously analysed using a Fourier transform infrared (FTIR) spectrometer. Ash samples were collected from five points: bottom ash (BA), cyclone ash (CA), cooler 1 ash (C1), cooler 2 ash (C2), and fabric filter ash (FA). The ash split of the CFB combustor used in the calculations is presented in Table 3. The chemical compositions of the ashes and fuel were measured using an X-ray fluorescence spectrometer (XRF) and elemental analyser. The particle size distributions in the flue gas [94] were measured using an electrical low-pressure impactor (ELPI+). It electrically charged the incoming particles and then classified them by aerodynamic size into 14 impactor stages.

Table 3. Ash split of CFB combustor.

<table>
<thead>
<tr>
<th>Ash flow</th>
<th>BA</th>
<th>CA</th>
<th>C1</th>
<th>C2</th>
<th>FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt. %</td>
<td>37</td>
<td>7</td>
<td>2</td>
<td>47</td>
<td>7</td>
</tr>
</tbody>
</table>

The oil shale combustion experiments were conducted using three different oxidiser mixtures: air (21% O₂ and 79% N₂), OXY21 (21% O₂ and 79% CO₂), and OXY30 (30% O₂ and 70% CO₂). The purpose of OXY21 was to highlight the differences caused by substituting N₂ with CO₂. Previous experiments [Paper II] had shown that combustion would be slower in a CO₂-based atmosphere; therefore, OXY30, with increased O₂ content, was chosen to ensure a similar temperature field in the furnace. During the experiments, the thermal load of the combustor was 24 ± 3 kW. The OXY30 experiment was conducted on a lower thermal load (12 kW) due to fuel feeder problems. The primary and secondary air ratio was 4:6, because the fuel has high volatile matter content.
2.2.5 Accelerated calcination experiments

In order to simulate natural carbonisation of calcium-rich ash on an ash field, accelerated carbonation experiments of oil shale ashes was conducted in the laboratory [Paper V]. Oil shale oxy-fuel CFBC ashes (OXY21) were mixed with distilled water with a solid to liquid ratio of 1:10. The solution pH increased rapidly to 12. To accelerate the natural carbonisation process, CO₂ was bubbled through the mixture. The mineral CO₂ amount was measured in the samples with an elemental analyser using the total inorganic carbon module. Based on the results, the extent of carbonate decomposition, specific emission of CO₂ from oil shale oxy-fuel combustion, and power production were estimated. The results of the experiments and calculations were compared with previous knowledge of oil shale PC [17] and CFBC [95], [96], and ash behaviour in natural conditions [21], [22].
3 RESULTS AND DISCUSSION

3.1 Predictions of CO$_2$ formation

Oxy-fuel combustion means that the fuel is fired in a mixture of O$_2$ and recycled flue gas. This alters the combustion environment and reactions occurring with mineral matter. The processes occurring in the mineral matter significantly affect the ash production and heat released in combustion. The main thermal effects in the oil shale ash are related to the decomposition of calcite and dolomite, pyrite oxidation, and sulfation. The extent of these reactions affects the amount of heat released, amount of ash and combustion products formed, and ultimately, the flue gas composition.

It was found that for Estonian oil shale combustion in CFB, the recycled flue gas ratio should be maintained higher than 70% to minimise the decomposition of carbonate minerals. This increases the partial pressure of CO$_2$ over the equilibrium state line of the calcite decomposition reaction at the bed temperature. The decrease in decomposition of carbonate minerals decreases CO$_2$ emissions (Figure 10) and leads to an additional increase in heat released during oil shale combustion. The effect depends on the carbonate content of the Estonian oil shale. The positive heat effect could be as high as 0.34 MJ/kg [Paper I].

![Figure 10. Theoretical oxy-fuel CFBC emissions compared to PC and regular CFBC. Extent of carbonate mineral decomposition in the model was 0.28 (minimum possible) for OXY-CFB, 0.7 for CFB, and 0.97 for PC [Paper I].](image)

A comparison with bituminous and anthracite coals indicated that the specific emission of CO$_2$ per input fuel energy for oil shale could be expected to be even smaller than that of the considered coals [Paper I]. This is a strong positive impact that increases the competitiveness of Estonian oil shale compared to coals.
3.2 Oil shale combustion process

In order to investigate oil shale and its mineral matter behaviour in combustion, a number of TGA experiments were conducted. Data from the TGA, DSC, and QMS measurements are shown in Figure 11 and Figure 12. A more thorough description and analysis of the measurements are found in Paper II. During oil shale combustion in TGA, the following major reactions occurred: water removal, decomposition of kerogen, dissociation of volatile matter into bitumen and gases, oxidation of volatile matter and fixed carbon (FC), and decomposition of carbonate minerals.

Figure 11. Oil shale combustion measurements in (A) oxy-fuel and (B) air atmospheres [Paper III]; the gas mixtures contained 10, 20, and 30% O2 and were explained in Figure 7.

The first combustion step was the separation of water vapour. In addition to moisture, the oil shale contains crystal water (clay minerals, such as illite, chlorite, and kaolinite, which separate in the temperature range of 120–140 °C [16]). In the conducted measurements, only a minimal mass loss was observed in the water evaporation zone.
The kerogen volatilisation and char combustion (mass loss 31–33%) occurred in the temperature range of 300 to 715 °C. As visible in all the curves, two outstanding reaction rate peaks are recognised: the first one in the range of 340 to 440 °C and the second one between 500 and 660 °C. The QMS measurements indicate the separation of H₂O, CO, CO₂, and HCl at the first peak of combustion. The second peak of combustion matches the CO₂ and SO₂ peaks (see Figure 12). In this case, the H₂O reading was lower than that during the first phase of combustion, which indicated that hydrocarbons had already burned, and the combustion of aliphatic and aromatic compounds and char occurred during the second phase. The low readings of SO₂ during the first phase of combustion were caused by the combustion of organic sulfur. At 500 °C, marcasite (FeS₂) decomposes; thus, sulfur dioxide was formed, which causes the strong reading of SO₂ during the second combustion phase. This phase consists of the conversion of organic matter into volatiles and FC, oxidation of the formed volatiles, and finally, the combustion of carbon.

Figure 12. Evolved gas QMS measurements of SO₂ (m/z = 48 and 64) and CO₂ (m/z = 44 and 46) [Paper II].

Above 650 °C, all of the succeeding reactions were endothermic, which suggests that the organic compounds were already burned. The mass loss step(s) between 670 and 940 °C indicated the decomposition of carbonate minerals. The results improve the previous knowledge of Estonian oil shale combustion [16] and parallel researches done using TGA coupled with FTIR spectroscopy [47], [97].
3.3 Oil shale oxy-fuel combustion

The significant temperatures of oil shale combustion in TGA are plotted in Figure 13, based on Paper II findings. During all the experiments, the oil shale ignition temperature was similar, but the burnout temperature depended on the O₂ content and carrier gas. A lower O₂ content with CO₂ as a carrier gas leads to a slower burnout of the oil shale. When the O₂ content was increased to 30%, the burnout temperatures in N₂ and CO₂-based mixtures were identical. This indicates that increasing the O₂ content enables a similar combustion process in oxy-fuel mode as in conventional combustor.

![Figure 13. Oil shale combustion parameters measured using TGA. The solid lines represent measurements in air atmospheres whereas the dashed lines represent measurements in oxy-fuel atmospheres [Paper III].](image)

The carbonate decomposition reactions occurred in similar temperature ranges in all air atmospheres (see Figure 11). The dolomite breakdown was merged into the larger calcite decomposition peak in the air atmosphere. In oxy-fuel combustion atmospheres, the start of decarbonisation shifts to higher temperatures (Figure 13) and the reactions occur in two separate parts: decomposition of dolomite (CaMg(CO₃)₂) and then decomposition of calcite (CaCO₃) [5], [10].

The experiments conducted at the batch reactor [Paper III] showed that the decomposition of Ca-Mg carbonate phase (dolomite) was completed in all temperature regimes in various combustion atmospheres. However, the decomposition of CaCO₃ phase (calcite) is significantly delayed at elevated CO₂ levels. It was noticed that Ca-Mg silicate phase formation was proportional to the firing temperature. The results in Paper III suggest that the elevated CO₂ levels and the inhibited calcite decomposition may have a noticeable effect on the SO₂ binding, and consequently, on the stable anhydrite formation in oil shale ash.
3.4 Oil shale oxy-fuel CFBC

After the small-scale laboratory experiments, considerably larger real combustion experiments were conducted in the CFB combustor. The CFBC experiments and results were described in Paper IV. The temperatures in the riser during air operation (Figure 14) were similar to the values used in the oil shale industrial CFB boilers (800 °C) [23]. During the OXY21 operation, the temperature in the riser dropped up to 100 °C, but the temperature in the cyclone exit remained similar. The reason behind the decreased temperatures in the riser might be the slight drop in primary air temperature from 284 to 250 °C together with decreased fuel reactivity [Paper II] and increased heat capacity of the CO2 atmosphere [98]. When the O2 concentration was increased to 30%, the temperature distribution in the CFB was similar to that of air mode. The observation confirmed that in order to achieve a similar temperature field in oxy-fuel mode, the O2 concentration has to be increased [99].

Based on the unburnt carbon content of the ashes and on the flue gas analysis, the combustion efficiency was estimated [94]. Combustion efficiency considered losses due to incomplete combustion. The combustion efficiency of the oil shale fired CFB in air mode was 96.1% and 94.8% in OXY30 mode. Similar combustion efficiency values have been demonstrated by other CFBC test rigs [52]. Most of the losses in the oil shale combustion were attributed to unburnt carbon in ash. The average unburnt carbon content in regular CFBC ash was 1.5%. In the OXY30 mode, the unburnt carbon content in ash slightly increased to 2.2%. The oil shale had a high ash content of over 50% (Table 1). Thus, a slight increase in ash carbon content has a strong influence on the total combustion efficiency. The difference of unburnt carbon content in ash from different experiments was relatively small. During all the CFBC experiments, the unburnt carbon content in the bottom and cyclone ash was below 0.5%, but the fly ash contained almost 5% unburnt carbon. This indicates that the unburnt volatiles condensed and settled in the ash. This was caused by the design of the CFBC test rig. The flue gas was rapidly cooled down directly after the cyclone, and thus, the hot zone for combustion of volatiles was extremely short.

Figure 14. (a) Temperature distribution along the CFB combustor riser and in the cyclone. (b) Temperatures in the CFB combustor riser and thermal load during steady-state operation when using air [Paper IV].
3.4.1 Emissions of oil shale oxy-fuel CFBC

The average pollutant concentrations during the CFBC experiments are presented in Table 4 and analysed in Paper IV. During all the CFBC experiments, the sulfur concentration in flue gas was at very low level (below 25 mg/Nm³ @ 6% O₂). As noted before, during the OXY21 experiment, the temperature in the riser decreased up to 100 °C (Figure 14). Despite the temperature drop, the SO₂ concentration in flue gas remained similar. Even if the higher CO₂ partial pressure and lower temperature in the system inhibited the decomposition of CaCO₃ [Paper III], the calcium content in the oil shale was high enough to achieve an almost complete sulfur binding.

During the CFBC in air, sulfation reaction is indirect. The calcite and dolomite (carbonate minerals) decompose and form lime, which binds sulfur from flue gas and forms anhydrite. Because the regular CFBC ash [Paper IV and V] did not contain considerable amounts of carbonate (Figure 15), it indicates that the sulfur binding occurred via indirect reaction. However, during oxy-fuel CFB experiments, the sulfation occurred probably via direct reaction, because the ashes contained considerable amounts of carbonate, indicating decreased decomposition of carbonate minerals. At the same time, the SO₂ concentration in the flue gas remained at ultra-low levels. Our results suggest that the elevated CO₂ levels and the inhibited carbonate decomposition extent in the ashes do not have a noticeable effect on the SO₂ binding, when oxy-firing Estonian oil shale in CFB.

Table 4. Average emissions of oil shale firing in CFB combustor [Paper IV].

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Air-mode</th>
<th>OXY21</th>
<th>OXY30</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>%_{dry}</td>
<td>10.0</td>
<td>8.5</td>
<td>13</td>
</tr>
<tr>
<td>NOₓ</td>
<td>mg/Nm³ @ 6% O₂</td>
<td>141</td>
<td>156</td>
<td>130</td>
</tr>
<tr>
<td>SO₂</td>
<td>mg/Nm³ @ 6% O₂</td>
<td>< 15</td>
<td>23</td>
<td>< 15</td>
</tr>
<tr>
<td>CO</td>
<td>mg/Nm³ @ 6% O₂</td>
<td>943</td>
<td>2361</td>
<td>337</td>
</tr>
<tr>
<td>Desulfurisation efficiency</td>
<td>%</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>SO₂ emission</td>
<td>mg/MJ</td>
<td>< 8</td>
<td>9</td>
<td>< 4</td>
</tr>
<tr>
<td>NOₓ emission</td>
<td>mg/MJ</td>
<td>34</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>Fuel N₂ conversion ratio</td>
<td>%</td>
<td>20</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>

The other acidic pollutant content that was measured in the flue gas was NOₓ. The NOₓ concentration in flue gas was below 160 mg/Nm³ during all the CFBC experiments (Table 4). The N₂ conversion ratio into NOₓ was up to 24%. A similar value (20–25%) was measured by Jankowska et al. [56] in experiments with bituminous coal. However, Pikkarainen et al. [57] measured higher N₂ conversion ratios (28–50%). Higher N₂ conversion ratios to oxides (> 25%) are expected when firing fuels with low N₂ content. From our experiments [Paper IV and V] and the literature [51], [56], [100], it seems that switching to oxy-fuel combustion did not alter the NOₓ formation, but it is still possible to alter the pollutant formation by secondary air injection and load of a combustor.

Particle matter is a mixture of extremely small particles and droplets that may have harmful health effects. The emissions of such fine matter are under strict control. To evaluate oxy-fuel combustion influence on the formation of such particulates, short measurements were conducted using an ELPI+ [94]. The results showed that the flue gas contained nanoparticles. The median diameter of the particulates increased from 20 to 40 nm, when the combustion mode was changed from regular air to OXY30. At the same
time, the particle count decreased from 13 600 in air mode to 11 100 particles/cm³ in OXY30 mode. This indicates that the particles were present during both experiments in Aitken mode (10–50 nm). These type of particles were probably freshly formed during the condensation of volatiles. The lifetime of such particles is short (minutes to an hour). During the CFBC experiments, the particle concentration in flue gas was stable. It seems that the shift to oxy-fuel mode did not have a considerable effect on particle emissions.

3.4.2 Oil shale oxy-fuel CFBC ash and carbonation

During the experiments, samples were collected from all the ash flows (Figure 9). The results of chemical analysis of the ashes are displayed and analysed in Paper IV. The unburnt carbon content of BA and CA was below 0.7% and was 0.3–4.7% for the fly ashes (Figure 15). Typically, for oil shale, the ash had a high calcium content, followed by silica, magnesium, and alumina. The chemical compositions of the ashes were similar during all the CFBC experiments.

The mineral CO₂ content of the oxy-fuel CFBC ashes was considerably higher than in the ashes obtained in air mode (Figure 15). The composition and percentage of ash flows depend on the type of boiler, load, and fuel. From the total carbon in the fuel, 20% was inorganic (see Table 1). It is theoretically possible to reduce the extent of decomposition of carbonate minerals to 28% in an oxy-CFB combustor firing Estonian oil shale [Paper I]. The minimum is defined by dolomite and sulfur content in the fuel [101]. A limited decomposition of the carbonate minerals during oxy-fuel combustion would decrease CO₂ formation from oil shale combustion.

The Estonian oil shale combustion ash has considerable CO₂ sequestration potential [21]. The realised sequestration depends on many factors: oil shale ash properties, combustion mode, ash flow and ash removal, treatment, and stowing. For a first assessment of oil shale oxy-fuel combustion ashes CO₂ sequestration potential, fast calcination experiments were conducted [Paper V]. The results of experiments are presented in Table 5. The CO₂ content in all the ashes increased, but in the BA, CA, and C1 ashes, the change was small. The finest ashes (C2 and FA) sequestrated considerable amounts of CO₂.

![Figure 15. Mineral CO₂ ([CO₂]_{miner}) and unburnt carbon content in CFBC ashes [Paper IV].](image-url)

The Estonian oil shale combustion ash has considerable CO₂ sequestration potential [21]. The realised sequestration depends on many factors: oil shale ash properties, combustion mode, ash flow and ash removal, treatment, and stowing. For a first assessment of oil shale oxy-fuel combustion ashes CO₂ sequestration potential, fast calcination experiments were conducted [Paper V]. The results of experiments are presented in Table 5. The CO₂ content in all the ashes increased, but in the BA, CA, and C1 ashes, the change was small. The finest ashes (C2 and FA) sequestrated considerable amounts of CO₂.
Table 5. CO$_2$ sequestrated during simulated hydraulic transportation and landfilling [Paper V].

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>CA</th>
<th>C1</th>
<th>C2</th>
<th>FA</th>
<th>AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$ (%)</td>
<td>29.0</td>
<td>23.8</td>
<td>12.3</td>
<td>5.9</td>
<td>8.7</td>
<td>16.1</td>
</tr>
<tr>
<td>CO$_2$ after wet treatment (%)</td>
<td>31.3</td>
<td>26.3</td>
<td>15.6</td>
<td>18.8</td>
<td>11.7</td>
<td>23.4</td>
</tr>
<tr>
<td>CO$_2$ absorbed from the atmosphere, ΔCO$_2$ (t CO$_2$/t ash)</td>
<td>0.024</td>
<td>0.026</td>
<td>0.034</td>
<td>0.148</td>
<td>0.031</td>
<td>0.079</td>
</tr>
</tbody>
</table>

When oxy-fuel combustion of oil shale would be applied at utility scale, large amounts of CO$_2$ would be produced. To estimate the quantities, at first, CO$_2$ formation from combustion was estimated in Paper V. Based on the oxy-fuel CFBC ash analysis and assumed ash split (Table 3), the extent of carbonate decomposition and specific emission of CO$_2$ from oil shale oxy-fuel CFBC were estimated and compared with PC [17] and CFB [95] combustion (see Table 6). The CO$_2$ output from combustion decreases by 20% and 5%, respectively. The reason behind the decreased CO$_2$ formation was the decreased extent of decomposition of carbonate minerals. The flue gas from CFBC and PC contains up to 20% CO$_2$, but the oxy-fuel combustion residue contained up to 95% CO$_2$. This eases the reuse and/or transportation of the greenhouse gas.

Table 6. Laboratory oxy-fuel CFBC emissions compared to large scale CFBC [95] and PC [17].

