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Abstract 
It was found a long time ago that there are some problems that demand a lot of time to 
find a solution, although it seems to be very simple. Later tremendously quick 
evolution of computers has greatly motivated researches of algorithms and those 
problems. Mainly researches have concentrated on problems that are hard to solve 
algorithmically. A lot of such problems are abstracted into graph theory problems, 
since graph theory provides a possibility to represent an essence of a problem by 
distancing from its unimportant details. 

The main topic of this thesis is the maximum clique finding from an arbitrary 
undirected graph. This task is well known to be NP-hard, so nobody has found an 
algorithm that can solve it in a polynomial time. Nowadays this problem has been 
recognised as a sub-problem in a plenty number of tasks in different people activities 
areas like medicine, transportation, design, geology, sociology and many others. 
Therefore any better algorithm for the maximum clique finding providing could be 
very important since would improve performance of different tasks in a lot of areas. 
Besides, such a high implication for real economical problems promote us to 
concentrate in our study also on practical aspects of the maximum clique finding. We 
tried to make thesis results to be easy to implement and therefore applicable for solving 
real problems. 

In this thesis we first start from algorithms for finding the maximum clique from 
both weighted and unweighted graphs. We use the branch and bound type of 
algorithms to find maximum cliques and propose several algorithms for both graph 
cases. The main contribution of this thesis is a technique for finding the maximum 
clique using colour classes, which are produced by a heuristic vertex colouring. Unlike 
earlier algorithms those colour classes are found only once and then rapidly used to 
prune branches on all algorithm steps. A proposed algorithm of recalculating the 
number of existing colour classes is extremely important here. Unlike earlier attempts 
of using vertex colouring, this algorithm makes vertex-colouring pruning quick and 
efficient. Thereafter several step-by-step examples of using the proposed algorithms 
are demonstrated and analysed to identify why those are working effectively. Practical 
recommendations on algorithms programming are also provided to ensure their correct 
implementation. Comparative tests on random and DIMACS graphs are conducted and 
those tests demonstrate that the invented algorithms are quicker in most cases than the 
algorithms, which are known to be best at the moment. Especially sufficiently is the 
difference shown on dense graphs, where the new algorithms are up to 100 times 
quicker. 

A test environment for maximum clique finding algorithms has been worked out 
during this study. A model of it is described in detail and consists of algorithms or 
modules, utilities, a meta-algorithm and a user interface. The meta-algorithm is a core 
of testing environment, which conducts tests and collects information. First of all each 
element of the model is described to highlight most important aspects. Thereafter we 
demonstrate how all those elements could be integrated including data flows and 
standards needed to make all parts of the testing environment work smoothly. 

Finally we discuss algorithms intelligence in the maximum clique finding area and 
propose some ideas of a meta-algorithm and its implementation. This part of this thesis 
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concentrates ideas derived from the previously described testing environment, 
algorithms for finding the maximum clique, expert systems and knowledge we 
obtained from algorithms’ testing that was done in this study. We start from reviewing 
a real-time systems’ case, i.e. the case when an algorithm can be suddenly stopped and 
the best result found so far returned. A new term – “incomplete solution” is introduced 
to identify a moment of finding a clique, which is already the maximum one although 
is not yet proved to be the maximum. Using this term we can analyse best known 
algorithms’ performance on real-time systems. This is an important type of information 
for meta-algorithms. In the thesis we propose two types of meta-algorithms – a fixed 
rules meta-algorithm and an evolving one. We demonstrate how those meta-algorithms 
can be built and discuss different meta-algorithms’ learning approaches. 
 
Keywords: maximum clique, graph theory, branch and bound, incomplete solution, 
vertex-colouring, colour classes, algorithm, NP-hard, NP-complete, meta-algorithm, 
test environment. 
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Kokkuvõte 

Mõned praktilised algoritmid  
suurima kliki probleemi lahendamiseks 

 
Juba päris ammu leidsid inimesed, et on olemas probleeme, mille lahendamine nõuab 
palju aega, kuigi need algselt tunduvad olevat väga lihtsad. Arvutite kiire areng 
motiveeris oluliselt niisuguste probleemide ja algoritmide uurimist. Uurijad 
keskendusid peamiselt probleemidele, mis olid keerulised. Paljud niisugused 
probleemid on koondunud graafiteooriasse ja taandatavad graafidele, kuna see 
võimaldab esitada probleemi olemust vähetähtsatest detailidest vabana. 