<table>
<thead>
<tr>
<th></th>
<th>OXY21</th>
<th>CFBC</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent of carbonate decomposition (-)</td>
<td>k_{CO_2}</td>
<td>0.46</td>
<td>0.69</td>
</tr>
<tr>
<td>CO$_2$ absorbed from the atmosphere (t/TJ)</td>
<td>ΔCO$_2$</td>
<td>5.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Specific emission of CO$_2$ for oil shale combustion (t/TJ)</td>
<td>qCO$_2$</td>
<td>100.0</td>
<td>106.7</td>
</tr>
<tr>
<td>Specific emission of CO$_2$ for oil shale combustion + landfilling (t/TJ)</td>
<td>94.6</td>
<td>98.9</td>
<td>117.7</td>
</tr>
<tr>
<td>Specific emission of CO$_2$ for oil shale combustion + landfilling compared to PC (%)</td>
<td>80</td>
<td>84</td>
<td>100</td>
</tr>
</tbody>
</table>

The CO$_2$ formation from combustion is only half the truth, because compared to regular CFBC, the oxy-fuel combustion has some extra energy consumption: O$_2$ is required, part of the flue gas has to be recycled, and the flue gas requires compression for further processing. According to a study by Escudero et al. [102], the net power production efficiency of a new CFB power unit is assumed as 43% and for a new corresponding oxy-fuel CFB power unit, the efficiency is 36%. This efficiency loss includes all the previously listed extras. If such efficiency would be reached for oil shale combustion (the designed efficiency of Auvere CFB power plant is 42% [25]), the specific emissions of CO$_2$ would be 819 kg/MWh$_e$; when oxy-fuel firing would be applied, 942 kg CO$_2$/MWh$_e$ would be produced. It is more than that from CFB power production, but is still considerably less than that from PC (974 kg/MWh$_e$ [17]). The results of Paper V suggest that despite the decreased decomposition of carbonates, the power production using new oxy-fuel CFB would produce more CO$_2$ than that by applying regular CFBC. Nevertheless, oxy-fuel combustion would decrease further CO$_2$ treatment cost and enable utilisation or storage of CO$_2$.
4 CONCLUSIONS

This thesis evaluated the suitability of oxy-fuel CFBC technology for Estonian oil shale. Theoretical analyses and different experiments were conducted on TGA, batch reactor, and CFB combustor. The conventional CFBC technology has been proved to be suitable for Estonian oil shale. The influence of oxy-fuel environment, substitution of N2 with CO2, and changes in O2 concentration on the oil shale combustion were investigated. To simulate wet oil shale oxy-fuel CFBC ash landfilling, a short experiment was conducted. The oil shale oxy-fuel CFBC process, produced gases, and ash were analysed and the most important results are summarised here:

- The decomposition of calcite is inhibited when the CO2 concentration in the combustor increases. The minimum extent of carbonate mineral decomposition when oxy-fuel CFBC is applied is 0.28. This leads to an additional increase in heat released and decreased CO2 formation during oil shale CFBC. Depending on the carbonate content, the mean LHV value could be as high as 0.34 MJ/kg.

- The characteristic temperatures of the oil shale combustion in TGA differ in air and oxy-fuel environments: combustion was delayed in the oxy-fuel environment. A higher O2 content decreases the differences of the air and oxy-fuel combustion parameters.

- When firing in air, the decomposition of carbonaceous minerals occurs in one step, but in the oxy-fuel atmosphere, the process occurs in two reaction steps: decomposition of dolomite (CaMg(CO3)2) and then decomposition of calcite (CaCO3).

- The batch reactor experiment results suggest that the elevated CO2 levels and the inhibited calcite decomposition extent have a noticeable effect on the SO2 binding, and consequently, on the stable anhydrite formation in oil shale ash.

- When Estonian oil shale was oxy-fired in a CFB combustor using a gas mixture containing 21% O2 and 79% CO2, the temperatures in riser decreased as predicted by the TGA study. Increasing the oxidiser O2 content to 30% ensured a similar temperature as in the air fired CFB combustor.

- Oil shale oxy-fuel CFBC flue gas and pollutant concentration remained at the same level in the regular and oxy-fuel combustion modes. No additional deSOx or deNOx is required before CO2 compression for utilisation or transport.

- The chemical compositions of the oxy-fuel CFBC ashes were similar to the ashes produced in air mode, except for the carbonate content. When oxy-fuel CFBC was applied, the extent of carbonate mineral decomposition decreased considerably.

- Aqueous carbonisation experiments showed that oxy-fuel CFB ash still sequestrates some CO2 even more than the Estonian oil shale ash from PC.

- When applying oxy-fuel combustion, some additional power is required for O2 production, flue gas recirculation, and CO2 compression. Calculations showed that when applying oxy-fuel CFBC, the specific CO2 formation from combustion decreases, but the total specific CO2 formation from oil shale CFB power production increases.

In oxy-fuel furnace carbonate mineral decomposition is inhibited, but direct sulfation of limestone will occur due the high partial pressure of CO2 and the suitable conditions for sulfur capture. This ensures sulfur binding and reduces CO2 formation. Combining CFBC and oxy-fuel technology would be most beneficial CCS technology for Estonian oil shale combustion.
List of Figures

Figure 1. CCS contributes 14% of total emission reduction through 2050 in decreasing global warming pace to 2 °C compared to predicted 6 °C (business as usual scenario) [1] 8
Figure 2. Fossil decarbonisation strategies: (A) post-combustion, (B) pre-combustion, and (C) oxy-fuel combustion decarbonisation [28] .. 13
Figure 3. Schematics of entire oxy-fuel combustion power plant for carbon capture and storage [41] ... 14
Figure 4. Historical progression of scale of oxy-fuel CFB pilot and demonstration plants [6] .. 14
Figure 5. Equilibrium CO₂ pressure over limestone [60] .. 16
Figure 6. Schematic of the proposed oxy-fuel combustion process [Paper I] 19
Figure 7. Gas mixtures used in TGA experiments [Paper II] .. 20
Figure 8. Schematic of batch reactor and a sample holder ... 20
Figure 9. The circulating fluidised bed combustion test facility [Paper IV–V] 22
Figure 10. Theoretical oxy-fuel CFBC emissions compared to PC and regular CFBC. Extent of carbonate mineral decomposition in the model was 0.28 (minimum possible) for OXY-CFB, 0.7 for CFB, and 0.97 for PC [Paper I] ... 24
Figure 11. Oil shale combustion measurements in (A) oxy-fuel and (B) air atmospheres [Paper III]; the gas mixtures contained 10, 20, and 30% O₂ and were explained in Figure 7 ... 25
Figure 12. Evolved gas QMS measurements of SO₂ (m/z = 48 and 64) and CO₂ (m/z = 44 and 46) [Paper II] ... 26
Figure 13. Oil shale combustion parameters measured using TGA. The solid lines represent measurements in air atmospheres whereas the dashed lines represent measurements in oxy-fuel atmospheres [Paper III] .. 27
Figure 14. (a) Temperature distribution along the CFB combustor riser and in the cyclone. (b) Temperatures in the CFB riser and thermal load during steady-state operation using air [Paper IV] .. 28
Figure 15. Mineral CO₂ ([CO₂]mineral) and unburnt carbon content in CFBC ashes [Paper IV] ... 30
List of Tables

Table 1. Proximate and ultimate analysis of the underground mine Ojamaa oil shale. . 18
Table 2. Chemical composition of oil shale laboratory ash, wt. %................................. 19
Table 3. Ash split of CFB combustor... 22
Table 4. Average emissions of oil shale firing in CFB combustor [Paper IV]. 29
Table 5. CO₂ sequestrated during simulated hydraulic transportation and landfilling [Paper V]. ... 31
Table 6. Laboratory oxy-fuel CFBC emissions compared to large scale CFBC [95] and PC [17]. .. 31
References

List of other publications

Acknowledgements

I would like to express my gratitude to my advisors and colleagues at the Department of Energy Technology who contributed to the project.

This research was supported by the European Union through the European Regional Development Fund and by the Estonian Ministry of Education and Research Project AR12003 ‘Reduction of CO$_2$ emission of CFB boiler by enrichment of combustion air with oxygen’.
Abstract

Experimental Analysis of Combustion Characteristics of Estonian Oil Shale in Regular and Oxy-Fuel Atmospheres

Global energy consumption is increasing, but fossil fuels are still the main source of energy. Firing fossil fuels adds carbon dioxide (CO₂) to the atmosphere, which is believed to be the main cause of global warming. There are different ways of reducing CO₂ emissions from energy production, but this dissertation focuses on investigating oil shale CFB oxy-fuel combustion. The main difference of oxy-fuel combustion from conventional firing is the combustion of fuel in a mixture of oxygen (O₂) and recirculated flue gas instead of air. Combustion occurs in a CO₂-based mixture instead of an N₂ atmosphere. This affects the combustion of organic matter and chemical reactions of the minerals. Instead of the conventional N₂-based flue gas, oxy-fuel combustion generates a concentrated CO₂ stream, which facilitates the future use or storage of CO₂.

Oil shale is the main source of energy and CO₂ emissions in Estonia. It is used for the production of electricity and shale oil itself. Oil shale is a solid fuel containing an organic substance, kerogen, which contains a significant amount of hydrogen. The percentage of Estonian oil shale ash and volatile matter is high. Mineral matter in oil shale contains a significant amount of carbonates, which decompose depending on CO₂ partial pressures. Thus, the application of oxy-fuel technology can reduce the amount of CO₂ produced by the combustion of oil shale.

In this dissertation, the oxy-firing of Estonian oil shale was analysed in a CFB and a series of experiments were performed using a thermogravimetric analyser, a batch-reactor, and a 60 kW circulating fluidised bed combustion (CFBC) test rig. The effect of substitution of nitrogen (N₂) with CO₂ on the combustion of oil shale at various O₂ contents was investigated. During the tests, process progress, emissions, and ash were monitored. The carbon capture ability of ash was investigated and the amount of concentrated CO₂ produced during oxy-fuel combustion was predicted.

The oil shale oxy-fuel ash chemical composition was similar to that of conventional fluidised bed technology ash, with the exception of a significantly higher content of carbonate minerals. The results of the study indicate that because of the increased CO₂ content in the combustion chamber, calcite decomposes at elevated temperatures. Thermogravimetric analyses (TGA) and batch experiments showed that carbonaceous minerals were degraded in one stage during the combustion of oil shale in air, but by two separate reaction steps in the oxy-fuel mode: decomposition of dolomite (CaMg(CO₃)₂) and then decomposition of calcite (CaCO₃).

Tests in the batch reactor showed that higher CO₂ levels in the combustion chamber and only partial calcite degradation could affect sulfur binding and formation of anhydride. This may result in an increase in sulfur dioxide content of the flue gas, which may give rise to difficulties in the further treatment of CO₂.

The TGA of oil shale oxy-fuel combustion showed that the combustion of oil shale was slower. When the O₂ content in the oxidising mixture was increased, the differences between the normal and oxy-fuel combustion decreased. Experiments on a CFB combustor showed that when firing Estonian oil shale in a gas mixture where N₂ was replaced by CO₂, the temperature in the furnace decreased, as previous studies predicted. Increasing the O₂ content of the oxidant to 30% results in a furnace with a temperature field similar to that in the test using air as an oxidiser.
The concentration of pollutant measured in the combustion of oil shale in CFB in flue gas remained at the level as in ordinary oil shale combustion. Therefore, no additional sulfur or NO\textsubscript{x} removal equipment is required before CO\textsubscript{2} utilisation. Rapid tests of ash wet landfilling have shown that oil shale oxy-fuel combustion ashes bind CO\textsubscript{2}. Ash from oxy-fuel combustion sequestrated 5.5 t CO\textsubscript{2}/TJ of fuel. This is a little more than the ash generated in PC, but less than the conventional CFB ash. The degradation of decomposition of carbonates should inhibit the ability of ash CO\textsubscript{2} binding, but previous studies have shown that the capability of carbon capture of ash depends strongly on the properties of the ash surface, which is determined by the combustion environment.

There are some additional costs for oxy-fuel combustion: O\textsubscript{2} production, flue gas recirculation, and formed CO\textsubscript{2} compression for transportation or other use. The calculations performed based on experiments showed that oxy-fuel firing the same amount of oil shale would produce less CO\textsubscript{2} than conventional fluidised bed combustion. However, because of the aforementioned additional costs, the same amount of electricity generated by oxy-fuel combustion generates a little more CO\textsubscript{2} than that in conventional CFBC.

The oxy-fuel combustion of Estonian oil shale was previously studied only by models and TGA. This dissertation is based on five high-level scientific articles describing and analysing the oil shale oxy-burning nuance. For the first time, real oxy-fuel combustion experiments were carried out in a CFB using Estonian oil shale and enough ashes were produced to assess the impact of the new technology. Future studies should investigate the effect of increasing the O\textsubscript{2} content in oxidiser. It can accelerate combustion whereas the circulating ash can maintain an optimum combustion environment and increase the capacity of the combustion plant of the same size. Another nuance that needs to be investigated is the effect of oil shale ash and oxy-fuel combustion on corrosion and formation of deposits on heat exchange surfaces. The formation of deposits and corrosion can greatly increase the operation cost of the combustion plant. Another interesting topic is oil shale and biomass co-firing in oxy-fuel CFB. This solution can lead to negative CO\textsubscript{2} net emissions, because CO\textsubscript{2} from biomass is considered neutral.
Lühikokkuvõte
Eesti põlevkivi põlemiskarakteristikute eksperimentaalne analüüs tavalises ja oxy-fuel keskkonnas

Põlevkivi oxy-põletamisel tekkinud tuha keemiline koostis sarnanes tavalise keevkihttehnoloogia tuhaga, välja arvatud oluliselt kõrgem karnobaatsete mineraalide sisaldus. Uuringu tulemused näitasid, et suurenenened süsihappegaasi sisalduse tõttu põlemiskambris laguneneb kalt siit kõrgemal temperatuuril. Termogravimeetrilised analüüsidoportsjon-eksperimendid näitasid, et põlevkivi põletamisel õhus lagunenekarnobaatsed mineraalid ühes etapis, kuid oxy-põletamisel toimus protsess kahe eraldiseisva reaktsioonina: kõigepealt dolomiidi (CaMg(CO₃)₂) lagunemine ja seejärel kaltsiidi (CaCO₃) lagunemine.

Põlevkivi oxy-põletamise termogravimeetriline analüüs näitas, et põlemise protsess aeglustus. Kui hapnikusisaldust oksüdeerivas segus tõsteti, siis erinevused tavalise ja oxy-põletuse vahel kahtenedsid. Katsed tsirkuleerivasa keevkihtpõletusaadmes näitasid, et Eesti põlevkivi oxy-põletamisel gaasisebus, kus lämmastik oli asendatud süsihappegaasiga, langes temperatuur koldes, nii nagu eelnevalt tõsteti termogravimeetrilise analüsaatoriga ennustatud. Oksüdanti hapnikusisalduse suurendamine 30% tekitas tsirkuleeriva keevkiht katseseadme koldes samasuguse temperatuuriväljat nagu katsetel, kus kasutati oksüdeerijana õhkut.

Katsed portsjon-reaktoril näitasid, et kõrgem süsinikdioksiidi sisaldus põlemiskambris ja vaid osaline kaltsiidi lagunemine võivad mõjutada väärvi sidumist ja anhüdriidimoodustumist. Kuid oxy-põletamisel tsirkuleeriva keevkihiis põletamisel mõõdetud
saasteainete kontsentraatsioon suitsugaasis jäi põlevkivi tavapärase põletamise tasemele. Seega ei ole enne CO₂ kasutamist või transportimist tarvis täiendavaid väevi või lämmastiku oksiidi eemaldamise seadmeid.

Tuha märgladustamise kiirkatsed näitasid, et põlevkivi oxy-põletamise tuhk seob süsihappegaasi. Oxy-põletamisel tekkinud tuhk sisaldab 5,5 t CO₂/TJ kütuse kohta. See on veidi rohkem kui põlevkivi tolmpõletusel tekkinud tuhad, kuid vähem kui tavalise tširkuleeriva keevkiht põletamise tuhad. Vähenedud karbonaatide lagunemine peaks pärast tuha süsihappegaasi sidumise võimet, kuid juba varasemad uuringud on näidanud, et see sõltub tugevalt tuha välispinna omadustest, mis on defineeritud põlemiskeskkonnann.

Eesti põlevkivi oxy-põletamist oli eelnevalt uuritud vaid mudelite ja termogravimeetrilise analüüsi abil. See dissertatsioon põhineb veel kõrgtasemelisel teadusartiklil, mis kirjeldasid ja analüüsidsid Eesti põlevkivi oxy-põletamise näusse. Esmakordselt teostati arvutused oxy-põletamise katses tširkuleeriva keevkihiskasutades Eesti põlevkivi, ja toodeti piisavalt tuhka, et hinnata uudse tehnoloogia mõju.

Edaspidistes uuringutes võiks uurida kuidas mõjub hapniku sisalduse suurendamine oxy-põlemisele. See võib kiirendada põlemist, kui samal ajal reguleerida ringleva tuha temperatuuri võib säilitada optimaalse temperatuuri ja suurendada samade mõõtmetega põletusseadme võimsust. Teine uurimist vajav näans on põlevkivituha ja oxy-põlemiskeskkonna mõju korrosioonile ja sadestuse moodustumisele soojusvahetuspindadele. Sadestiste teke ja korrosioon võivad oluliselt raskendada põletusseadme opereerimist. Eestis on tundu huvi biokütuste oxy-tehnoloogia abil koopõletamise vastu, selline lahendus võib viia negatiivse süsinukioksii dioksiidi heitkoguseni, kuna biomassist pärinevat süsinukioksiiid loetakse neutraalseks.
APPENDIX

Paper I
CALCULATION OF THE AMOUNT OF ESTONIAN OIL SHALE PRODUCTS FROM COMBUSTION IN REGULAR AND OXY-FUEL MODE IN A CFB BOILER

ALAR KONIST*, LAURI LOO, ALEKSANDR VALTSEV, BIRGIT MAATEN, ANDRES SIIRDE, DMITRI NESHUMAYEV, TÕNU PIHU

Department of Thermal Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

Abstract. Oxy-fuel combustion is considered as one of the promising carbon capture and storage (CCS) technologies for coal-fired boilers. In oxy-fuel combustion, the combustion gases are oxygen and the recirculating flue gas, and the main components of the combustion gas are O_2, CO_2 and H_2O [1].

The paper presents the results of the calculation of the flue gas amount during combustion of oil shale using oxy-fuel technology in a circulated fluidized bed (CFB) mode. The calculations were performed for different oil shale heating values and different recycled flue gas (RFG) ratios. Oxy-fuel combustion with flue gas recycling was found to enable the decrease of the extent of carbonate minerals decomposition (ECD), thereby increasing the amount of heat released per 1 kg of fuel. To minimize ECD, the recycled flue gas ratio should be maintained at a level higher than 0.7. This condition allows an increase of the partial pressure of CO_2 over the equilibrium state line of calcite decomposition reaction at the bed temperature. The decrease of ECD was observed up to $k_{\text{CO}_2,\text{eq}} = 0.28$. The decrease of k_{CO_2} leads to an additional increase in the amount of heat released during oil shale combustion per 1 kg and, depending on the mean lower heating value (LHV), the heat can be increased up to 0.34 MJ/kg.

A comparison with the bituminous and anthracite coals revealed that the specific emission of CO_2 per input fuel energy for oil shale is expected to be even smaller compared with those of the considered coals.

Keywords: oil shale, oxy-fuel combustion, extent of carbonate minerals decomposition, CFB, CO_2 emission.

* Corresponding author: e-mail alar.konist@tlu.ee
1. Introduction

Currently, there seems to be no good alternative to coal power in the near future. Energy demand and CO\textsubscript{2} emissions continue to increase [2]. Coal-fired energy generation, which rose by an estimated 6% from 2010 to 2012, continues to grow faster than non-fossil energy sources on an absolute basis. Approximately half of the coal-fired power plants built in 2011 use inefficient technologies [3].

Improving the performance of coal-fired power plants can significantly reduce the CO\textsubscript{2} emissions [4, 5]. A unit operating at the global average efficiency would emit over 1000 g CO\textsubscript{2}/kWh, whereas the best units working with ultra-supercritical steam conditions reduce this to closer to 740 g CO\textsubscript{2}/kWh [2].

The next step beyond improving the efficiency is the implementation of carbon dioxide carbon capture and storage (CCS), that is, a set of technologies that can significantly reduce the CO\textsubscript{2} emissions from new and existing coal- and gas-fired power plants [2, 6]. Current available CCS technologies are: post-combustion CO\textsubscript{2} capture, pre-combustion CO\textsubscript{2} capture, chemical looping combustion and oxy-fuel combustion [5, 7, 8]. The captured carbon dioxide can be used for enhanced oil recovery or stored in depleted oil and gas reservoirs, coal beds, deep saline aquifers, etc. [9, 10].