Käesoleva väitekirja peamiseks uurimisobjektiks on suurima kliki leidmine 
suunamata lõplikust graafist. Keerukusteooriast on teada, et see ülesanne on NP-
keeruline ja senini pole leitud algoritmi, mis lahendaks selle ülesande polünomiaalse 
aja jooksul. Tänapäeval on see ülesanne identifitseeritud alamosana paljudes inimese 
tegevusvaldkondades nagu meditsiin, transport, disain, geoloogia, sotsioloogia jne. 
Seetõttu võib iga efektiivsem algoritm suurima kliki leidmiseks osutada väga tähtsaks, 
kuna võimaldab säästa palju aega erinevate valdkondade ülesannete lahendamisel. 
Sellepärast keskendusime suurima kliki leidmisele praktilisest aspektist lähtuvalt, 
proovides luua algoritme, mis ei oleks keerulised realiseerida ja oleks rakendatavad 
praktiliste ülesannete lahendamisel. 

Käesolevas töös käsitletakse suurima kliki leidmise algoritme kaalutud ja mitte 
kaalutud graafide jaoks. Suurima kliki leidmise uute algoritmide loomisel kasutasime 
baasalgoritmidena „haru-ja-piir” tüüpi algoritme ja värviklasside kärpimise tehnikat, 
kus klasse genereeritakse heuristilise tippude värvimise abil. Teiste algoritmidega 
võrreldes seisneb peamine erinevus selles, et värviklassid leitakse ainult üks kord, töö 
alguses, samas kasutatakse neid pidevalt harude kärpimisel. Kirjeldatud lähenemine 
võimaldas tõsta algoritmide efektiivsust kuni kaks suurusjärku. Töös esitatakse ka 
näited uute algoritmide töösammude demonstreerimiseks ja analüüsitakse neid näiteid 
selgitamaks, miks uued algoritmid töötavad nii efektiivselt. Töös avaldatakse ka 
programmeerimise nõuanded, mis kindlustavad algoritmide õige ja efektiivse 
realiseerimise ning rakendamise. Loodud algoritme testiti DIMACS ning juhuslikel 
graafidel, mis näitas, et need on enamikul juhtudel efektiivsemad senituntuist. Eriti 
suur erinevus tekkib tihedatel graafidel, kus uued algoritmid töötavad kuni 100 korda 
kiiremini. 

Töö käigus arendati välja suurima kliki leidmise algoritmide testimiskeskkond. 
Väitekirjas kirjeldatakse testkeskkonna mudelit, mis koosneb algoritmidest (mida 
testitakse), vahenditest, meta-algoritmist ja kasutajaliidesest. Meta-algoritm on 
testimiskeskkonna tuum – see sisaldab algoritmi, testib neid ning kogub tulemused ja 
statistika. Ka näidatakse, kuidas need elemendid integreeruvad koos andmevoogude ja 
sisemise standardite kirjeldamisega. 

Väitekirja lõpuosas käsitletakse algoritmi intelligentsust suurima kliki leidmise alas 
ja esitatakse mõned ideed meta-algoritmi ehitamiseks. See väitekirja osa koondab 
kokku eelnevalt töös kirjeldatud testimiskeskkonna ideed, suurima kliki leidmise 
algoritmid, ekspertsüsteemid ja algoritmide testimise kogemused. Ka käsitletakse 
reaalaja süsteemide keskkonda – need on süsteemid, kus algoritm võib olla peatatud 
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suvalisel ajahetkel, tagastades hetke parima tulemuse. Töös pakutatakse uue termini 
„lõpetamata lahendus” kasutusele võtmist. See võimaldab fikseerida hetke, millal 
tegelik suurim klikk on juba leitud, kuigi me ei ole jõudnud veel tõestada, et see on 
suurim. Nimetatud terminit kasutatakse töös tänapäeva parimate suurima kliki leidmise 
algoritmide analüüsimiseks reaalajasüsteemides, võimaldamaks määrata, millised 
nendest töötavad hästi ja milliseid nendest oleks parem mitte kasutada. See on oluline 
informatsioon meta-algoritmide jaoks. Töös esitatakse ka kaks meta-algoritmi liiki – 
fikseeritud reeglitega meta-algoritm ja keskkonnale adapteeruv meta-algoritm. 
Näidatakse, kuidas niisuguseid meta-algoritme ehitada ning diskuteeritakse erinevate 
õppimismetoodikate teemal. 