Oxy-fuel combustion is seen as one of the major options for CO\textsubscript{2} capture for future clean coal technologies [6, 11]. Oxy-fuel combustion technology is considered to be the most energy- and cost-efficient of the carbon capture technologies [12–18]. The concept of oxy-fuel technology is the removal of nitrogen from oxidizer to perform the combustion process in an oxygen and recycled flue gas environment to decrease the combustion temperature [19]. As a result, the flue gas formed primarily consists of carbon dioxide and water [9].

Oxy-fuel combustion in a CFB for CO\textsubscript{2} capture has been rarely studied so far [20–28]. Most of those studies considered bituminous coals and lignites, and some of the studies considered biomass fuels. There is only one study dealing with oil shale [29]. The main part of these experimental and theoretical investigations covers the pulverized firing technology.

Estonia has no coal reserves; however, it has an unconventional fuel – oil shale. Oil shale is a sedimentary rock that contains organic matter called kerogen. The organic matter of oil shale contains relatively large amounts of carbon (up to 30\%\textsubscript{dry}), hydrogen (up to 3.8\%\textsubscript{dry}), and oxygen (up to 3.9\%\textsubscript{dry}). Oil shale has high contents of mineral matter, which consists of carbonaceous, sandy-clay-carbonaceous and sandy-clay parts. Oil shale is characterized as a fuel with a high content of sulfur (up to 2\%\textsubscript{dry} including organic and pyritic sulfur), alkali metals and chlorine.

Oil shale is Estonia’s primary energy resource, with approximately 90\% of the electricity consumed is produced from oil shale. Today, the country’s oil shale usage is the largest in the world. Most of the oil shale,
approximately 12 million tons yearly, is used for power generation through the use of CFBC and pulverized combustion (PC) technologies [30]. Oil shale burned in power plants has the following proximate characteristics: \(W' = 11-13\% \) (moisture, as received fuel), \(A' = 45-57\% \) (ash content, as received fuel), \(C_0 = 16-19\% \) (carbonate \(CO_2 \) content, as received fuel), and \(Q' = 8.3-8.7 \text{ MJ/kg} \) (heating value, as received fuel). The molar ratio of Ca/S of 8–10 in oil shale exceeds by over 2–3 times the ratio of Ca/S sufficient to capture \(SO_2 \) completely [5]. Oil shale contains many carbonate minerals. Due to decomposition of carbonate minerals, the \(CO_2 \) footprint is larger than that of a typical coal firing power plant. The decomposition rate of carbonates in a PC boiler is 0.97, and the rate in a CFBC boiler 0.68, depending on the fuel LHV and properties. The specific emission of \(CO_2 \) for PC and CFBC is 974 g \(CO_2/kWh \) and 872 g \(CO_2/kWh \), respectively. The specific emission of \(SO_2 \) for PC and CFBC is 11.89 g \(SO_2/kWh \) and zero, respectively [31, 32].

CFB combustion is considered to be one of the best solutions for the use of low grade high ash fuels, such as oil shale. In the CFBC boiler, the temperature is controlled using the circulating bed material, which is cooled in an external heat exchanger. The CFBC units firing oil shale do not require a sophisticated burner design and management, and they do not require \(\text{DeNO}_x \) and \(\text{DeSO}_x \) facilities; therefore, it is considerably easier to retrofit an existing CFBC boiler with the oxy-fuel combustion technology.

This study provides the first theoretical preliminary results of oil shale combustion in a CFBC boiler applying oxy-fuel technology. The goal of this research was to determine the gas volumes in different parts of the CFBC boiler at different recycled flue gas ratios. The comparisons with the bituminous and anthracite coals are also presented.

2. Initial data and the calculation methodology

The combustion calculations were performed for oil shale with varying LHV from 7 to 11.5 MJ/kg. To obtain the corresponding results of the proximate and ultimate analysis data for the oil shale, the method described in [33, 34] was used. The quantitative theoretical analysis method is based on the research experience that has proven to have a statistically significant relationship between the heating value (HV) and the proximate/ultimate analysis data for the Estonian oil shale. Therefore, knowing the oil shale HV, it is possible to calculate the average fuel characteristics, such as the ash and \(CO_2 \) contents, the organic part distribution and the average mineralogical composition. The results of the calculation are listed in Table 1. The detailed description of the theoretical methods can be found in [33, 34].

To determine the stoichiometric amount of oxygen required to oxidize inorganic \(\text{FeS}_2 \), the following reaction was taken into account:

\[
4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2
\] (1)
During oil shale firing, the amount of heat released and the amount of ash formed in combustion per mass unit of fuel is significantly affected by the endothermic and exothermic processes occurring in the mineral matter. The main thermal effects are related to the decomposition of oil shale calcite and dolomite, FeS2 oxidation, and sulfation of CaO. The extent of these reactions affects the amount of heat released, the amount of ash and combustion products produced and ultimately the flue gas composition. In PC boilers, almost complete decomposition of the oil shale carbonate minerals occurs. The extent of carbonate minerals decomposition (ECD) can be as high as 0.97, \(k_{\text{CO}_2} = 0.97 \) [33], which is mainly due to the high combustion temperature (1400–1500 °C) and certainly due to the low partial pressure of \(\text{CO}_2 \) and small particle size of the fuel. However, under CFB combustion conditions, incomplete decomposition of carbonates is observed (\(k_{\text{CO}_2} = 0.6–0.8 \)), which is mainly due to the relatively low temperature compared to PC systems, due to the slow kinetics of decomposition in the furnace and due to the coarse particle size of the parent fuel resulting in the decrease of the carbonate originated \(\text{CO}_2 \) content in the flue gas [34].

An additional decrease of ECD would be expected when applying oxy-fuel combustion technology in CFB boilers. This effect is primarily attributed to the significant increase of the \(\text{CO}_2 \) partial pressure in the flue gas, which exceeds the equilibrium state line of the calcite \(\text{CaCO}_3 \) decomposition.

Under these conditions, the thermal decomposition of dolomite would be observed by the following reaction because it is not correlated with the \(\text{CO}_2 \) partial pressure:

\[
\text{CaMg(CO}_3)_2 \rightarrow \text{CaCO}_3 + \text{MgO} + \text{CO}_2
\]
(2)

In addition, in oxy-fuel mode, the \(\text{CO}_2 \) content in the flue gas increases. The sulfur is bound with \(\text{CaO} \) or most likely directly bound with \(\text{CaCO}_3 \).

Accounting for all the above, and assuming that the \(\text{CO}_2 \) formation from dolomite is approximately 16% of the total mineral \(\text{CO}_2 \) in the fuel [35], the minimum amount of carbonate \(\text{CO}_2 \) released during thermal decomposition and sulfur capture was calculated as follows:

\[
V_{\text{CO}_2,\text{carb}} = 0.00509k_{\text{CO}_2,\text{min}}(\text{CO}_2)_M^d,
\]
(3)

\[
k_{\text{CO}_2,\text{min}} = 1.375S_p^d k_s / (\text{CO}_2)_M^d + 0.16,
\]
(4)

where

- \(V_{\text{CO}_2,\text{carb}} \) – minimum amount of carbonate \(\text{CO}_2 \) formed by decomposition of carbonates, \(\text{nm}^3/\text{kg} \);
- \(k_{\text{CO}_2,\text{min}} \) – minimum extent of carbonate decomposition;
- \((\text{CO}_2)_M^d \) – carbonate \(\text{CO}_2 \) content of as received fuel, %;
- \(S_p^d \) – content of pyrite (marcasite) sulfur in dry fuel, %;
- \(k_s \) – extent of sulfur binding in the boiler;
- \((\text{CO}_2)_M^d \) – carbonate \(\text{CO}_2 \) content of dry fuel, %.
During the calculation of the specific parameters related to LHV, the sulfur capture was corrected as follows. In the case of oil shale the LHV is a conditional value representing the amount of heat released during the combustion of 1 kg fuel under conditions when carbonate minerals decompose completely \((k_{\text{CO}_2} = 1)\), the formation of calcium sulfate does not occur \((k_s = 0)\) and new minerals are not formed. However, in practice, the conditional heating value is widely used, where the extent of the sulfation is not directly determined by detailed analysis of the ash contained in a calorimetric bomb. In this case, it is assumed that during combustion of oil shale in a calorimetric bomb, \(k_s = 0.4\). In the present study, the thermal effects due to both the incomplete decomposition of carbonaceous minerals and the calcium sulfate formation were taken into account.

Table 1. Calculated proximate and ultimate oil shale fuel characteristics

<table>
<thead>
<tr>
<th>LHV (ar) Q^\text{a}, MJ/kg</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
<th>8.5</th>
<th>9.0</th>
<th>9.5</th>
<th>10.0</th>
<th>10.5</th>
<th>11.0</th>
<th>11.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash A^\text{a}, %y</td>
<td>53.64</td>
<td>52.78</td>
<td>51.96</td>
<td>51.16</td>
<td>50.40</td>
<td>49.67</td>
<td>48.98</td>
<td>48.32</td>
<td>47.70</td>
<td>47.11</td>
</tr>
<tr>
<td>Water W^\text{a}, %y</td>
<td>10.60</td>
<td>10.94</td>
<td>11.27</td>
<td>11.60</td>
<td>11.94</td>
<td>12.27</td>
<td>12.61</td>
<td>12.94</td>
<td>13.28</td>
<td>13.61</td>
</tr>
</tbody>
</table>

Content of the organic part R^d, %y

| | | | | | | | | |
|------|------|------|------|------|------|------|------|
| C^d | 19.69 | 21.00 | 22.31 | 23.63 | 24.94 | 26.25 | 27.56 | 28.87 |
| H^d | 2.47 | 2.63 | 2.79 | 2.96 | 3.12 | 3.29 | 3.45 | 3.62 |
| S^d | 0.45 | 0.48 | 0.51 | 0.54 | 0.57 | 0.60 | 0.63 | 0.66 |
| N^d | 0.08 | 0.09 | 0.10 | 0.10 | 0.11 | 0.11 | 0.12 | 0.12 |
| Cl^d | 0.19 | 0.20 | 0.22 | 0.23 | 0.24 | 0.25 | 0.27 | 0.28 |
| O^d | 2.54 | 2.71 | 2.88 | 3.05 | 3.22 | 3.39 | 3.56 | 3.73 |
| Total | R^d | 25.42 | 27.11 | 28.81 | 30.50 | 32.20 | 33.89 | 35.59 |

Content of the carbonate part K^d, %y

| | | | | | | | | |
|------|------|------|------|------|------|------|------|
| CaO^d | 23.09 | 22.56 | 22.15 | 21.74 | 21.34 | 20.44 | 19.54 | 18.55 |
| MgO^d | 3.17 | 3.10 | 3.01 | 2.92 | 2.81 | 2.68 | 2.54 | 2.39 |
| FeO^d | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 | 0.07 |
| Total | K^d | 47.99 | 46.91 | 45.64 | 44.17 | 42.50 | 40.63 | 38.56 |

Content of the sandy-clay part l^d, %y

| | | | | | | | | |
|------|------|------|------|------|------|------|------|
| SiO_2^d | 15.90 | 15.53 | 15.28 | 15.15 | 15.13 | 15.23 | 15.46 | 15.82 |
| CaO^d | 0.19 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
| Al_2O_3^d | 4.28 | 4.18 | 4.11 | 4.08 | 4.07 | 4.10 | 4.16 | 4.26 |
| Fe_2O_3^d | 0.74 | 0.73 | 0.72 | 0.71 | 0.71 | 0.71 | 0.72 | 0.74 |
| TiO_2^d | 0.19 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.19 |
| MgO^d | 0.11 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 |
| Na_2O^d | 0.21 | 0.21 | 0.20 | 0.20 | 0.20 | 0.20 | 0.21 | 0.21 |
| K_2O^d | 1.68 | 1.64 | 1.61 | 1.60 | 1.59 | 1.60 | 1.63 | 1.67 |
| Fe_2O_3^d | 2.47 | 2.42 | 2.38 | 2.36 | 2.35 | 2.37 | 2.40 | 2.46 |
| Sulfate sulfur, SO_2^d | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
| Crystal water, H_2O^d | 0.69 | 0.68 | 0.66 | 0.66 | 0.66 | 0.67 | 0.67 | 0.69 |
| Total | l^d | 26.59 | 25.98 | 25.55 | 25.33 | 25.30 | 25.47 | 25.86 |

| | | | | | | | | |
|------|------|------|------|------|------|------|------|
| R^d + K^d - l^d | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

The calculations of the flue gas volumes in the oxy-fuel combustion of oil shale were performed for a steady state regime, implementing the process for which the schematic diagram is shown in Figure 1. The recycled flue gas
Fig. 1. Schematic of the proposed oxy-fuel combustion process.

(RFG) stream was assumed to be taken after the water vapor condenser. To simplify the calculations, the water content in the gases after the condenser was assumed to be 0.05 kg H₂O per kg of fuel burned.

The flue gas recycle ratio was defined as the ratio of the mass of the recycled flue gas stream m_{RFG} to the total mass of flue gas at the boiler outlet:

$$\text{RFG ratio} = RR = \frac{m_{RFG}}{m_{RFG} + m_{PFG}}, \quad (5)$$

where m_{PFG} is the mass of the product flue gas stream.

In addition, based on an overview article [9], the oxygen content in flue gas after the air separation unit was assumed to be 95% vol, with 5% vol of nitrogen and argon. The oil shale calculations were performed for an excess O₂ constant value of 5% vol at the boiler outlet. In the steady state regime, the mass CO₂ content per kg fuel $m_{CO₂}$ at the boiler outlet for different RFG ratios was calculated as follows:

$$m_{CO₂} = \frac{m_{CO₂}^F}{1 - RR}, \quad (6)$$

where $m_{CO₂}^F$ is the total mass of CO₂ occurring during combustion of 1 kg oil shale, including CO₂ from organic carbon combustion and calculated according to Equation (3) CO₂ from carbonate minerals decomposition.

The nitrogen content at the boiler outlet can be determined from:

$$m_{N₂} = \frac{m_{N₂}^{ASU} + m_{N₂}^F}{1 - RR}, \quad (7)$$

where $m_{N₂}$ is the specific amount of N₂ from fuel nitrogen, and $m_{N₂}^{ASU}$ is the N₂ coming from the air separation unit (ASU), calculated as:

$$m_{N₂}^{ASU} = \left(m_{O₂}^{ASU} + m_{O₂}^F (1 - RR) \right) \frac{k_{N₂}^{ASU}}{k_{O₂}^{ASU}}, \quad (8)$$
where $m_{\text{O}_2}^{\text{St}}$ is the stoichiometric amount of O$_2$, $m_{\text{O}_2}^e$ is the excess amount of O$_2$ at the boiler outlet, $m_{\text{N}_2}^{\text{ASU}}$ is the mass fraction of N$_2$ at the ASU outlet, and $k_{\text{O}_2}^{\text{ASU}}$ is the mass fraction of O$_2$ at the ASU outlet.

The calculated gas characteristics at the boiler outlet and inlet for different LHV values are presented in Tables 2, 3 and 4. In the tables to each RFG ratio there corresponds a different amount of circulating ash, used to

| Table 2. Gas characteristics at the boiler outlet and inlet for LHV = 8.4 MJ/kg |
|-------------------------------|---|---|---|---|---|---|---|---|---|
| **RFG ratio** | **kg/kg** | **0.1** | **0.2** | **0.3** | **0.4** | **0.5** | **0.6** | **0.7** | **0.8** | **0.9** |
| **At the boiler outlet** |
Excess O$_2$ content	Nm3/kg	0.03	0.03	0.03	0.04	0.05	0.06	0.08	0.12	0.23
CO$_2$ content	Nm3/kg	0.45	0.51	0.58	0.68	0.82	1.02	1.36	2.04	4.08
Nitrogen content	Nm3/kg	0.03	0.04	0.04	0.05	0.06	0.08	0.10	0.15	0.31
H$_2$O content	Nm3/kg	0.45	0.45	0.46	0.46	0.47	0.47	0.48	0.49	0.49
Flue gas amount, dry	Nm3/kg	0.51	0.58	0.66	0.77	0.92	1.16	1.54	2.31	4.62
Excess O$_2$ content	%	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
CO$_2$ content	%	47.13	49.47	52.11	55.13	58.61	62.65	67.39	73.03	79.90
Flue gas amount, wet	Nm3/kg	0.96	1.03	1.12	1.23	1.39	1.63	2.02	2.80	5.11
CO$_2$ amount	t/MWh	0.027	0.031	0.035	0.041	0.049	0.062	0.082	0.124	0.247
At the boiler inlet										
CO$_2$ content	Nm3/kg	0.05	0.10	0.18	0.27	0.41	0.61	0.95	1.63	3.68
N$_2$ content	Nm3/kg	0.05	0.04	0.04	0.05	0.06	0.08	0.10	0.15	0.31
H$_2$O content	Nm3/kg	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05
O$_2$ content	Nm3/kg	0.56	0.56	0.56	0.57	0.58	0.59	0.61	0.65	0.76
Total gas amount	Nm3/kg	0.64	0.71	0.80	0.91	1.07	1.31	1.70	2.47	4.79
CO$_2$ content	%	7.08	14.38	21.94	29.83	38.11	46.84	56.12	66.05	76.74
O$_2$ content	%	86.92	78.90	70.76	62.44	53.89	45.05	35.83	26.16	15.92

| Table 3. Gas characteristics at the boiler outlet and inlet for LHV = 7.0 MJ/kg |
|-------------------------------|---|---|---|---|---|---|---|---|---|
| **RFG ratio** | **kg/kg** | **0.1** | **0.2** | **0.3** | **0.4** | **0.5** | **0.6** | **0.7** | **0.8** | **0.9** |
| **At the boiler outlet** |
Excess O$_2$ content	Nm3/kg	0.02	0.02	0.03	0.03	0.04	0.05	0.07	0.10	0.20
CO$_2$ content	Nm3/kg	0.39	0.44	0.50	0.59	0.71	0.88	1.18	1.76	3.53
Nitrogen content	Nm3/kg	0.03	0.03	0.04	0.04	0.05	0.07	0.09	0.13	0.26
H$_2$O content	Nm3/kg	0.39	0.40	0.40	0.41	0.41	0.42	0.42	0.43	0.43
Flue gas amount, dry	Nm3/kg	0.44	0.50	0.57	0.67	0.80	1.00	1.33	2.00	3.99
Excess O$_2$ content	%	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
CO$_2$ content	%	46.87	49.18	51.80	54.80	58.26	62.31	67.08	72.79	79.75
Flue gas amount, wet	Nm3/kg	0.84	0.90	0.97	1.07	1.21	1.42	1.75	2.42	4.42
CO$_2$ amount	t/MWh	0.028	0.031	0.036	0.042	0.050	0.063	0.084	0.125	0.251
At the boiler inlet										
CO$_2$ content	Nm3/kg	0.04	0.09	0.15	0.24	0.35	0.53	0.82	1.41	3.17
N$_2$ content	Nm3/kg	0.03	0.03	0.04	0.04	0.05	0.07	0.09	0.13	0.26
H$_2$O content	Nm3/kg	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05
O$_2$ content	Nm3/kg	0.48	0.48	0.48	0.49	0.50	0.51	0.52	0.56	0.65
Total gas amount	Nm3/kg	0.55	0.61	0.69	0.79	0.93	1.13	1.47	2.14	4.14
CO$_2$ content	%	7.12	14.44	22.01	29.88	38.14	46.85	56.11	66.03	76.74
O$_2$ content	%	86.76	78.63	70.42	62.08	53.53	44.72	35.57	25.97	15.83
control the furnace temperature, as the adiabatic combustion temperature depends on both the heating value of the fuel and the concentration of O₂ and CO₂. In the current study, the amount of circulating ash was not calculated.