 
Võtmesõnad: suurim klikk, graafi teooria, haru-ja-piir, lõpetamata lahendus, tippude 
värvimine, värvi klassid, algoritm, NP-keeruline, NP-raske, testimiskeskkond, meta-
algoritm. 
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1 INTRODUCTION 

1.1 Background of the Study 
The main area of this study is graph theory, which is a key technique of discrete 
optimisation, operations research, topology and a lot of others. A lot of scientists are 
using graph theory as a powerful tool to analyse problems within their own area of 
research. Although graph theory has already been used for many years it is still young 
and contains a lot of unsolved problems and there is still a lot of space for researches to 
introduce their own works and algorithms, for discussing and having fun. The number 
of applications is growing quite fast and surely it will grow further making people’s 
life and activities much more “optimal” and easier.  

A graph is a representation of relationships between some objects. Specifically a 
graph is built by two sets – a set of objects that is called vertices and a set of relations 
that is called edges. Consider, for example, a society that contains a set of persons. 
There could be relations between those persons of different type: friendship, parent-
children and so forth. This society could be modelled as a graph where a vertex 
represents each person and if any two persons have any relation then it will be 
represented by an edge between vertices representing those persons. Another 
illustration of using graphs could be a problem of scheduling exams. Let’s say we have 
a set of courses that will end up with an exam. Some students can take more than one 
course among those; therefore it is not possible to schedule some exams at the same 
time. We have to model somehow this situation before we will be able to apply any 
mathematical tool to solve it. The most natural way is to use a graph by letting the 
vertices to represent the courses and edges between any two courses if those two 
courses are “incompatible” to share the same time since have shared students. So, 
using graphs we can simplify a real world problem by abstracting it into a poor 
mathematical model, which will contain a main core/idea of it. Many difficult 
problems have been solved by converting them into graphs and using the graph theory. 
Today the graph theory is hosting a lot of applications in such fields like sociology, 
chemistry, geology, computer science and many others. With this consideration, it has 
become important to study core problems of the graph theory keeping in mind that it 
will help to advance the theory and the practice in a lot of others humans activities 
fields. 

1.2 Definition of Basic Concepts 
Let G=(V,E) be an undirected graph, where V is the set of vertices and E is the set of 
edges. Two vertices are called to be adjacent if they are connected by an edge. A 
clique is a complete subgraph of G, i.e. one whose vertices are pairwise adjacent. An 
independent set is a set of vertices that are pairwise nonadjacent. A complement graph 
is an undirected graph Ĝ=(V,Ê), where Ê = { (vi , vj) | vi , vj  ∈ V, i ≠ j, (vi , vj) ∉E } – 
this is a slightly reformulated definition provided by Bomze et al 1999. A 
neighbourhood of a vertex vi is defined as a set of vertices, which are connected to this 
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vertex, i.e. N(vi) = {v1, …, vk | ∀ j: vj ∈ V, i ≠ j, (vi , vj) ∈ E } A maximal clique is a 
clique that is not a proper subset of any other clique, in other words this clique doesn’t 
belong to any other clique. The same can be stated about maximal independent set. All 
definitions listed so far are obtained from the following sources: Bomze et al 1999, 
Carraghan and Pardalos 1990a, Östergård 2002. 

The maximum clique problem is a problem of finding maximum complete subgraph 
of G, i.e. maximum set of vertices from G that are pairwise adjacent. In other words the 
maximum clique is the largest maximal clique. It is also said that the maximum clique 
is a maximal clique that has the maximal cardinality. The maximum independent set 
problem is a problem of finding the maximum set of vertices that are pairways 
nonadjacent. In other words, none of vertices belonging to this maximum set is 
connected to any other vertex of this set. A graph-colouring problem or a colouring of 
G is defined to be an assignment of colours to the graph’s vertices so that no pair of 
adjacent vertices shares identical colours. So, all vertices, which are coloured by the 
same colour, are nothing more than an independent set, although it is not always 
maximal. The chromatic number - χ(G) is the minimum number of colours needed for 
a colouring of G. The following references have been used to obtain previously listed 
definitions: Bomze et al 1999, Butenko et al. 2001, Carraghan and Pardalos 1990a, 
Klotz 2002, West 2001. 

All those problems are computationally equivalent, in other words, each one of 
them can be transformed to any other. For example, any clique of a graph G is an 
independent set for the graph’s complement graph Ĝ. So the problem of finding the 
maximum clique is equivalent to the problem of finding the maximum independent set 
for a complement graph. 

For more information on other transformations see the “Complexity” subchapter 
below. 

The same problems can be stated for weighted graphs, i.e. for an undirected graph 
G=(V,E,W), where V is the set of vertices and E is the set of edges and W is the set of 
weight of vertices from V (each vertex have one weight). In this case, the maximum 
clique problem transforms into the maximum weighted clique (or the maximum-weight 
clique) problem asking to find a clique of the maximum weight [Bomze et al 1999], i.e. 
where sum of vertices’ weights belonging to the clique is maximum for the graph. 