3. Results and discussion

The temperature in the CFB boiler furnace is maintained at 750–850 °C. Between those temperature limits, the sulfur binding process is at its maximum intensity. The bed temperature in a CFB boiler is mainly controlled by adjusting the cyclone ash recirculating ratio. The external solid heat exchanger(s) is/are used to extract heat from the combustion process/recirculating ash. This extraction allows a significant reduction of the amount of recycled flue gas required for combustion temperature control in the case of oxy-fuel combustion. This feature can be used to reduce the RFG ratio in the CFB during the retrofitting to oxy-mode combustion [24].

Applying the assumed initial conditions, the calculated contents of CO₂ and O₂ in the gas at the inlet of the boiler at different RFG ratios are shown in Figure 2. The oil shale was found to contain a large fraction of carbonate minerals, mainly calcite CaCO₃. The reduction of the carbonate mineral decomposition increases the conditional heating value of oil shale and reduces the CO₂ emission. The calcite decomposition is suppressed when the CO₂ partial pressure exceeds the equilibrium state line of the calcite decomposition reaction at a given temperature [36]. For a bed temperature of 850 °C, the equilibrium pressure of CO₂ is ca. 60 kPa. According to Figure 2

Table 4. Gas characteristics at the boiler outlet and inlet for LHV = 10.5 MJ/kg

<table>
<thead>
<tr>
<th>RFG ratio</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excess O₂ content</td>
<td>Nm³/kg</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>CO₂ content</td>
<td>Nm³/kg</td>
<td>0.54</td>
<td>0.61</td>
<td>0.70</td>
<td>0.82</td>
<td>0.98</td>
<td>1.22</td>
<td>1.63</td>
<td>2.45</td>
</tr>
<tr>
<td>Nitrogen content</td>
<td>Nm³/kg</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.09</td>
<td>0.12</td>
<td>0.19</td>
</tr>
<tr>
<td>H₂O content</td>
<td>Nm³/kg</td>
<td>0.53</td>
<td>0.54</td>
<td>0.54</td>
<td>0.55</td>
<td>0.55</td>
<td>0.56</td>
<td>0.56</td>
<td>0.57</td>
</tr>
<tr>
<td>Flue gas amount, dry</td>
<td>Nm³/kg</td>
<td>0.62</td>
<td>0.69</td>
<td>0.79</td>
<td>0.92</td>
<td>1.11</td>
<td>1.39</td>
<td>1.85</td>
<td>2.77</td>
</tr>
<tr>
<td>Excess O₂ content</td>
<td>%</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>CO₂ content</td>
<td>%</td>
<td>47.38</td>
<td>49.74</td>
<td>52.42</td>
<td>55.46</td>
<td>58.94</td>
<td>62.98</td>
<td>67.70</td>
<td>73.30</td>
</tr>
<tr>
<td>Flue gas amount, wet</td>
<td>Nm³/kg</td>
<td>1.15</td>
<td>1.23</td>
<td>1.33</td>
<td>1.47</td>
<td>1.66</td>
<td>1.94</td>
<td>2.41</td>
<td>3.34</td>
</tr>
<tr>
<td>CO₂ amount</td>
<td>Nm³/MWh</td>
<td>0.027</td>
<td>0.030</td>
<td>0.035</td>
<td>0.041</td>
<td>0.049</td>
<td>0.061</td>
<td>0.081</td>
<td>0.122</td>
</tr>
<tr>
<td>CO₂ content</td>
<td>Nm³/kg</td>
<td>0.05</td>
<td>0.12</td>
<td>0.21</td>
<td>0.33</td>
<td>0.49</td>
<td>0.73</td>
<td>1.14</td>
<td>1.96</td>
</tr>
<tr>
<td>N₂ content</td>
<td>Nm³/kg</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.09</td>
<td>0.12</td>
<td>0.19</td>
</tr>
<tr>
<td>H₂O content</td>
<td>Nm³/kg</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>O₂ content</td>
<td>Nm³/kg</td>
<td>0.67</td>
<td>0.68</td>
<td>0.68</td>
<td>0.69</td>
<td>0.70</td>
<td>0.71</td>
<td>0.74</td>
<td>0.78</td>
</tr>
<tr>
<td>Total gas amount</td>
<td>Nm³/kg</td>
<td>0.77</td>
<td>0.86</td>
<td>0.96</td>
<td>1.10</td>
<td>1.29</td>
<td>1.57</td>
<td>2.04</td>
<td>2.96</td>
</tr>
<tr>
<td>CO₂ content</td>
<td>%</td>
<td>7.02</td>
<td>14.28</td>
<td>21.84</td>
<td>29.73</td>
<td>38.02</td>
<td>46.78</td>
<td>56.08</td>
<td>66.02</td>
</tr>
<tr>
<td>O₂ content</td>
<td>%</td>
<td>87.11</td>
<td>79.22</td>
<td>71.16</td>
<td>62.88</td>
<td>54.32</td>
<td>45.44</td>
<td>36.15</td>
<td>26.39</td>
</tr>
</tbody>
</table>
the RFG ratio should be maintained at a level higher than 0.7 to achieve the partial pressure of \(\text{CO}_2 \) over equilibrium. Under these conditions, ECD decreases, and it is defined by Equation (4) \(k_{\text{CO}_2} \text{min} \) minimum. According to Equation (4) \(k_{\text{CO}_2} \text{min} \) minimum, the decrease of ECD would be observed from \(k_{\text{CO}_2} = 0.7 \) (the mean value in CFB in air mode) down to \(k_{\text{CO}_2} \text{min} = 0.28 \), depending on LHV. The decrease of \(k_{\text{CO}_2} \) leads to an additional increase in the amount of heat released during oil shale combustion per 1 kg and, depending on the mean LHV, it can amount up to 0.34 MJ/kg. The calculations and estimations are based on the calculation method by Arro et al. [33, 34].

![Fig. 2. CO\textsubscript{2} and O\textsubscript{2} content at the boiler inlet at different RFG ratios.](image)

The specific flue gas volume per 1 kg oil shale for different values of LHV and different RFG ratios is shown in Figure 3. On the same plot, the specific gas volumes occurring during air mode combustion are depicted. From Figure 3 it is clear that to obtain in oxy mode the same gas volume as in the conventional mode, the RFG ratio should be maintained at 83.

Figures 4 and 5 depict the specific content of \(\text{CO}_2 \) per 1 kg oil shale and per fuel energy of oil shale at the boiler outlet for different LHV values and RFG ratios, respectively. For comparison, on the same plot, the calculations of the specific content of \(\text{CO}_2 \) per fuel energy for bituminous coal and anthracite are shown. These calculations were performed using the proximate and ultimate fuel analysis found in [37, 38]. From Figure 5 it can be seen that the specific \(\text{CO}_2 \) for selected coals is slightly higher than that for oil shale. This behavior could be explained by the high hydrogen-to-carbon ratio in oil shale and the additional reduction of carbonate minerals decomposition in oil shale due to the increased partial pressure of \(\text{CO}_2 \).
difference of the specific CO$_2$ could be additionally increased due to the addition of lime to the coal in the direct desulfurization process.

Fig. 3. Flue gas volume per 1 kg oil shale at different RFG ratios in oxy mode.

Fig. 4. Specific CO$_2$ volume at the boiler outlet for different oil shale LHV values and RFG ratios in oxy mode.
Fig. 5. Specific CO₂ emission per fuel energy at the boiler outlet for different oil shale LHV values and RFG ratios in oxy mode.

4. Conclusions

The gas volume calculations for oil shale combustion applying oxy-fuel technology in a circulated fluidized bed environment for different oil shale LHV values and different recycled flue gas ratios were performed. It was found that to minimize ECD, the recycled flue gas ratio should be maintained at a level higher than 0.7. This condition allows for an increase of the partial pressure of CO₂ over the equilibrium state line of the calcite decomposition reaction at the bed temperature. The decrease of ECD would be observed down to \(k_{CO_2,\text{min}} = 0.28 \). The decrease of \(k_{CO_2} \) leads to an additional increase in the amount of heat released during oil shale combustion per 1 kg and, depending on the mean LHV value, it could be as high as 0.34 MJ/kg.

The calculations indicated that to obtain in oxy mode the same gas volume as in the conventional mode, the RFG ratio should be maintained at 83.

The comparison with the bituminous and anthracite coals indicates that the specific emission of CO₂ per input fuel energy for oil shale could be expected to be even smaller than that of the considered coals.

Acknowledgements

This research was supported by the European Union through the European Regional Development Fund.
REFERENCES

18. Châtel-Pelage, F., Varagnani, R., Pranda, P., Perrin, N., Farzan, H., Vecchi, S. J., Lu, Y., Chen, S., Rostam-Abadi, M., Bose, A. C. Applications of oxygen for

Received November 26, 2013
Paper II

Experimental analysis of the combustion characteristics of Estonian oil shale in air and oxy-fuel atmospheres

Lauri Loo, Birgit Maaten, Andres Siirde, Tõnu Pihl, Alar Konist

A non-isothermal experimental study using thermogravimetric analysis and differential scanning calorimetry coupled with a quadrupole mass spectrometer was conducted to investigate Estonian oil shale combustion characteristics. The analyses were performed in air (N₂/O₂) and oxy-fuel (CO₂/O₂) atmospheres with various oxygen ratios (10, 20, and 30 vol%). Our experimental results in TGA show that combustion in the CO₂/O₂ atmosphere is delayed compared to that in the N₂/O₂ atmosphere. Carbonate minerals in oil shale decompose in air in one step and in the oxy-fuel atmosphere in two separate steps: the decomposition of dolomite (CaMg(CO₃)₂) and the subsequent decomposition of calcite (CaCO₃). An increased oxygen ratio in combustion of the oxy-fuel atmosphere increases the overall combustion rate, whereas the CO₂ emission volume decreases because of the lower decomposition extent of carbonates. The quadrupole mass spectrometer measurements indicate several combustion products. A higher CO₂ reading is registered in the CO₂/O₂ atmosphere, but there is no other significant difference. Based on the measurement results, a combustion model for Estonian oil shale is proposed. Combustion in the oxy-fuel atmosphere is similar to combustion in air, which eases the design of oxy-fuel combustors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The world's growing demand for energy enforces the usage of low-grade fuels. In Estonia, oil shale (OS) power and oil production sectors are the largest CO₂ emitters. Estonia depends on OS because over 90% of its electricity is produced from OS [1,2]. Therefore, improving the OS combustion process has large environmental and economic benefits.

OS is a low-grade fossil fuel that consists of kerogen (organic) and mineral components. The organic matter contains a relatively large amount of hydrogen, and the H/C atomic ratio is 1.4–1.5 [3]. Estonian OS has a high content of mineral matter, which consists of carbonaceous, sandy-clay-carbonaceous and sandy-clay parts [4]. A higher CO₂ concentration can alter the decomposition of carbonates and decrease CO₂ emission [5]. Therefore, implementation of oxy-fuel technology offers many benefits.

The most energy- and cost-effective CCS technology is considered to be the oxy-fuel technology [6]. Implementing the carbon capture and storage (CCS) systems on oxy-fuel combustion technology significantly reduces CO₂ emission. The concept of the oxy-fuel technology is the removal of nitrogen from the combustion process, that is, combustion occurs in an oxygen and carbon dioxide atmosphere. As a result, the formed flue gas mainly consists of carbon dioxide and water vapor, and the volume of flue gas considerably decreases [7,8].

Previous studies [5,9–14] concluded that a higher carbon dioxide concentration in the combustion atmosphere decreases the decomposition of carbonate minerals in the OS, but to our best knowledge, there is no data about higher CO₂ atmosphere effects on the combustion of OS kerogen. Thermogravimetric analysis (TGA) of coal oxy-fuel combustion has proven that the oxy-fuel atmosphere considerably changes the combustion process [15–18]. Nevertheless, Niu and co-workers considered that the investigation of the reaction mechanism and kinetic parameters of the oxy-fuel combustion of coal are not sufficiently reviewed [15]. The same applies to OS oxy-fuel combustion.

Simultaneous use of TGA, DSC and QMS allow one to obtain more data with higher precision from different processes that occur in the OS during the thermal treatment. TGA is a common technique to rapidly investigate and compare thermal events and kinetics during the combustion and pyrolysis of a material [19]. TGA measures the mass loss of the sample as a function of time and temperature. A quadrupole mass spectrometer (QMS) improves the analyses of the processes by adding information about the evolving gases. The temperatures at which the mass changes occur can be viewed using TGA, and quantitative methods can be applied to the data to obtain the kinetic parameters. DSC adds thermal information about the processes that occur during the measurement, and QMS detects the evaporating ions.

* Corresponding author.

http://dx.doi.org/10.1016/j.fuproc.2014.12.051
0378-3820/© 2015 Elsevier B.V. All rights reserved.
This paper provides detailed information about all of the steps of OS combustion in air and oxy-fuel atmospheres and compares the obtained results with the existing model.

2. Experiment

2.1. Materials

All experiments were conducted with an OS sample that was obtained from an underground mine in Estonia and was provided by the Eesti Power Plant. The OS sample was dried and crushed to pass through a sieve with 1 mm openings. The mineral composition of the OS sample is shown in Table 1, and the chemical composition and laboratory ash analysis are shown in Table 2.

2.2. Equipment and procedures

The thermal analyses were performed on a Netzsch STA 449 F3 Jupiter Simultaneous Thermal Analyzer (TG–DSC/DTA Apparatus), which was coupled with a Netzsch QMS 403D Aeolos (mass 1–300 amu). The samples were analyzed in Pt/Rh crucibles with a lid and a removable liner composed of thin-walled Al2O3 in the gas flows, as shown in Fig. 1. In the combustion experiments, approximately 20 mg of the oil shale sample was used. The total gas flow during all measurements was 60 ml/min. In the TGA, the oil shale samples were heated to 1240 °C, with a heating rate of 10 K/min. The instrument temperature and heat sensitivity were calibrated with In, Sn, Zn, Al, and Au standards. The produced gases were analyzed using QMS during the entire heating process. The mass/charge (m/z) values of 8–150 were collected with a sampling rate of 0.2 s/m/z. All measurements were performed at least twice for sufficient reproducibility. The used material was non-homogeneous. Nevertheless, notably good reproducibility was achieved.

2.3. Visual inspection of the product oil shale ash

No visual differences among different ash samples from various experiments were noticed after removing the samples from the TG/DSC apparatus. As expected, all of the samples were slightly sintered at this high temperature (1240 °C) but remained easily removable with a small brush.

2.4. Characteristic parameters of the combustion and decomposition of carbonates

The following characteristic parameters that were previously used by researchers [15,16,20] were measured using the TGA: ignition temperature \(T_i \); temperatures of the maximum mass loss rate \(T_{\text{max}1} \) and \(T_{\text{max}2} \); burn-out temperature \(T_b \). These parameters describe the thermal behavior of the OS’s organic part.

The following parameters for the carbonate decomposition were obtained: beginning temperature \(T_{\text{b1}} \) of the reaction; temperature of the maximum mass loss rate \(T_{\text{max}1} \); and ending temperature \(T_{\text{e2}} \) of the carbonate decomposition. In the CO2/O2 atmosphere, the decomposition of carbonate minerals occurs in two steps. The beginning temperature \(T_{\text{b2}} \) of the second decomposition step, temperature of the maximum mass loss rate \(T_{\text{max}2} \) and ending temperature \(T_{\text{e2}} \) of the second step were measured. The identical parameters were obtained using DSC, and some differences were noticed.

<table>
<thead>
<tr>
<th>CO2%</th>
<th>SiO2</th>
<th>Oil shale ash %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.12</td>
<td>30.74</td>
<td></td>
</tr>
<tr>
<td>2.90</td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>27.90</td>
<td>6.08</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>36.00</td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>8.68</td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>10.038</td>
<td>47.0</td>
<td></td>
</tr>
</tbody>
</table>

2.5. Oil shale combustion model

It has been suggested that a six-step mechanism can describe the OS combustion mechanism [21,22]. Potentially, the following reaction steps occur:

1. water removal,
2. decomposition of kerogen,
3. dissociation of volatile matter into bitumen and gases,
4. oxidation of volatile matter,
5. oxidation of fixed carbon, and
6. decomposition of carbonate minerals.

The scope of the reaction steps depends on the specific OS, but all of the reaction steps should be noticeable during the measurement. TG–DSC–QMS analysis is used to further investigate the reaction steps.

3. Results and discussion

The plots of the TG, DTC and DSC measurements in different N2/O2 and CO2/O2 mixtures (Fig. 1) are shown in Fig. 2.

The measurements are shown in Table 3 and Fig. 3 and will be analyzed.

3.1. Overall combustion analysis

According to the earlier presented theory [21,22], the first combustion step is the separation of water vapor. Many researchers [21, 23–26] suggest that even with an air-dry material, a small mass loss is observed in the temperature range of 60 to 200 °C, which is connected to the evaporation of water. In addition to moisture, the OS contains crystal water (clay minerals, such as illite, chlorite, and kaolinite,
which separate in the temperature range of 120–140 °C [4]). In the conducted measurements, only a minimal mass loss was observed in the water evaporation zone.

The next combustion steps occur relatively simultaneously. The most interesting observation was the difference in the ignition temperature that was measured using TG and DSC. The DSC curve indicates that
Table 3
The characteristic parameters of all shale combustion measured with TGA and DSC in regular and oxy-fuel atmospheres.

<table>
<thead>
<tr>
<th>Gas composition</th>
<th>Combustion</th>
<th>De-carbonisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas mix</td>
<td>O_2 %</td>
<td>N_2 %</td>
</tr>
<tr>
<td>TG1</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>DSC1</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

The exothermic peak occurs 80 °C before the TGA records any mass loss. All of the following characteristic temperatures have a minimal difference between the DSC- and TGA-measured results. The lower ignition temperatures measured using the DSC indicate the decomposition of kerogen. Because the decomposition of the organic part began, but no volatiles were separated, no mass loss was recorded.

The major mass loss (31–33%) occurred in the temperature range of 300 to 715 °C. As visible on all curves, two strong activity peaks were recognized: the first one in the range of 340 to 440 °C and the second one between 500 and 660 °C. The QMS measurements indicate the separation of H_2O (m/z 18 and 17, see Fig. 4), CO (m/z 28) and HCl (m/z 36 and 37) at the first peak of combustion. These gases are the combustion products of the organic part of the OS. The second peak of combustion matches the CO_2 (m/z 44, 46, 48 and 12) and SO_2 (m/z 64, 48 and 32) peaks (see Fig. 5). In this case, the H_2O reading was lower than that during the first phase of combustion, which indicated that hydrocarbons had already burned, and the combustion of aliphatic and aromatic compounds and char occurred during the second phase. The low readings of SO_2 during combustion were caused by organic sulfur. At 500 °C, marcasite (FeS_2) decomposes; thus, sulfur dioxide was formed, which causes the strong reading of SO_2 during the second combustion phase.

Based on the previously suggested OS combustion model, it can be claimed that this phase consists of the conversion of organic matter into volatiles and fixed carbon, oxidation of the formed volatiles and finally the combustion of carbon.

Above 650 °C, all of the following reactions are endothermic, which suggests that the organic compounds have been oxidized. The mass loss step(s) between 670 and 940 °C indicate the decomposition of carbonate minerals. In the air atmosphere, only one step occurs, whereas in the oxy-fuel atmosphere, two reaction steps can be distinguished. The QMS indicates a clear peak of CO_2 in the N_2-based gas mixtures, whereas in the CO_2 atmosphere, the readings are covered by the background. For the endothermic reaction steps, the DSC and TGA measurements indicate a similar reaction start point, end point and maximum mass loss rate temperatures.

As previously mentioned, the Estonian OS is a heterogeneous material. In the completed experiments, a notably good repeatability was obtained, as shown in Table 4. There are some minor differences in the burn-out percentage. The mass loss at the end of the combustion was 32% in all gas mixtures, and the total mass loss was 50%.

3.2. Effect of different oxygen ratios

A higher O_2 ratio in the gas mix with CO_2 leads to faster combustion: the temperatures of the maximum mass loss rate during the combustion phase and burn-out temperature decrease (Fig. 2) for lower O_2 ratios. The effect was stronger in CO_2 atmosphere than in N_2. The burn-out temperature decreases by 185 °C for CO_2/O_2 and 115 °C for N_2/O_2. Simultaneously, the ignition temperature decreases by only 30 °C in both atmospheres. The QMS measurements indicate a lower CO level in the gas mixtures with higher O_2 contents. A faster combustion also increases the maximum mass loss rates in the combustion phase.

The oxygen ratio in the gas mix does not affect the decomposition of carbonates in the N_2/O_2 mixture. In CO_2/O_2, a higher oxygen ratio decreases the characteristic temperatures of the second step of carbonate decomposition but has a minimal effect on the first step. This phenomenon should be attributed to a lower partial pressure of CO_2, which increases the calcite decomposition [5,10,12]. The mass loss rates for carbonate decomposition remain similar.

3.3. Differences in the combustion parameters in air and oxy-fuel atmospheres

The measurements were performed with three different O_2 ratios (10, 20 and 30%) in CO_2 and N_2 atmospheres (Figs. 3, 6 and 7). A change in the main gas from N_2 to CO_2 with an identical oxygen level leads to a
Fig. 4. Water separation (m/z 17 and 18) during the OS combustion measurements in (A) oxy-fuel and (B) air atmospheres.
slower combustion process and changes the carbonate decomposition process. The ignition temperature is almost identical for both main gases. Other characteristic temperatures of combustion are slightly higher in the oxy-fuel atmosphere. The differences decrease with the increase of the oxygen ratio in the gas mix. For example, the burn-out temperature in the gas mix 1 is 70 °C higher than that in gas mix 4 (10 vol.% O₂). If the oxygen ratio in the gas mixes is 20 vol.%, the burn-out temperature in CO₂ atmosphere is 15 °C higher than that in N₂. If the oxygen ratio in the gas mixes is 30 vol.%, no differences of burn-out temperatures are noticed. Simultaneously, the QMS measurements

<table>
<thead>
<tr>
<th>Gas mix</th>
<th>O₂, %</th>
<th>N₂, %</th>
<th>CO₂, %</th>
<th>Burn-out, %</th>
<th>Total, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>-</td>
<td>90</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>-</td>
<td>80</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>-</td>
<td>70</td>
<td>31</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>90</td>
<td>-</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>80</td>
<td>-</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>70</td>
<td>-</td>
<td>33</td>
<td>50</td>
</tr>
</tbody>
</table>

Fig. 5. QMS measurements of SO₂ (m/z 48 and 64) and CO₂ (m/z 44 and 46).

Fig. 6. OS combustion parameters that were measured using the DSC. The solid lines and dashed lines represent measurements in air atmospheres and oxy-fuel atmospheres, respectively.
show a considerably higher CO level on the evaporating gases (nearly 10 times stronger ion current of m/z 28). The combustion process begins at the identical temperature in air and oxy-fuel atmospheres but lasts longer in the oxy-fuel atmosphere and increases the CO concentration in the evaporating gases, particularly when the gas mix has a low oxygen content.

The decomposition of carbonate minerals occurs in air in one mass loss step between 670 and 825 °C. The TGA measurements indicate a small variation of the temperatures of the start and maximum mass loss, but the DSC measurements indicate stricter reaction boundaries.

The decomposition of carbonate minerals in the oxy-fuel atmosphere occurs in two reaction steps: the decomposition of dolomite \((\text{CaMg(CO}_3)_2\)) and then the decomposition of calcite \((\text{CaCO}_3)\) [5,10]. The DSC measurements show two separated reaction steps. The first endothermic heat flow is recorded between 730 and 790 °C. The second endothermic reaction step occurs between 910 and 960 °C, when the oxygen content is low (1%), and between 900 and 930 °C, when the oxygen content is relatively high (30%). The TG curve hinders the analysis, that is, there are two mass loss rate peaks in the TGA curve and a small mass loss (4%) between the peaks, but the DSC shows no readings in the gap. This result indicates that the heat flow is too small to be registered.

The carbonate breakdown reactions occur in the identical temperature range in the air atmospheres, whereas the calcite is stabilized to a higher temperature in the \(\text{CO}_2\) atmospheres. The dolomite breakdown is merged with the larger calcite breakdown peak in the air atmosphere. Compared to the \(\text{N}_2\)/\(\text{O}_2\) mixture, the \(\text{CO}_2\)/\(\text{O}_2\) atmosphere increases the burn-out temperature and divides the decomposition process of carbonate minerals into two steps. The separation of these two peaks likely occurs at intermediate \(\text{CO}_2\) contents of the atmosphere.

3.4. QMS analysis

The separation of major combustion products was previously discussed. The analysis of weaker m/z readings and some hypotheses set by other researchers [14,27-30] are discussed below.

Because the nitrogen content in OS is notably low (Table 2), the m/z peaks that are connected to nitrogen (14, 26, 27, 28, 30, 44 and 46) are attributed to organic or other combustion products.

The separation of methane was attempted for confirmation, but the methane peaks overlap with water (m/z 16) and carbon monoxide (m/z 14). The m/z 15 peak indicates \(\text{CH}_3^+\) ions and m/z 13 \(\text{CH}_2^+\) ions. m/z 13 is not recognized in the \(\text{N}_2\)/\(\text{O}_2\) atmosphere, but in the \(\text{CO}_2\)/\(\text{O}_2\) atmosphere, it has approximately 30% of the intensity of the m/z 15 peak. These peaks are attributed to organic molecules in general and may indicate something more complex than methane. This result requires further investigation with preferably other analytical techniques.

One possible organic component was identified: 1-butene, which has a more complex spectrum than the previously shown compounds. The NIST MS Search tool provides a match of 796, and it suggests 2-butene, with a match of 763. Therefore, both compounds can be considered to be possible evaporating gases.

Earlier industrial and laboratory measurements indicate the formation of VOCs [28,29,31], but the conducted QMS measurements could not confirm them. It is possible that the ambient noise covers the m/z peaks. Applying advanced data treatment methods may resolve the problem. The obtained results indicate that the QMS analysis of evolved gases does not provide full information about the composition of the gas phase. Meriste et al. [14] made similar conclusions after applying FTIR. Combining different analytic equipment can provide more information about the gaseous compounds.

Fig. 7. Oil shale combustion measurement in different gas mixtures: A — gas mix 1 (10% \(\text{O}_2\) and 90% \(\text{CO}_2\)) and gas mix 4 (10% \(\text{O}_2\) and 90% \(\text{N}_2\)); B — gas mix 2 (20% \(\text{O}_2\) and 80% \(\text{CO}_2\)) and gas mix 5 (20% \(\text{O}_2\) and 80% \(\text{N}_2\)); and C — gas mix 6 (30% \(\text{O}_2\) and 70% \(\text{CO}_2\)) and gas mix 3 (30% \(\text{O}_2\) and 70% \(\text{N}_2\)).
3.5. Combustion model of Estonian OS

Based on the experiments for Estonian OS, the combustion model is as follows:

1. Separation of moisture and crystal water (120–200 °C);
2. Decomposition of organic matter (220–300 °C);
3. Combustion (300–730 °C):
 a. Combustion of volatiles (300–500 °C);
 b. Combustion of fixed carbon (350–730 °C);
 c. Decomposition of pyrite (400–500 °C);
4. Decomposition of carbonate minerals (670–960 °C):
 a. Decomposition of dolomite (in air: 670–820 °C; in oxy-fuel atmosphere: 730–790 °C);

All of the mentioned steps occur but may roughly simultaneously occur depending on the conditions.

3.6. Conclusions

In conclusion, this paper provides a TGA–MS measurement data analysis of Estonian oil shale combustion in air and an oxy-fuel environment using various oxygen ratios. The released gases were analyzed and identified using a mass-spectrometer. This study shows that the characteristic temperatures of the process differ in air and oxy-fuel environments: combustion is delayed in the oxy-fuel environment. A major difference is that the decomposition of carbonaceous minerals occurs in one step in air and in two steps in the oxy-fuel atmosphere. In addition, varying the oxygen ratios helps to improve combustion and decrease CO₂ emissions. When the atmosphere is changed from N₂ to CO₂ with the identical oxygen content, combustion is delayed. A higher oxygen content decreases the differences of the air and oxy-fuel combustion parameters. It is important to study combustion and its products in the oxy-fuel environment to simplify the design of oxy-fuel combustors and decrease CO₂ emission.

Acknowledgments

This study was supported by the European Union through the European Regional Development Fund.

References

Paper III

Influence of oxy-fuel combustion of Ca-rich oil shale fuel on carbonate stability and ash composition

A. Konist a,⁎, A. Valtseva, L. Loo a, T. Pihu a, M. Liib, K. Kirsimäeb

aDepartment of Thermal Engineering, Tallinn University of Technology, Kopli 116, 11712 Tallinn, Estonia
bDepartment of Geology, University of Tartu, Ravila 14a, 30411 Tartu, Estonia

HIGHLIGHTS

• This study provides results of oil shale combustion in a batch reactor applying oxy-fuel conditions.
• Elevated CO2 levels and inhibited carbonate decomposition rate have effect on SO2 binding and stable anhydrite formation.
• Content of calcite in remaining ash increases with increasing CO2 levels and decreased firing temperatures.
• Carbonate decomposition is delayed and composition of ash is changed in oil-shale firing at elevated CO2 levels.
• Formation of secondary Ca-Mg silicate phases is directly proportional to firing temperature.

ARTICLE INFO

Article history:
Received 28 April 2014
Received in revised form 1 July 2014
Accepted 11 September 2014
Available online 27 September 2014

Keywords:
Oil shale
Oxy-fuel combustion
Carbonate stability
Ash composition
Kukersite

ABSTRACT

Oil shale is an unconventional low-calorific-value fossil fuel, the usage of which is increasing due to increasing energy demand. Today, Estonia’s oil shale usage is the largest in the world. Approximately 90% of the electricity consumed is produced from Ca-rich oil shale. Most of the oil shale, approximately 12 million tons yearly, is used for power generation utilizing pulverized combustion (PC) and circulating fluidized bed combustion (CFBC) technologies. As a result, Estonia has one of the world’s highest CO2 emission rates per capita. This study provides results of oil shale combustion in a batch reactor applying oxy-fuel conditions. The combustion experiments were performed at temperatures of 400, 850 and 900 °C while varying the N2, O2 and CO2 ratios. In addition to different temperatures and air-composition variation, water vapor was injected into the gas flow entering the furnace to study the water vapor influence on the solid combustion products. Our results indicated that elevated CO2 levels have a significant influence on the carbonate-decomposition extent and therefore on the SO2-binding properties.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Global concern regarding climate warming and stringent limitations on greenhouse-gas emissions have made the oxy-fuel combustion of solid fuels an attractive potential firing technology. Oxy-fuel combustion is considered the most energy- and cost-efficient of the carbon-capture technologies, and it therefore may reduce the level of environmental harm that results from energy production [1–7]. Oxy-fuel technology applies fuel combustion in an O2–CO2 environment resulting in flue gas with a CO2 concentration high enough for efficient CO2 sequestration and subsequent storage [8,9].

Previous studies have suggested that the chemical and mineralogical composition of the ash forming during the combustion of various coals and lignite do not differ significantly between air and oxy-fuel combustion conditions [10–12]; however, the ash deposition rate, particulate formation (grain-size) and proportions of minerals are reported to vary under oxy-fuel conditions [12–14].

The possible influence of oxy-fuel combustion on ash formation and composition would result from the high CO2 partial pressures in the high-temperature mineral transformation processes [15–17]. In coal and/or biomass solid fuels, the inorganic (mineral) part of the fuel is low (<20 wt%) and dominated by (alumo) silicate phases (including quartz) that are typically thermally resistant/unreactive.

In contrast, oil shales that are low-quality, organic-rich sedimentary rocks [18] and contain a considerable amount of mineral matter (usually 30–90 wt%, e.g., [19]) can be more sensitive to the conditions present in oxy-fuel-combustion environments.

Oil shales are generally rich in bituminous organic matter [20] and are processed worldwide as an energy resource in a number

http://dx.doi.org/10.1016/j.fuel.2014.09.050
0016-2361/© 2014 Elsevier Ltd. All rights reserved.
of countries, including China, Brazil, Jordan and Estonia, although large known reserves also exist in the U.S.A., Australia, Russia and elsewhere [21]. However, the increasing needs for energy (esp. in developing countries), the depletion of easily accessible oil reserves and the concurrently increasing oil prices have significantly raised the interest in oil-shale mining and processing in the last few decades.

A significant drawback of oil-shale usage is its large CO₂ footprint, which is due to the low calorific value of the fuel as well as the composition of the mineral matter. A considerable portion of the oil-shale deposits worldwide are found in shallow marine or lacustrine sediments dominated by carbonate-mineral assemblages. The thermal dissociation of Na₂, Ca²⁺ and/or Ca²⁺-Mg-carbonate phases liberates large amounts of CO₂ and oxidizes organic carbon. As a result, oxy-fuel combustion technology and consequent CO₂ sequestration would be specifically demanded for oil-shale processing. On the other hand, the thermal decomposition of carbonate minerals is sensitive to the CO₂ partial pressure [22], and in contrast to the case of coal-type fuels, combustion air enriched with CO₂ can influence the mineral-transformation pathways and rates in oil-shale combustion. Moreover, the CO₂ levels can influence the melting of silicate phases and the formation of secondary Ca-silicate minerals that have a significant influence on the physical and chemical properties of the ash, such as the pozzolanic properties of the fine fractions of ash, and therefore the potential usability of the ash waste as a binder/cement additive.

Table 1

Purifying temperatures and environmental conditions for the oil-shale combustion experiments, vol.

<table>
<thead>
<tr>
<th>Gas/temperature</th>
<th>800 °C</th>
<th>800 °C</th>
<th>800 °C</th>
<th>850 °C</th>
<th>850 °C</th>
<th>850 °C</th>
<th>900 °C</th>
<th>900 °C</th>
<th>900 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>79</td>
<td>81</td>
<td>6</td>
<td>79</td>
<td>81</td>
<td>6</td>
<td>79</td>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>O₂</td>
<td>21</td>
<td>4</td>
<td>4</td>
<td>21</td>
<td>4</td>
<td>4</td>
<td>21</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CO₂</td>
<td>0</td>
<td>15</td>
<td>90</td>
<td>0</td>
<td>15</td>
<td>90</td>
<td>0</td>
<td>15</td>
<td>96</td>
</tr>
<tr>
<td>H₂O</td>
<td>0/8/15</td>
<td>0/8/15</td>
<td>0/8/15</td>
<td>0/8/15</td>
<td>0/8/15</td>
<td>0/8/15</td>
<td>0/8/15</td>
<td>0/8/15</td>
<td>0/8/15</td>
</tr>
</tbody>
</table>

Fig. 1. Simplified schematic of the batch reactor and a sample holder.

Fig. 2. Representative X-ray diffraction patterns of the collected ash. Experimental conditions are indicated in the figure. Anh – anhydrite, Ca – calcite, CΣS – dicalcium silicate (belite), L – lime (CaO₀.₉₅), and P – portlandite.
Kukersite oil shale is a highly calcareous, fine-grained, organic-rich sediment [23]. The organic matter of kukersite (20–60%) is composed mostly of kerogen with a few percent bitumen [24]. The mineral matrix of the oil shale is mainly composed of calcite and, to a lesser extent, dolomite (altogether 20–70%) and terrigenous phases (quartz, feldspar and clay minerals) that compose approximately 15–60% of the oil shale [25]. Oil shale burned in power plants shows the following properties: moisture content (as-received fuel Wf = 11–13%), ash content (as-received fuel Af = 45–57%), carbonate CO2 (16–19%), and heating value (Q = 8.3–8.7 MJ/kg). In addition, the molar ratio of Ca/S = 8–10 in oil shale exceeds by more than 2–3 times the ratio of Ca/S sufficient to capture SO2 completely [26–28]. The calorific value of the oil shale fired in power plants is at least two times lower than that of the average bituminous brown coal = 22.5 MJ/kg [23,29].

Various combustion technologies presently used in Estonia – pulverized combustion (PC) and circulating fluidized bed combustion (CFBC) [30] – cause significant differences in the composition of the ash, mainly due to different carbonate decomposition and reaction extents at various combustion temperatures [25,28,31–33]. Therefore, the goal of this study is to investigate influence of elevated CO2 levels in various temperature regimes on carbonate-decomposition extents and secondary-phase formation using Estonian kukersite oil shale.

2. Material and methods

A laboratory batch reactor was used to provide a combustion environment at a specified temperature. The laboratory experimental facility [Fig. 1] is designed to burn a portion of the solid fuel. The experimental facility consists of a reactor-heater, a temperature-control system, a gas mixing-control system, a steam generator-insertion system, a flue gas analyzer and a data-acquisition and control system. The gas mixing-control system comprises mass-flow controllers (MFC), calibrated according to the gas to be used, and check valves. Water vapor, up to 25%, was added to the gas mixture with an integrated steam generator. To prevent water vapor condensation in the path from the steam generator to the reactor, a heated supply channel was used. The inlet of the reactor is also heated for the same reason. The batch reactor is designed to reach a working temperature up to 850 °C.

The kukersite oil shale in oxy-fuel experiments was sampled from crushed oil shale mined in Estonia underground mine. The oil shale was dried and crushed by passing through a 2-mm sieve opening. The median size of the oil shale used for the experiments was D50 = 0.25 mm.

The combustion experiments were performed at temperatures of 800, 850 and 900 °C while varying the N2, O2 and CO2 ratios (see Table 1 for the experimental conditions). In addition to the different temperatures and air-composition variation, water vapor was injected into the gas flow entering the furnace to study the water vapor influence on the solid-combustion products. For each experiment a stainless steel bound net sample holder (Fig. 1) was used where approximately 5 g of oil shale were loaded into. In each run, the sample holder with the sample was loaded into the balance chamber (vertical chamber on the top of the reactor with ball valves at both ends). The balance chamber was filled with the gas mixture used in the experiment, and the pressures in the reactor and in the balance chamber were equilibrated. From the balance chamber, the sample holder was dropped into the reactor. Because combustion and the reactions with the oil shale minerals and coke require time, a period of 1.5 h that was sufficient for complete combustion was selected. The holding time was selected according to earlier studies on the behavior of oil-shale carbonates [34]. FTIR gas analyzer was used to monitor the combustion process. After 1.5 h the sample holder with residual ash was removed from batch reactor at preset test temperature and cooled down within minutes in excicator at room temperature.

Ash derived from the combustion reactor operated under various conditions was analyzed for the mineral composition and morphomicroscopy of the ash particles. The mineral composition...
of the crystalline phases in the ash and the raw oil shale was studied using powder X-ray diffraction (XRD) with a Bruker D8 diffractometer using Cu Kα radiation in the 2θ range of 3°–72°, with a step size of 0.02° 2θ and a counting time of 0.1 s per step using a LynxEye linear detector. The X-ray tube was operated at 40 kV and 40 mA. The samples were powdered by hand using agate mortar, and unoriented preparations were made for the mineral analysis. The mineral composition of the samples was interpreted and modeled using the Rietveld algorithm-based code Siroquant 3.0 [35]. Most of the samples show the presence of secondary portlandite, which indicates the partial hydration of the original lime during the storage of the samples prior to XRD analysis (Fig. 2). The measured portlandite content was recalculated to the respective original amount of lime (CaO$_{lime}$).