It is also possible to formulate the same problems with weighted edges, but those 
problems are beyond of this work. 

All those problems are NP-hard on general graphs [Garey and Johnson 2003] and 
no polynomial time algorithms are expected to be found. There are also so called 
“Heuristic algorithm” allowing finding a solution of a problem in a polynomial time 
without guarantee that the found solution is the maximum / best one. Those algorithms 
are widely used both as a possible way to solve problems at a reasonable time and as 
subtasks of exact algorithms, for example for finding boundaries. 

1.3 Research Problem 
The basic research problems addressed in this study are “Construct new effective 
algorithms for solving the problem of finding the maximum clique in an arbitrary 
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undirected graph” and “Construct new effective algorithms for solving and the problem 
of finding the maximum weighted clique in an arbitrary undirected graph”. 

 
The following sub-problems have been formulated: 

1. Identify properties of graphs that can be used to make quicker algorithms; 

2. Develop better algorithms for the maximum clique and the maximum weighted 

clique finding; 

3. Build a test environment allowing comparing algorithms; 

4. Research those algorithms and identify why one or another is better and on 

what graphs; 

5. Formulate a philosophy of building a meta-algorithm allowing increasing 

intelligence of applying maximum clique finding algorithms in different 

environments / for different graphs; 

This study is based on the author’s previous researches, which were included into 
his Master of Science work. That study reviewed some special graphs’ cases like for 
example permutation graphs and contained algorithms based on finding triangles. 
Some ideas of those algorithms were converted into initial algorithms’ that have shown 
quite promising results and evolved into algorithms presented in this study. The test 
environment idea was obtained in that study as a way for further development that will 
be very helpful, while a meta-algorithms idea came later – rather during formulating 
this study on later stages and wasn’t included into earlier draft of tasks list. So, an 
initial task of developing better algorithms was reformulated by adding a test 
environment research and ended in a wide formulation on the high level of meta-
algorithms, while maximum clique algorithms remained to be a core of the study. 

1.4 Complexity 
There are a lot of problems that are not so easy to solve as it looks like at first. 
Therefore it is important to know a complexity of a problem you are trying to solve 
before starting to work out an algorithm for solving this problem. More exactly, it is 
important to know if this problem is NP-complete (Nondeterministically Polynomial), 
i.e. very hard to solve.  

We say that a function f(n) has complexity O(g(n)), where n is the size of the input 
parameter or its length, whenever there exists such constant c, that | f(n) | ≤ c | g(n) | for 
any n ≥ 0. A polynomial time algorithm is an algorithm whose time complexity 
function is O(p(n)), where p(n) is a polynomial function. Any algorithm whose time 
complexity function cannot be so bounded is an exponential time algorithm. An 
example of such time complexity function could be an where a is a constant. 
Sometimes such algorithms are called non-polynomial since this definition also 
includes algorithms having nlog(n) time complexity although such complexity is neither 
polynomial nor exponential. Of course, exponential algorithms can be even faster than 
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polynomial ones in certain cases. For example consider algorithms having complexity 
2n and n5, for 1 < n < 23. Unfortunately real live problems are having much larger n 
than in the previous example. That’s why exponential algorithms are not regarded as 
being useful in practise although are known for many problems. 

It is common to distinguish between two types of complexity: 
1. Time complexity as we have seen so far, i.e. a problem is called hard to solve or 

intractable if there are only exponential time algorithms to discover a solution. 
2. A problem’s solution size complexity. This happens when the solution itself 

cannot be described with an expression having length bounded by a polynomial 
function of the input length [Garey and Johnson 2003]. A problem of finding all 
cliques from a graph can be an example since for a general case number of 
existing cliques is exponential. 

 
The maximum clique problem’s complexity is the time complexity. 
It is not proved right now that the problem of finding the maximum clique cannot 

be solved in a polynomial time as well as vice versa. It means that nobody was able to 
construct even theoretically such algorithm for any graph and nobody was able to 
prove impossibility to have such algorithm. We are going to demonstrate the 
algorithm’s complexity in terms of NP-completeness in the following subpart. 
 