The micromorphology of the ash was investigated using a scanning electron microscope (SEM). Scanning electron microscopy (SEM) imaging and analysis of the samples was performed on a variable-pressure Zeiss EVO MA15 SEM equipped with an Oxford X-MAX energy dispersive detector system and AZTEC software for elemental analysis.

3. Results and discussion

The mineral composition of the raw oil shale and the ash derived from various experiments is reported in Tables 2 and 3, and representative X-ray patterns are shown in Fig. 2.

The mineral composition of the raw oil shale used in the experiments (Table 3) corresponds to a typical oil-shale feed used for power generation at thermal power plants and for shale-oil extraction [35] and is characterized by high calcite and dolomite contents of ~42 wt% and 19 wt%, respectively, and a terrigenous mineral assemblage of quartz (~12 wt%), K-feldspar (~6 wt%), clay minerals (~19 wt%) and pyrite (~3 wt%). The ash composition (Table 2) is dominated by lime (CaO$_{lime}$), residual terrigenous mineral phases (quartz, K-feldspar and K-mica resulting from the dehydroxylation of illitic clay minerals), secondary Ca–Mg silicate phases (belite-C2S, merwinite and melilite), anhydrite, pericline (Mgo$_{per}$) and undecomposed calcite. The lime content varies from trace amounts (<0.5 wt%) in experiments fired in an atmosphere containing 90 vol% CO$_2$ to a maximum of 25–30 wt% in a normal-air (79 vol% N$_2$ and 21 vol% O$_2$) environment at a 900 °C combustion temperature (Fig. 3). In contrast to the lime content, the content of calcite in the remaining ash increases with increasing CO$_2$ levels and decreased firing temperatures (Fig. 3). At 800 °C in 90 vol% CO$_2$ atmosphere, calcite composes more than 55% of the crystalline phases in the ash, and the injected H$_2$O vapor amount varies from 0 to 15 wt% (Table 2). The calcite-decomposition extent increased with temperature in CO$_2$ atmosphere, but a minor amount of calcite is still found in the ashes even at 900 °C. Unlike for calcite, however, the combustion temperatures were sufficiently high for the complete decomposition of Ca–Mg carbonate – dolomite, independent of the firing atmosphere composition. The dolomite content in the raw oil shale used in the experiment was 19 wt% of the crystalline phase, but this phase was not detected in any of the ashes that remained in the experiments. Instead, its decomposition products – pericline (Mgo$_{per}$), lime (CaO$_{lime}$) – and reaction products, such as secondary Ca–Mg silicate phases (e.g., merwinite), were present. In contrast, the decomposition of calcite, which begins to decompose at 620 °C and exhibits its maximal decomposition extent at 895–900 °C [22], was not completed if oil shale was fired at elevated CO$_2$ levels.

The thermal dissociation/decomposition of calcite and dolomite is strongly dependent on the CO$_2$ partial pressures [22]. Dolomite decomposes at low CO$_2$ (typically < 0.27 bar) pressures in a single step to CaO and MgO, and CO$_2$:

$$\text{CaMg(CO}_3\text{)}_2 = \text{CaO} + \text{MgO} + 2\text{CO}_2$$

At higher CO$_2$ partial pressures, the decomposition occurs by a two-stage mechanism [36]:

\begin{align*}
(4) \quad \text{CaMg(CO}_3\text{)}_2 & = \text{CaCO}_3 + \text{MgO} + \text{CO}_2 \\
(5) \quad \text{CaCO}_3 & = \text{CaO} + \text{CO}_2
\end{align*}
partial pressure of the carbon dioxide continues to increase [37,38]. However, equilibrium modeling of the mineral reactions under oxy-fuel combustion conditions [39] suggest that the high CO₂ levels do not delay the carbonate-mineral decomposition and that oxy-fuel firing would have little effect on the composition of the as.

Nevertheless, our data suggest that the carbonate decomposition is delayed and that the composition of the ash is changed in oil-shale firing at elevated CO₂ levels. It is evident that, in our experiments under normal-air (79 vol% N₂ and 21 vol% O₂) conditions, the temperatures in the reactor were high enough for the complete decomposition of both dolomite and calcite, and the composition of the ash remaining is the same as under normal fluidized-bed combustion conditions [25]. However, at a CO₂ concentration of 15 vol%, the CaCO₃ (calcite) is already partly preserved at firing temperatures of 800 and 850 °C and is also present in trace amounts at 900 °C in a 90 vol% CO₂ atmosphere (Table 2, Fig. 3). Because the MgO content in the ash does not vary under the various combustion conditions, it can be suggested that reaction (2) is completed in all cases, whereas reaction (3) is delayed at elevated CO₂ levels.

The effect of the CO₂ concentration on oil-shale combustion is well illustrated by the scanning electron microscopy observation of the respective ashes (Fig. 4). No residual calcite- and/or dolomite-derived CaCO₃ particles were observed for normal-air (79 vol% N₂ and 21 vol% O₂) combustion, and the material is composed of highly porous ash particle aggregates, whereas the aggregates have a fused crust or have fused together into clumps of up to a few hundred micrometers in places (Fig. 4B). However, the residual and partly calcined calcite particles are abundant at the temperatures 800 and 850 °C in a 90 vol% CO₂ atmosphere (Fig. 4C), and the ash is composed of irregular 2-10 μm particle aggregates (Fig. 4D).

This conclusion is further supported by the calcite and secondary Ca-Mg phase ratios at various temperatures and CO₂ levels (Fig. 5) that show a ratio >1 (that is, showing “excess” calcite) in the ashes formed during the oil shale combustion in a 90 vol% CO₂ atmosphere at 800 °C, whereas the same ratio is approximately 0.75 at low H₂O vapor concentrations in the experiment at 850 °C. The calcite and secondary Ca-Mg phase ratio is well below 0.1 in the combustion experiments at 900 °C, indicating the nearly complete decomposition of calcite. This observation concurs with in situ XRD studies [40] suggesting that, in an air environment, reactions (2) and (3) occur simultaneously and are already complete by 750–780 °C. In a CO₂ atmosphere, however, the discrete CaCO₃ formed in reaction (2) and the primary calcite are stable up to 900–910 °C, at which temperature reaction (3) begins, which is completed at approximately 950–960 °C [40].

The formation of the secondary Ca-Mg silicate phases is directly proportional to the firing temperature (and the decomposition extent of the carbonate minerals), but it does not to appear to depend on the CO₂ level or the injected-H₂O vapor amounts (Table 2). The sum of the secondary Ca-Mg silicates as a percentage of the total crystalline phases varies, with averages of 20–21% at 800 °C, approximately 25% at 850 °C, and approximately 31% at 900 °C. H₂O vapor injection in low-temperature combustion (800 °C) and low CO₂ levels do not produce a significant influence on the carbonate decomposition and secondary-phase formation (Fig. 5). However, the ratio of the residual calcite and secondary Ca-Mg phases is influenced by the amounts of injected H₂O vapor at higher temperatures in 90 vol% CO₂ atmosphere (Fig. 5). At 850 °C, the injection of 15% water vapor facilitated the calcite decomposition compared to the results of the experiments with 8% or no water vapor. In contrast, although the scale is different, the effect at 900 °C is opposite, and the decomposition of calcite is nearly complete in the dry environment, whereas while some calcite is still preserved if 8% and 15% water vapor were added. The latter observation is interesting because the decomposition rate is typically enhanced in the presence of water (vapor) due to either catalytic function of H₂O on the Ca-carbonate surface reactions [38,41] or effects on gas physical properties influencing heat transfer from gas to solid [42]. However, Khrasheva and Dugwell [43] reported a positive effect on calcination rate when 2.22% H₂O was added, while the rate decreased when 6.08% H₂O was added, which they explained as due to the reduced CO₂ diffusion rate at higher water vapor levels. Moreover, numerical modeling...
of CaCO₃ decomposition under oxy-fuel conditions [44], indicates that as the increase of CO₂ concentration from 7% to 80%, the decomposition rate of CaCO₃ decreases significantly, but the enhancement in the calcination rate diminishes when increasing the H₂O concentration from 5% to 20% at a fixed CO₂ concentration. Our experiments suggest that the elevated CO₂ levels and the inhibited carbonate decomposition rate have a noticeable effect on the SO₂ binding and the stable anhydrite formation in oil-shale ash (Fig. 6). The anhydrite content decreases from approximately 7 wt% of the crystalline phases in the remaining ash under air conditions, independent of the firing temperature, to approximately 6.5 wt% in the experiment with 15 vol% of CO₂ and an average of 5 wt% in the 80 vol% atmosphere. This is a somewhat unexpected finding because, for a study of competitive carbonation and sulfonation under high-CO₂-concentration coal combustion, direct and effective sulfation of the carbonate occurred in a fixed-bed reactor experiment [45]. Similarly, Zheng and Furinsky [39] suggested, using equilibrium calculations, that sulfation, rather than carbonation, would be the preferred reaction under oxy-fuel conditions. On the other hand, it must be considered that high degree of sulfation in [45] experiments were attained only after prolonged (~1.4 h) reaction times under continuous fed of external SO₂ gas. Though the reaction times in our experiments were comparable (1.5 h), then in oil shale burning the sulfur is deliberated in situ from the oil shale itself – initial stages of the burning organics and the decomposition of sulfide minerals (mainly pyrite) that occurs at temperatures well below 700°C when calcination was still not completed. This would suggest that SO₂ was in the very contact with lime particles during a shorter time in our experiment. Also, at higher CO₂/O₂ ratios the O₂ is more or less absent in the very vicinity of the fuel particles and the conditions were not favoring the stability of CaSO₄. Alternatively, this phenomenon could be related to the competition between the formation of Ca(Mg) silicate and Ca-sulfate secondary phases. Thus, further investigation is required.

4. Conclusion

Laboratory batch-reactor experiments of highly calcareous oil-shale combustion under oxy-fuel conditions were performed at temperatures of 800, 850 and 900°C while varying the N₂, O₂ and CO₂ ratios. In addition to different temperatures and air-composition variation, water vapor was injected into the gas flow entering the furnace to study the water vapor influence on the solid-combustion products. Our experiments show that decomposition of the Ca–Mg carbonate phase dolomite is completed in all temperature regimes in the various combustion atmospheres. However, the decomposition of the CaCO₃ phase (calcite) is significantly delayed at elevated CO₂ levels. Our results suggest that the elevated CO₂ levels and the inhibited carbonate (calcite) decomposition extent have a noticeable effect on the SO₂ binding and, consequently, on the stable anhydrite formation in oil-shale ash.

Acknowledgments

This research was supported by the European Union through the European Regional Development Fund and by the Estonian Ministry of Education and Research Project AR120031 “Reduction of CO₂ emission of CFB boiler by enrichment of combustion air with oxygen.”
Paper IV

Article

Ash and Flue Gas from Oil Shale Oxy-Fuel Circulating Fluidized Bed Combustion

Lauri Loo * , Alar Konist , Dmitri Neshumayev, Tõnu Pihu, Birgit Maaten and Andres Säirde

Department of Energy Technology, Tallinn University of Technology, 19086 Tallinn, Estonia;
alarkonist@ttu.ee (A.K.); dmitri.neshumayev@ttu.ee (D.N.); tonu.pihu@ttu.ee (T.P.); birgit.maaten@ttu.ee (B.M.);
andres.sairde@ttu.ee (A.S.)

* Correspondence: lauri.loo@ttu.ee; Tel.: +372-620-3907

Received: 13 April 2018; Accepted: 9 May 2018; Published: 10 May 2018

Abstract: Carbon dioxide emissions are considered a major environmental threat. To enable power production from carbon-containing fuels, carbon capture is required. Oxy-fuel combustion technology facilitates carbon capture by increasing the carbon dioxide concentration in flue gas. This study reports the results of calcium rich oil shale combustion in a 60 kWth circulating fluidized bed (CFB) combustor. The focus was on the composition of the formed flue gas and ash during air and oxy-fuel combustion. The fuel was typical Estonian oil shale characterized by high volatile and ash contents. No additional bed material was used in the CFB; the formed ash was enough for the purpose. Two modes of oxy-fuel combustion were investigated and compared with combustion in air. When N2 in the oxidizer was replaced with CO2, the CFB temperatures decreased by up to 100 °C. When oil shale was fired in the CFB with increased O2 content in CO2, the temperatures in the furnace were similar to combustion in air. In air mode, the emissions of SO2 and NOx were low (<14 and 141 mg/Nm3 @ 6% O2, respectively). Pollutant concentrations in the flue gas during oxy-fuel operations remained low (for OXY30 SO2 < 14 and NOx 130 mg/Nm3 @ 6% O2 and for OXY21 SO2 23 and NOx 156 mg/Nm3 @ 6% O2). Analyses of the collected ash samples showed a decreased extent of carbonate minerals decomposition during both oxy-fuel experiments. This results in decreased carbon dioxide emissions. The outcomes show that oxy-fuel CFB combustion of the oil shale ensures sulfur binding and decreases CO2 production.

Keywords: circulating fluidized bed combustion; carbon capture; storage and utilization; sulfur binding; nitrogen oxides; emissions; ash behavior; carbonate minerals

1. Introduction

Carbon dioxide emissions continue to be a major environmental concern of solid fuel combustion. Carbon capture and storage is required in order to meet future targets for greenhouse gas emissions. The typical technologies related to CO2 capture are pre-combustion, post-combustion and oxy-fuel combustion [1]. Oxy-fuel combustion is considered as one of the most promising carbon dioxide capture approaches [2–4]. It involves combustion of fuel in a mixture of nearly pure oxygen and recycled flue gas to control the combustion temperature. There is a number of ongoing oxy-fuel combustion commercialization and demonstration projects, most of them are utilizing pulverized combustion (PC) technology [5,6]. Circulating fluidized bed (CFB) combustion technology is proven and has advantages such as fuel flexibility and environmental performance. When applying oxy-fuel combustion with a CFB, the circulating solid matter offers another temperature control method. Due to this, less circulated flue gas is required for temperature control. Regardless of the exact solution, the main purpose of applying an oxy-fuel approach is to enable power production without carbon
dioxide emissions by producing an enriched carbon dioxide flow at the combustion unit’s outlet to simplify its utilization or sequestration.

The fuel used in this study was typical Estonian oil shale. Oil shale is a low-grade fossil fuel that has extremely high ash and volatile contents. The worldwide oil shale reserves have enormous energy potential, but it is industrially used only in Estonia, Brazil and China [7]. Oil shale can be utilized for energy production via gasification, pyrolysis or combustion. Estonian oil shale based power production relies on PC and CFB combustion technologies [8,9]. Industrial experience has shown that, due to a high process efficiency, low emissions, and no requirements for SOx or NOx emission control systems, CFB combustion of oil shale is the best available technology [10–13]. Industrial trials [12,14] have shown that CFB combustion technology is suitable for oil shale co-firing with biomass, pyrolysis gas and peat, thereby enabling fuel flexibility.

Substituting N2 with CO2 has an influence on combustion, pollutant formation, mineral matter behavior and temperature in the combustor. Previous research has shown that, when the oxidizer contains a similar amount of O2, then, in CO2, the combustion is delayed [15–17]. Delayed combustion and increased specific heat of the gas mix leads to up to a 100 °C temperature decrease in the furnace [3,18]. To overcome this obstacle, O2 concentration is increased. Generally, a mixture containing 30% O2 and 70% CO2 allows obtaining similar temperatures in furnace as in a regular air-fired CFB.

Sulfur oxides are one of the main pollutants from combustion, causing acid rains and disturbing CO2 compression when applying oxy-fuel combustion. The SO2 concentration in flue gas can be reduced by injecting sorbents, such as limestone or dolomite, into a CFB. Estonian oil shale has a high content of carbonate minerals (mostly calcite and dolomite). Due to this, no additional bed material is needed. The sulfur capture process depends on calcination, which depends on CO2 partial pressure and temperature. If the CO2 partial pressure is lower than the equilibrium pressure [19], limestone decomposes and forms CaO and CO2,

\[CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g). \] (1)

The CaO then reacts with SO2,

\[CaO(s) + SO_2(g) + 0.5O_2 \leftrightarrow CaSO_4(s). \] (2)

This process is called indirect sulfation. If the calcination process does not take place, then SO2 may react directly with CaCO3,

\[CaCO_3(s) + SO_2(g) + 0.5O_2 \leftrightarrow CaSO_4(s) + CO_2(g). \] (3)

In air-fired atmospheric units, sulfur capture occurs via relatively rapid calcination (Equation (1)) and much slower sulfation reactions (Equation (2)). In oxy-fuel CFB combustors, sulfation can occur directly without the calcination step (Equation (3)). Theoretical calculations [20–22] and a previous study in a lab-scale fluidized bed reactor [23] revealed that carbonate minerals do not fully decompose under oxy-fuel combustion environment and the sulfur binding rate decreases, similar to the experiments of Li et al. [24]. On the contrary, some other experiments [18,25,26] showed a decrease in sulfur emissions or increased sulfur capture efficiency when applying oxy-combustion. This means that, it is still unclear if sulfur binding rate is sufficient.

Other important pollutants from combustion are nitrogen oxides (NOx) [27,28]. Nitrogen content in the Estonian oil shale is low, below 0.1% in dry fuel. Due to this and the low temperatures in CFB combustors, no problems with excess nitrogen oxide formation were recorded from the utility boilers [10]. One advantage of oxy-fuel technology is its potentially lower NOx production. Results from different experimental facilities are rather diverse [18,29–33]. Overall, the results indicate that
nitrogen behavior in the oxy-fuel mode is similar to combustion in air and no drastic changes are expected in fuel nitrogen conversion to oxides.

Changes in the gas composition in a combustor may alter the transformation of minerals and cause fouling or particles agglomeration in the bed. Estonian oil shale has a high ash and carbonates content. When PC was applied to Estonian oil shale combustion, major difficulties due to sediments formation on heating surfaces occurred [34]. Applying CFB technology resolved such problems, because it was possible to decrease temperatures in furnace below 850 °C [10]. From previous experience, we know that decreased decomposition of carbonate minerals results in up to 13% smaller carbon dioxide production [20]; at the same time, it increases total ash production from combustion.

Mapping waste is important for finding solutions to turn ash, or at least a part of it, into products [35,36]. Wang et al. [37] found no major differences in oxy-fuel residues when compared to regular ash. Our previous experiments at laboratory scale fluidized bed reactor showed a considerable decrease of carbonaceous minerals decomposition in oxy-fuel environment [23]. This means that CO₂ emissions decrease, but the production of ash increases. [36]. More than 90% of oil shale ash is currently landfilled [38]. In landfills, it cements and binds approximately 8% of the total emitted carbon dioxide [39]. Experiments with oxy-fuel CFB ash showed that the ash can still fix a similar amount of CO₂ [40]. The natural CO₂ sequestration uses only a part of the ash’s total potential, because only the surface of the particles is available for the reaction. The calcium rich ash could be employed for improved CO₂ sequestration [41]. For example, Zevenhoven et al. [42] proposed precipitated calcium carbonate production from calcium-containing industrial wastes. The concept could be applied with oil shale ash; as a result, a large amount of CO₂ would be fixed, and waste ash would be used and a valuable product would be produced.

Higher CO₂ concentration in flue gas eases utilization or gas transportation to geological storage sites. The nearest option for CO₂ storing from a possible oxy-fuel power plant in Estonia would be in the South Kandava sandstone in Latvia (500 km from the oil shale mines). The formation has been evaluated to be suitable for CO₂ geological storage [43,44].

The experience shows that substituting nitrogen with carbon dioxide as diluent is not trivial and generates important differences. To investigate possible changes in the flue gas and produced ash when applying oxy-fuel combustion on Estonian oil shale, combustion experiments in a 60 kWth CFB combustor were performed using air and mixed gases to simulate possible oxy-fuel combustion environments. Flue gas and produced ash samples were collected and analyzed.

2. Experimental Section

2.1. The Oil Shale

The experiments were carried out with typical Estonian oil shale from the Ojamaa underground mine. The fuel was dried, crushed and sieved to under 3 mm. The ultimate and proximate analysis of the oil shale is listed in Table 1. The oil shale contained a considerable amount of sulfur, but had a low nitrogen content. The laboratory ash composition is shown in Table 2. The Ca/S molar ratio in the oil shale was 8.0. The values were typical for oil shale used in the Estonian oil shale industry. The only major difference was the fuel moisture content. The oil shale used in the experiments was room dry. Normally, the oil shale used in the industry has a moisture content slightly over 10% [11,45].

<table>
<thead>
<tr>
<th>Net Heating Value, MJ/kg</th>
<th>Proximate Analysis, wt. %</th>
<th>Ultimate Analysis, wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moisture</td>
<td>Volatile Matter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.56</td>
<td>0.50</td>
<td>47.5</td>
</tr>
</tbody>
</table>

* Volatile matter includes mineral CO₂ from decomposition of carbonate minerals; ** TOC—total organic carbon.
Table 2. Chemical composition of the oil shale laboratory ash.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>CaO</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>SO₃</th>
<th>MgO</th>
<th>Fe₂O₃</th>
<th>K₂O</th>
<th>Cl</th>
<th>Na₂O</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content, wt %</td>
<td>43.9</td>
<td>27.5</td>
<td>8.6</td>
<td>5.5</td>
<td>4.9</td>
<td>4.8</td>
<td>3.3</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

2.2. The Circulating Fluidized Bed Combustion Test Facility

The experiments were conducted using a 60 kWth CFB combustor, which was designed and constructed for fuels with high, up to 60 wt %, ash content. The main components of the test facility are shown in Figure 1. The height of the furnace was 4.90 m and its inner diameter was 0.12 m. The combustion chamber was isolated with ceramics and high temperature thermal isolation material. To minimize leaks, the combustor was enclosed in a stainless steel shell. The fuel was fed with a screw conveyor at the height of 0.49 m, and the recirculated solids were fed back at a height of 0.86 m with secondary air.

![Figure 1. The 60 kWth circulating fluidized bed combustion test facility.](image)

The solid particles were separated from flue gas in a cyclone (cut-point 10 μm) and returned to the bottom bed through a return leg and an external heat exchanger (EHE) where solids were cooled in order to control the temperature of the bed. After the cyclone, the flue gas was cooled with a two-stage cooling system, consisting of two shell-and-tube heat exchangers in series. The heat transfer surfaces of these heat exchangers were composed of longitudinally-streamlined tubes. The fly ash was removed from flue gas with a fabric filter. The cleaned flue gas was led out of the system by means of an induced high pressure fan through the stack.

The combustion air was supplied with a compressor. The simulation of recycle flue gas was performed using bottled CO₂ and O₂. All gas lines, for O₂, CO₂ and compressed air, were equipped with mass flow controllers for exact control of the mass flow rates and the ratio of O₂/CO₂. The combustion air tubes were equipped with electrical heaters to maintain the necessary gas temperature. Extra bed material was not needed since oil shale contains more than enough ash.

The test facility was equipped with two independent fuel/bed material feed silos and a gas burner. The control and data acquisition of the test facility was fully automated and operated by a LabVIEW system. The flue gas composition was simultaneously analyzed with a FTIR spectrometer and was presented as dry gases at 6% O₂. Ash samples were collected from five points: bottom ash (BA), cyclone ash (CA), cooler 1 ash (C1), cooler 2 ash (C2) and fabric filter ash (FA). The collected samples were pulverized. The chemical composition of the produced ashes and the fuel were measured with Rigaku ZSX Primus II wavelength dispersive X-ray fluorescence spectrometer and elemental analyzer Vario
Macro CHNS Cube. Mineral CO₂ amount was measured in the samples with the elemental analyzer using the total inorganic carbon module applying diluted HCl to decompose the carbonate minerals.

The combustor can operate both in a conventional air mode regime as well as in oxy-fuel regime. During the experiments the test facility was started in air-fired mode. After achieving the steady state regime, the gradual switch to oxy-fuel mode was started. The results presented in this paper were obtained at steady-state CFB combustion mode. The experiments were conducted using three different gas mixtures: air, OXY21 (21% oxygen and 79% carbon dioxide) and OXY30 (30% oxygen and 70% carbon dioxide). The air was used to create a base case scenario. In OXY21 mixture, nitrogen was replaced with CO₂, thus showing the effect of replacing the carrier gas. Since previous experiments have shown temperature drops when using similar oxygen concentration in the oxy-fuel mode, OXY30 was chosen to try to obtain a similar temperature field in the furnace as in conventional CFB.

2.3. Description of the Experiments

For the startup, a small amount (3 kg) of oil shale ash was inserted into the return leg. The typical startup began with preheating the riser, with electrically-heated air, up to 300 °C. Then the first small amount of oil shale was fed into the riser. The fuel ignited and the furnace was gradually warmed up to a working temperature.

CFB combustor main working parameters are shown in Table 3. During the experiments, the thermal load of the combustor was 24 ± 3 kW. The OXY30 experiment was conducted at a lower thermal load due to fuel feeder problems. The primary and secondary air ratio was 4/6, because the fuel had a high volatile content. Although the thermal load varied due to fuel feeding problems, the data in Table 3 show that temperatures during all the experiments in the CFB combustor were similar.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Air</th>
<th>OXY21</th>
<th>OXY30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed temperature, °C</td>
<td>749</td>
<td>676</td>
<td>773</td>
</tr>
<tr>
<td>Riser temperature, °C</td>
<td>752</td>
<td>692</td>
<td>743</td>
</tr>
<tr>
<td>Combustion air temperature, °C</td>
<td>284</td>
<td>250</td>
<td>242</td>
</tr>
<tr>
<td>Primary oxidizer flow, SLPM</td>
<td>394</td>
<td>279</td>
<td>198</td>
</tr>
<tr>
<td>Total oxidizer flow, SLPM</td>
<td>857</td>
<td>710</td>
<td>438</td>
</tr>
<tr>
<td>Thermal load, kW</td>
<td>25.3</td>
<td>23.8</td>
<td>14.1</td>
</tr>
<tr>
<td>Pressure drop in bed, kPa</td>
<td>2.4</td>
<td>3.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Gas velocity in the bed, m/s</td>
<td>2.17</td>
<td>1.43</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Temperature profiles in the riser during stable operation in air and oxy-fuel modes are shown in Figure 2. The temperatures in the riser during air operation were similar to the values used in oil shale industrial CFB boilers (800 °C) [10]. During OXY21 operation, the temperature in the riser dropped by up to 100 °C. Similar temperature drops in the furnace, when substituting N₂ with CO₂, have been noticed before when oxy-firing coals [3,18]. At the same time, the temperature in the cyclone exit remained similar. Slight drop of primary air temperature from 284 to 250 °C was noticed. This might be the reason for decreased temperatures in the riser, together with decreased fuel reactivity and increased heat capacity of the CO₂ atmosphere [15]. During the experiment with an increased O₂ concentration (OXY30), the temperature distribution was similar to air mode. Specific heat and oxygen diffusivity were similar to air and most retrofit experiments suggest such a mixture for oxy-fuel operations [46].
3. Results and Discussion

3.1. Sulfur Oxides Emissions

The average emission values during stable operation are shown in Table 4 and Figure 3. In spite of decreased temperatures in the riser during oxy-fuel operations (Figure 2), the SO$_2$ concentration in the flue gas remained similar. Higher CO$_2$ partial pressure and lower temperature in the system inhibited decomposition of CaCO$_3$, but the Ca/S molar ratio in the oil shale was as high as 8.0. It means that there was a lot of excess calcium in the system and even if the sulfur binding rate was inhibited as noted in reference [23], it was still enough to bind more than 99% of the sulfur. The oxy-fuel ashes contained a considerable amount of carbonates ((CO$_2$)$_{mineral}$) (see Figure 4) indicating decreased decomposition of carbonate minerals. During oxy-fuel combustion, sulfation was likely direct (see Equation (3)); the calcite reacted directly with sulfur oxide. When the oil shale was fired in air, the sulfation likely occurred via indirect reaction, because low carbonate concentration in ash indicated free lime availability for indirect sulfation (Equation (2)). Our results suggest that the elevated CO$_2$ levels and the inhibited carbonate decomposition extent do not have a noticeable effect on the SO$_2$ binding (see Table 5).

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Air</th>
<th>OXY21</th>
<th>OXY30</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$</td>
<td>%$_{dry}$</td>
<td>10.0 ± 1.9</td>
<td>8.5 ± 2.1</td>
<td>12.9 ± 2.9</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>mg/Nm3 @ 6%O$_2$</td>
<td>141 ± 29</td>
<td>156 ± 20</td>
<td>130 ± 65</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>mg/Nm3 @ 6%O$_2$</td>
<td><14 ± 9</td>
<td>23 ± 14</td>
<td><14 ± 4</td>
</tr>
<tr>
<td>CO</td>
<td>mg/Nm3 @ 6%O$_2$</td>
<td>943 ± 99</td>
<td>2361 ± 953</td>
<td>337 ± 466</td>
</tr>
<tr>
<td>Desulfurization efficiency</td>
<td>%</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>SO$_2$ emission</td>
<td>mg/MJ</td>
<td><8</td>
<td>9</td>
<td><8</td>
</tr>
<tr>
<td>NO$_x$ emission</td>
<td>mg/MJ</td>
<td>34</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>Fuel nitrogen conversion ratio</td>
<td>%</td>
<td>20</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 3. Pollutant emissions during oil shale CFB and fluidized bed combustion.

Figure 4. Mineral CO₂ ((CO₂)_{mineral}) and unburnt carbon content in the CFB combustion ashes.

Table 5. Chemical composition of oil shale air and oxy-fuel firing carbon free ashes, wt %. Other denotes minor components with concentrations below 0.1% as F, P₂O₅, TiO₂, MnO, SrO, ZrO₂.

<table>
<thead>
<tr>
<th>Ash Flow</th>
<th>Combustion Mode</th>
<th>CaO</th>
<th>SiO₂</th>
<th>MgO</th>
<th>Al₂O₃</th>
<th>SO₃</th>
<th>Fe₂O₃</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>Cl</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Air</td>
<td>60.1</td>
<td>10.2</td>
<td>13.4</td>
<td>3.2</td>
<td>8.0</td>
<td>3.2</td>
<td>1.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>OXY21</td>
<td></td>
<td>65.2</td>
<td>8.9</td>
<td>9.5</td>
<td>2.8</td>
<td>8.2</td>
<td>3.5</td>
<td>0.8</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>OXY30</td>
<td></td>
<td>63.9</td>
<td>10.6</td>
<td>8.5</td>
<td>3.5</td>
<td>7.2</td>
<td>3.6</td>
<td>1.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>EHE</td>
<td>Air</td>
<td>48.7</td>
<td>18.9</td>
<td>11.4</td>
<td>5.8</td>
<td>8.0</td>
<td>4.1</td>
<td>2.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>OXY21</td>
<td></td>
<td>51.8</td>
<td>18.3</td>
<td>9.1</td>
<td>5.6</td>
<td>8.4</td>
<td>3.8</td>
<td>1.7</td>
<td>0.2</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>OXY30</td>
<td></td>
<td>50.3</td>
<td>20.2</td>
<td>8.7</td>
<td>6.2</td>
<td>7.2</td>
<td>4.3</td>
<td>2.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>CI</td>
<td>Air</td>
<td>30.9</td>
<td>35.8</td>
<td>5.6</td>
<td>10.7</td>
<td>5.8</td>
<td>4.9</td>
<td>4.6</td>
<td>0.2</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>OXY21</td>
<td></td>
<td>33.9</td>
<td>32.7</td>
<td>6.7</td>
<td>10.1</td>
<td>6.5</td>
<td>4.7</td>
<td>3.9</td>
<td>0.3</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>OXY30</td>
<td></td>
<td>28.3</td>
<td>38.0</td>
<td>5.5</td>
<td>11.1</td>
<td>5.8</td>
<td>5.0</td>
<td>4.7</td>
<td>0.2</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>CII</td>
<td>Air</td>
<td>31.1</td>
<td>35.7</td>
<td>5.6</td>
<td>10.6</td>
<td>5.8</td>
<td>4.9</td>
<td>4.6</td>
<td>0.2</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>OXY21</td>
<td></td>
<td>28.6</td>
<td>36.2</td>
<td>5.7</td>
<td>11.6</td>
<td>6.4</td>
<td>4.9</td>
<td>4.8</td>
<td>0.2</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>OXY30</td>
<td></td>
<td>30.9</td>
<td>35.8</td>
<td>5.5</td>
<td>10.5</td>
<td>6.1</td>
<td>5.1</td>
<td>4.2</td>
<td>0.2</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>FA</td>
<td>Air</td>
<td>29.3</td>
<td>36.0</td>
<td>5.2</td>
<td>11.8</td>
<td>5.8</td>
<td>4.9</td>
<td>5.2</td>
<td>0.2</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>OXY21</td>
<td></td>
<td>27.7</td>
<td>37.0</td>
<td>5.1</td>
<td>12.1</td>
<td>6.1</td>
<td>5.1</td>
<td>5.2</td>
<td>0.2</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>OXY30</td>
<td></td>
<td>28.6</td>
<td>37.7</td>
<td>5.1</td>
<td>11.2</td>
<td>5.9</td>
<td>5.2</td>
<td>4.6</td>
<td>0.2</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>
To compare the influence of circulating solid matter, circulation was stopped (the airflow to EHE was stopped). The temperatures in the riser were unstable (see Figure 3). The combustion efficiency decreased (the CO level increased over the measuring range) and SO$_2$ concentration in flue gas increased notably (from 50 to 1500 mg/Nm3). The ash concentration in the furnace decreased and there was not enough material to bind all the sulfur. This implies that despite the high calcium concentration in the fuel, working in a bubbling bed mode, did not ensure sufficient sulfur binding. The CFB combustion mode ensured sufficient conditions for sulfur binding, even in oxy-fuel mode.

3.2. Nitrogen Oxides Emissions

NO$_x$ emissions remained below 200 mg/Nm3 during all experiments (Table 4). Our experiments showed that switching to oxy-fuel combustion did not alter the NO$_x$ emissions. The nitrogen conversion ratio to NO$_x$ was up to 24%, similar to results from Jankowska et al. [32] with bituminous coal (20–25%). However, Pikkarainen et al. [33] measured higher nitrogen conversion ratios (28–50%). Oil shale nitrogen content remained below 0.1%. Accordingly, a high nitrogen conversion ratio to NO$_x$ was expected (>25%) [47]. The nitrogen conversion ratio to NO$_x$ was found to be 20–24% and the emissions were rather low.

3.3. Ashes

During the experiments, ash samples were collected from all ash flows (Figure 1). The results of chemical analysis of the ashes are displayed in Table 5. Typically for oil shale, the most abundant oxide was calcium, followed by silica, magnesium and alumina. Except for CO$_2$ content, chemical compositions of the ashes formed during different experiments were almost identical.

The unburnt carbon content fly ashes (0.3–4.7%) was considerably higher than in hotter ash-flows from CFB (<0.7%) (Figure 4). Together with the high CO concentration in the flue gas, it indicated re-condensation of volatiles after the coolers. Since high content of unburnt carbon in the fly ash was noticed during all the experiments, this showed that the hot zone was too short for a complete combustion of volatiles.

Mineral CO$_2$ content of the oxy-fuel ashes was considerably higher than in the ashes obtained in air mode (Figure 4). The difference was especially large for BA and CA. The composition and share of ash flows is different in every boiler. For oil shale CFB combustion, the share of bottom and filter ash is the largest. The BA obtained contained the most calcium and thus the effect on total CO$_2$ emission was considerable. Of the total carbon in the fuel, 20% was inorganic (see Table 1). It is theoretically possible to reduce the extent of decomposition of carbonate minerals to 28% in an oxy-CFB combustor firing Estonian oil shale [20]. The minimum is defined by the dolomite and sulfur content in the fuel. Limited decomposition of the carbonate minerals decreases CO$_2$ emissions from oil shale combustion, but increases ash production.

Oxy-fuel CFB combustion of fuels containing carbonate minerals [48–51] resulted in smaller CO$_2$ production due to decreased decomposition of carbonate minerals. The extent of carbonate decomposition was calculated based on the content of CaO, MgO and CO$_2$ in the ashes; the methodology is described more thoroughly by Arro et al. [52]. Based on the data obtained during experiments and expecting similar ash splits, such as in a utility CFB boiler [11], the average extent of carbonate minerals decomposition during regular air fired CFB experiments was 0.84, for OXY21 0.56 and OXY30 0.46. The value for utility CFB firing Estonian oil shale was 0.69 [53]. During operation in air mode, the ash calcination was more extensive than in the utility boiler, but with the oxy-fuel operation, the calcination was only partial. Figure 4 depicts that oxy-fuel ashes behaved similarly; both BA and CA contained large amounts of carbonates. The average extent of carbonate mineral decomposition of OXY30 was smaller than that of OXY21, likely because of the different thermal loads of the combustor. The measured values show that decomposition of carbonate minerals was partial, but the theoretical minimum value was not reached.
3.4. Comparison with Utility Scale

A 60 kW$_{th}$ CFB is a relatively small device; the fuel flow rate is over 4000 times smaller than in the 250 MW$_{th}$ utility boilers used for power production in Estonia. Nevertheless, the produced ash and flue gas are rather similar to the values obtained from industrial devices [11,53]. Pollutant emissions during experiments were also comparable to the values recorded from utility boilers (see Table 6). Emissions of nitrogen oxides were slightly higher than in utility boilers, probably due to the non-optimized secondary air inlet location. During stable CFB combustion, the sulfur oxides level in the flue gas was low. When the ash circulation was stopped (see Figure 3), the sulfur concentration in the flue gas increased to a level above typical oil shale PC boilers [45].

<table>
<thead>
<tr>
<th></th>
<th>SO₂</th>
<th>NOₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFB 250 MW$_{th}$ [11]</td>
<td><14</td>
<td>120</td>
</tr>
<tr>
<td>PC 300 MW$_{th}$ [45]</td>
<td>3000</td>
<td>220</td>
</tr>
<tr>
<td>CFB 60 kW air</td>
<td><14</td>
<td>141</td>
</tr>
<tr>
<td>CFB 60 kW oxy20</td>
<td>23</td>
<td>156</td>
</tr>
<tr>
<td>CFB 60 kW oxy30</td>
<td><14</td>
<td>130</td>
</tr>
</tbody>
</table>

4. Conclusions

Estonian oil shale was fired in a 60 kW$_{th}$ CFB combustor to investigate the formed flue gas and ash during air and oxy-fuel operations. The fuel was characterized by extremely high Ca-rich ash and volatiles contents. Experiments were conducted in the regular air fired CFB mode and in two different oxy-fuel modes: 21/79 O$_2$/CO$_2$ and 30/70 O$_2$/CO$_2$. The average temperature in the riser was ~740 °C; however, the temperature was 50 °C lower during the OXY21 experiment. When oxygen concentration was increased to 30%, similar temperatures as in air fired CFB were acquired. The thermal load was around 20 kW.

Produced flue gas and ash were analyzed. In air mode, the flue gas emissions for SO$_2$ and NO$_x$ were <14 and 141 mg/Nm3 @ 6% O$_2$, respectively; during the oxy-fuel operations, the values remained at similar levels. The chemical compositions of the oxy-fuel ashes were similar to the ashes produced in the air mode. Analysis of the collected ashes showed a decreased extent of carbonate minerals decomposition in oxy-combustion ashes. Despite decreased calcination and an apparent change in the sulfation route, there were no problems with sulfur binding. The results show that firing oil shale in an oxy-fuel circulating fluidized bed boiler could decrease CO$_2$ production while pollutant concentrations in the flue gas remained at a similar level compared to conventional CFB combustion. This reduces the cost of flue gas compression and further transportation and storage/utilization.

Author Contributions: L.L. is the primary author of this manuscript; the other authors participated in the experimental work, discussion and development of the ideas, and to some extent in the writing and editing of the manuscript.

Acknowledgments: This work was supported by the EU Regional Development Fund grant AR12003. The oil shale was provided by AS Viru Keemia Grupp.

Conflicts of Interest: The authors declare no conflicts of interest.

References

9. Siirdé, A. Oil Shale—Global Solution or Part of the Problem? Oil Shale 2008, 25, 201–202. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Paper V

Carbon dioxide emission factors for oxy-fuel CFBC and aqueous carbonation of the Ca-rich oil shale ash

Lauri Loo*, Birgit Maaten, Alar Konist, Andres Siirde, Dmitri Neshumayev, Tonu Pihu

Department of Energy Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia

Abstract

Oil shale (OS) is a low-calorific-value fossil fuel. Today, Estonia’s OS usage is the largest in the world. Approximately 76 % of the electricity is produced from Ca-rich OS. Yearly, approximately 12 million tons of OS is used for power generation utilizing pulverized combustion (PC) and circulating fluidized bed combustion (CFBC) technologies that produce nearly 6 million tons of Ca-rich ash. Estonian kukersite OS consists about one third of carbonate minerals, mainly calcite. Therefore, in addition to the combustion of organic carbon, the carbonaceous minerals decompose and release additional CO2. The extent of decomposition of carbonaceous minerals depends on combustion technology. Using oxy-fuel CFBC technology alters ash properties, including decomposition of carbonate minerals. By means of aqueous carbonation of Ca-rich ash, CO2 can be stored safely and leakage-free for very long time. In order to understand the changing CO2 sequestration potential, oil shale ashes were produced at a 60 kWth CFBC facility in oxy-fuel mode. The ash was treated with water and CO2 in order to mimic the ash treatment technology currently in use in the industry. The ash bound 81 kg CO2/kg ash it means that 6 % of the CO2 emitted would be bound at the ash fields. Due to decreased decomposition of carbonates, when using oxy-fuel CFBC, the CO2 specific emission of combustion would decrease by 5 % compared to regular CFBC and 19 % compared to PF. Decreased CO2 production would result in reduced CO2 transportation and further utilization or storage cost.

© 2017 The Authors. Published by Elsevier Ltd.

Peer review statement - Peer-review under responsibility of the scientific committee of the International Scientific Conference “Environmental and Climate Technologies”.

Keywords: oxy-fuel combustion; CO2 mineral sequestration; CO2 specific emissions; carbon capture and utilization; carbon capture and storage

* Corresponding author. Tel.: +372-6203907.
E-mail address: lauri.loo@tu.ee

1876-6102 © 2017 The Authors. Published by Elsevier Ltd.
Peer review statement - Peer-review under responsibility of the scientific committee of the International Scientific Conference “Environmental and Climate Technologies”.
10.1016/j.egypro.2017.09.034
1. Introduction

Significant reductions in greenhouse gas emissions are required to slow down global climate change. More than 76 % of Estonia’s electricity is produced from OS [1, 2]. OS is a solid fuel with a low heating value (8.0–9.2 MJ/kg) and a high ash content (43–53 %). Estonian kukersite OS consists for about one third of carbonate minerals, mainly calcite. During OS combustion, a considerable amount of CO₂ is produced due to the decomposition of carbonate minerals. Therefore, in addition to the combustion of organic carbon, the carbonaceous minerals decompose and release additional CO₂. OS can be utilized for energy production via pyrolysis or direct combustion. In Estonia annually 6 Mt of OS are used for shale oil production [3, 4] and 12 Mt of OS are used for power generation. Pulverized combustion [5] and circulating fluidized bed combustion technologies are in use. Implementation of CFBC has decreased environmental impact of OS combustion [6, 7], but even further decrease of CO₂ emissions is required [8]. Oxy-fuel technology promises a further decrease of environmental impact.

Oxy-fuel combustion technology is considered as one of the most promising CO₂ capture technologies [9–11] and the ash produced during oxy-fuel operation is used in this study as a starting material. The technology involves combustion of fuel in a recycled flue gas, where oxygen is added to maintain combustion. Our previous calculations and experiments [12, 13] with a laboratory scale fluidized bed reactor showed a considerable decrease of carbonaceous minerals decomposition in oxy-fuel environment. This means that CO₂ emissions decrease, but the production of the ash increases.

Vast amounts of calcium rich ash forms during OS combustion – more than 6 Mt annually [14]. Depending on the combustion technology, the ash contains up to 30 % free Ca–Mg oxides. To date more than 90 % of the OS ash hydraulically deposited [15]. Anthony et al. [16] have found that CFBC ashes exhibit considerable chemical activity which can continue for more than a year. Uibu et al. [17, 18] have studied the natural chemical processes taking place during OS hydraulic deposition. In the ash field OS CFBC ashes cement and bound approximately 8 % of the emitted CO₂ [14].

In this study, we provide CO₂ emissions from OS oxy-fuel CFBC. The analysis is based on the ashes obtained from oxy-fuel CFBC experiment in TUT. Hydraulic deposition of OS ashes were simulated and CO₂ sequestrated and emitted during the processes were calculated.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_{\text{CO}_2}^{\text{OS}})</td>
<td>Specific emission of CO₂ for OS combustion, t(\text{CO}_2)/TJ</td>
</tr>
<tr>
<td>(k_{\text{CO}_2})</td>
<td>Extent of carbonate decomposition</td>
</tr>
<tr>
<td>(\Delta \text{CO}_2)</td>
<td>The amount of CO₂ absorbed from the atmosphere, ((\text{tCO}_2/\text{tash}))</td>
</tr>
<tr>
<td>(\text{CO}_2^{\text{treated}})</td>
<td>Treated ash CO₂ content, %</td>
</tr>
<tr>
<td>(\text{CO}_2^{\text{ash}})</td>
<td>Ash CO₂ content, %</td>
</tr>
<tr>
<td>(\text{CaO}^{\text{ash}})</td>
<td>Ash CaO content, %</td>
</tr>
<tr>
<td>(M_c)</td>
<td>Molar mass of C, 12.01 g/mol.</td>
</tr>
<tr>
<td>(M_{\text{CO}_2})</td>
<td>Molar mass of CO₂, 44.01 g/mol.</td>
</tr>
<tr>
<td>(M_{\text{CaO}})</td>
<td>Molar mass of CaO, 56.08 g/mol.</td>
</tr>
<tr>
<td>(M_{\text{MgO}})</td>
<td>Molar mass of MgO, 40.30 g/mol.</td>
</tr>
<tr>
<td>TOC</td>
<td>Total organic carbon content, %</td>
</tr>
</tbody>
</table>
2. Materials and methods

2.1. Materials – oil shale and produced ash

The ashes used in the study were produced at a 60 kWe CFBC test facility in Tallinn University of Technology (Fig. 1). The combustor was designed to work with oil shale, but can also handle other fuels with low calorific value. The test facility could work with regular air and with pre-set gas mixtures. The combustion process was observed at 16 points with thermal sensors and the gas composition was analyzed with FTIR analyzer.

Fig. 1. Scheme of the 60 kW circulating fluidized bed (CFBC) test facility in TUT.

Ash samples were collected from 5 points. The ashes were formed during 20% O₂ and 80% CO₂ oxy-fuel mode and were collected from different points: bottom ash (BA), cyclone ash (CA), cooler one ash (C1), cooler two ash (C2) and filter ash (FA). The proximate and ultimate analysis results of the OS used during combustion experiments are shown in Table 1. The chemical composition of the produced ashes (Table 2) were measured with Wavelength Dispersive X-ray Fluorescence Spectrometer and Elemental Analyzer. The ashes have typically high content of calcium. OS ashes still contain carbonate minerals due to increased CO₂ partial pressure and low combustion temperature (800 °C).

Table 1. Proximate and ultimate analysis of the oil shale.

<table>
<thead>
<tr>
<th>LHV, MJ/kg</th>
<th>Proximate analysis, wt. %</th>
<th>Ultimate analysis, wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{net}</td>
<td>Wₚₚ</td>
<td>VMₚₚ</td>
</tr>
<tr>
<td>8.56</td>
<td>0.50</td>
<td>47.5</td>
</tr>
</tbody>
</table>

Table 2. Chemical composition of the oil shale ashes produced in CFBC in the oxy-fuel mode, %-wt.

<table>
<thead>
<tr>
<th>Sampling point</th>
<th>CaO</th>
<th>CO₂</th>
<th>SO₃</th>
<th>MgO</th>
<th>Fe₂O₃</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>Cl</th>
<th>P₂O₅</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>44.3</td>
<td>29.6</td>
<td>6.1</td>
<td>7.6</td>
<td>2.1</td>
<td>2.2</td>
<td>6.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>CA</td>
<td>37.7</td>
<td>23.8</td>
<td>6.6</td>
<td>7.7</td>
<td>2.5</td>
<td>4.6</td>
<td>14.8</td>
<td>1.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>C1</td>
<td>28.8</td>
<td>12.3</td>
<td>5.7</td>
<td>6.1</td>
<td>3.9</td>
<td>9.1</td>
<td>29.2</td>
<td>3.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>C2</td>
<td>24.7</td>
<td>9.7</td>
<td>5.7</td>
<td>5.2</td>
<td>4.1</td>
<td>10.6</td>
<td>32.8</td>
<td>4.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>2.2</td>
</tr>
<tr>
<td>FA</td>
<td>24.4</td>
<td>8.7</td>
<td>5.35</td>
<td>4.53</td>
<td>4.54</td>
<td>10.6</td>
<td>32.6</td>
<td>4.6</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>3.9</td>
</tr>
</tbody>
</table>
A boiler is a complex reactor and solid separator. Typically, ash is extracted from several points. The ash properties and quantities differ. The ash split of experimental facility was assumed to be similar with an industrial CFBC. Plamus et al. [19] measured ash flows of OS CFBC and found that 37.4 % is bottom ash (BA), 6.9 % is removed from super- and re-heaters, 2.0 % from economizer and preheater, and the largest ash flow, 53.7 %, is removed from the filters. Similar ash split was assumed for TUT CFBC.

2.2. Methods – experiments

In order to simulate natural carbonization of calcium-rich ash on an ash field, accelerated carbonation of OS ashes was simulated in laboratory. Oxy-fuel CFBC oil shale ashes were mixed with distilled water with a solid to liquid ratio of 1/10. The solution pH increased rapidly to 12. To accelerate the natural carbonization process CO₂ was bubbled through the mixture. The solution pH was observed and kept slightly over 7.0. After half an hour the CO₂ flow was stopped, if the pH increased the experiment was continued, otherwise the solids were separated via filtering and dried at 105 °C overnight. Mineral CO₂ amount was measured in the samples with elemental analyzer using the total inorganic carbon module.

2.3. Interpretation of the analysis results

Specific emission of CO₂ (\(q_{\text{CO₂}} \)) for OS combustion is calculated using the following formula:

\[
q_{\text{CO₂}} = \frac{[TOC \cdot \frac{M_{\text{CO₂}}}{M_C} + k_{\text{CO₂}} \cdot (\text{CO}_2)_{\text{mineral}}]}{Q_{\text{net}}} \cdot \text{CO}_2 / TJ
\]

The extent of carbonate decomposition (2) is calculated based on the content of CaO, MgO and CO₂ in the ashes. Arro et al. [20] found that the carbonaceous part of the Estonian OS contains on average 99.2 % of all CaO in OS, and 96.7 % of all MgO, therefore the constants are in Eq. (2).

\[
k_{\text{CO₂}} = 1 - \frac{CO_2^{\text{ash}}}{0.967 \cdot \frac{M_{\text{CO₂}}}{M_{\text{MgO}}} \cdot M_{\text{MgO}}^{\text{ash}} + 0.992 \cdot \frac{M_{\text{CO₂}}}{M_{\text{CaO}}} \cdot M_{\text{CaO}}^{\text{ash}}}
\]

If the OS ash is deposited using hydraulic deposition technology, the ash sequesters some CO₂ from atmosphere. The amount of CO₂ absorbed from the atmosphere (ΔCO₂) during wet treatment is calculated similarly to Konist et al. [14] based on the mineral CO₂ content in the ashes (CO₂ash) and in the wet treated ashes (CO₂treated) (Eq. (3)):

\[
\Delta CO_2 = \frac{CO_2^{\text{treated}} - CO_2^{\text{ash}}}{100 - CO_2^{\text{treated}} + CO_2^{\text{ash}}} \cdot \text{CO}_2 / \text{t ash}
\]

3. Results and discussion

The results of experiments are shown in Table 3. The CO₂ content in all the ashes increased. The finest filter ash bound the most CO₂ and the largest particles showed the smallest CO₂ uptake.
Table 3. CO₂ sequestered during simulated hydraulic transportation and landfilling.

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>CA</th>
<th>C1</th>
<th>C2</th>
<th>FA</th>
<th>AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂, %</td>
<td>29.0</td>
<td>23.8</td>
<td>12.3</td>
<td>5.9</td>
<td>8.7</td>
<td>16.1</td>
</tr>
<tr>
<td>CO₂ after wet treatment, %</td>
<td>31.3</td>
<td>26.3</td>
<td>15.6</td>
<td>18.8</td>
<td>11.7</td>
<td>23.4</td>
</tr>
<tr>
<td>CO₂ absorbed from the atmosphere, ΔCO₂, t CO₂/t ash</td>
<td>0.024</td>
<td>0.026</td>
<td>0.034</td>
<td>0.148</td>
<td>0.031</td>
<td>0.079</td>
</tr>
</tbody>
</table>

Based on the CFBC oxy-fuel ash analysis and assumed ash split, the extent of carbonate decomposition was calculated (Table 4). Based on those results specific emission of CO₂ for OS CFBC oxy-fuel combustion was calculated. Compared to PC and CFBC the CO₂ output decreases 20 % and 5 %, respectively. The flue gas from CFBC and PC contains up to 20 % CO₂, but the oxy-fuel combustion residue contains up to 95 % CO₂. This cases reuse or/and transportation of the greenhouse gas.

Table 4. Oxy-fuel CFBC combustion emissions compared to CFBC [19] and PC [5].

<table>
<thead>
<tr>
<th></th>
<th>Oxy-CFBC</th>
<th>CFBC</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent of carbonate decomposition (1)</td>
<td>κCO₂</td>
<td>0.46</td>
<td>0.69</td>
</tr>
<tr>
<td>CO₂ absorbed from the atmosphere (t CO₂/TJ)</td>
<td>ΔCO₂</td>
<td>5.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Specific emission of CO₂ for OS combustion (t CO₂/TJ)</td>
<td>qCO₂</td>
<td>100.0</td>
<td>106.7</td>
</tr>
<tr>
<td>Specific emission of CO₂ for OS combustion + landfilling (t CO₂/TJ)</td>
<td>94.6</td>
<td>98.9</td>
<td>117.7</td>
</tr>
<tr>
<td>Specific emission of CO₂ for OS combustion + landfilling compared to PC (%)</td>
<td>80</td>
<td>84</td>
<td>100</td>
</tr>
</tbody>
</table>

Compared to regular CFBC, the oxy-fuel combustion system has some extra energy consumption: concentrated flow of oxygen is required, part of the flue gas has to be recycled and the flue gas is usually compressed for further processing. Escudero et al. [21] have modeled oxy-fuel CFBC power unit. According to the study, net electric efficiency of a new CFBC is 43 % and new oxy-fuel CFBC is 36 %. Based on their results specific emissions of CO₂ for oxy-fuel CFBC power production from OS is 942 kg CO₂/MWhₑ. The value for CFBC is 819 kg CO₂/MWhₑ, so 11 % more CO₂ per MWhₑ is produced when applying oxy-fuel combustion rather than regular CFBC.

Oxy-fuel combustion simplifies CO₂ transportation and utilization. If the CO₂ produced is stored without extra cost, maximum 54 kg CO₂/MWhₑ can be removed from atmosphere. The concentrated CO₂ flow could be used for precipitated calcium carbonate production. Zevenhoven et al. [22–24] have developed so-called slag2PCC technology to produce precipitated calcium carbonate from calcium-rich steel plants slags. By the means of producing PCC, CO₂ can be stored safely and leakage-free for a very long time, and at the same time a valuable product is produced.

4. Conclusions

Oxy-fuel CFBC ashes were treated with water and CO₂ to simulate hydraulic landfilling. During the process, the ashes bound on average 0.081 κCO₂/κash. Applying oxy-fuel CFBC technology decreases specific emission of CO₂ for OS combustion 20 % compared to PC and 5 % compared to CFBC. Then taking account all the extra energy requirements for oxy-fuel combustion (oxygen production and flue gas compression) the specific CO₂ emission for power production from OS is 942 kg CO₂/MWhₑ, that is 12 % more than for regular CFBC. The flue gas of oxy-fuel combustion is concentrated flow of CO₂. This decreases cost of utilising the CO₂ for example to produce precipitated calcium carbonate.

References

Curriculum vitae

Personal data
Name Lauri Loo
Date of birth 13.03.1989
Place of birth Estonia
Citizenship Estonian

Contact data
E-mail lauri.loo@ttu.ee

Education
2014–2018 Tallinn University of Technology – PhD
2012–2014 Tallinn University of Technology – MSc *cum laude* in thermal engineering
2008–2012 Tallinn University of Technology – BSc in thermal engineering

Language competence
Estonian Native speaker
English Fluent

Professional employment
01.09.2017– Tallinn University of Technology, School of Engineering, Department of Energy Technology, early stage researcher
01.01.2017–31.08.2017 Tallinn University of Technology, School of Engineering, Department of Energy Technology, researcher
01.09.2014–31.12.2016 Tallinn University of Technology, Faculty of Mechanical Engineering, Department of Thermal Engineering, researcher
01.02.2012–31.08.2014 Tallinn University of Technology, Faculty of Mechanical Engineering, Department of Thermal Engineering, engineer
Elulookirjeldus

Isikuandmed

Nimi Lauri Loo
Sünniaeg 13.03.1989
Sünnikoht Eesti
Kodakondsus Eesti

Kontaktandmed

E-post: lauri.loo@ttu.ee

Hariduskäik

2014–2018 Tallinna Tehnikaülikool, mehhanotehnika – PhD
2012–2014 Tallinna Tehnikaülikool, soojusenergeetika – MSc (cum laude)
2008–2012 Tallinna Tehnikaülikool, soojusenergeetika – BSc

Keelteoskus

Eesti keel körgtase
Inglise keel körgtase

Teenistuskäik

01.09.2017– Tallinna Tehnikaülikool, Inseneriteaduskond, Energiatehnoloogia instituut, doktorant-noorimteadur
01.01.2017–31.08.2017 Tallinna Tehnikaülikool, Inseneriteaduskond, Energiatehnoloogia instituut, teadur
01.02.2012–31.08.2014 Tallinna Tehnikaülikool, Mehaanikateaduskond, Soojuskaisteni instituut, insener