NP-complexity 

The first most important researches in the algorithms complexity area were done by 
Turing in the 1940s. Turing has demonstrated that some problems are “undecidable”, 
i.e. those problems can be solved algorithmically. Moreover his works have greatly 
affected complexity theory for “decidable” problems since his abstract computer 
model, so called Turing machine, was used for researches and definitions in this area. 
NP-class problems are defined as problems that can be solved on a none-deterministic 
Turing machine in a polynomial time [Garey and Johnson 2003]. There is a P class as 
well, which contains problems that can be solved in a polynomial time on the 
deterministic Turing machine, which is also called just the Turing machine. Sometimes 
NP-class is defined as a class of problems that cannot be solved on the Turing machine, 
although it is not quite correct, since P ⊆ NP. So NP-P problems cannot be solved in a 
polynomial time on the deterministic Turing machine. Besides, it will be wrong to say 
that NP means none-polynomial, although it describes quite well an essence of those 
problems from nowadays programming point of view. NP-completeness theory 
foundations were laid in a Cook paper presented in 1971 [Cook 1971]. First of all, he 
highlighted importance of “polynomial time reducibility”. It means that if we can show 
that there exists a polynomial time transformation from one problem into another, then 
any polynomial time algorithm for the second algorithm will provide us with a 
polynomial algorithm for the first problem. Besides, basing on those ideas, he has 
shown that any NP problem can be converted into the satisfiability problem in a 
polynomial time. He also has demonstrated that there are some other problems, which 
have the same complexity as the satisfiability problem. Those problems are “hardest” 
problems or are an essence of NP-class. Later a lot of problems have been shown to be 
as “hard” as the satisfiability problem [Karp 1972] and those problems were called NP-
complete problems. 
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The formal definition for NP-complete is the following: a problem is NP-complete 
if the problem belongs to NP-class and any other problem of NP-class can be 
polynomially transformed into this problem. 

 
NP-completeness proof for a problem S contains 4 steps: 
1. Show that S is in NP; 
2. Select a known NP-complete problem S’ to which S is most similar (or select 

any); 
3. Construct a function f that transforms S’ into S; 
4. Proof that the transformation function f is a polynomial one. 
 
So, it is important to consider a connection between different types of tasks before 

starting to solve any of them since it could provide important and interesting 
information on how it can be done. Although there are a lot of NP-complete problems, 
just some of them are commonly use as “core” problems since those fit better for 
transforming. Those core problems are listed below. 

 
Satisfiability (SAT)  
Condition: Given a collection of clauses C = {c1, c2,….,cm} over a finite set of 

variables V. 
Question: Is it possible to find such set of values for those variables that each 

clause is satisfied. 
 
3-Satisfiability (3-SAT)  
Condition: Given a collection of clauses C = {c1, c2,….,cm} where each clause 

contains exactly 3 literals ( |ci|=3, 1 ≤ i ≤ m ), over a finite set of variables V. 
Question: Is it possible to find such set of values for those variables that each 

clause is satisfied. 
 
3-Dimensional Matching 
Condition: Given a set M ⊆ W × X × Y, where W, X, Y are none intersecting 

(disjoint) sets containing each q elements. 
Question: Is it true, that M contains 3-dimensional matching, in other words is there 

a subset M’⊆ M that have the following properties: | M’ | = q and there are no different 
elements inside M’-which have equal coordinates (w, x, y)?  

 
Vertex cover 
Condition: Given a graph G = (V, E) and a number K: 0 ≤ K ≤ | V |. 
Question: Is it possible to find on this graph G a vertex covering, which contains at 

most K elements, or is their a subset V’⊆V, such that | V’ | ≤ K and {∀(x, y) ∈E; x or y 
∈V’}? 

 
Hamilton cycle 
Condition: Given a graph G = (V, E). 
Question: Is it true, that G contains a Hamilton cycle, or does there exist a vertices 

series <v1, v2,…., vn>, such that n = | V |, {vi,vi+1}∈ E : ∀i, 1 ≤ i ≤ n ? 
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Clique 
Condition: Given a graph G = (V, E) and a number K: 0 ≤ K ≤ | V | 
Question: Is it possible to find in the graph a clique containing K-vertices, in other 

words does this graph contain a subset V ‘ ⊆ V, where | V ‘ | ≥ K and {∀ x, y ∈ V ‘;  
(x, y) ∈E}? 

 
Partitioning  
Condition: Given a finite set A and weights s(a) ∈Z+ for each a∈A. 
Question: Is it possible to find such subset A’⊆A that satisfies to the next condition 

∑a∈A’ s(a)= ∑a∈A\A’ s(a)? 
 
 

The next tree is used for NP-completeness proving: 

 
Figure 1. The sequence of transformation of the six basic problems’ NP-completeness 

proving 
 

The maximum clique problem is polynomially equivalent to the clique problem; 
therefore some authors refer this problem as NP-complete [Karp 1972, Bomze et al 
1999]. The classical Garey and Johnson book names the maximum clique size problem 
to be NP-easy [Garey and Johnson 2003]. A search problem is defined to be NP-easy 
whenever there exists another problem belonging to NP to which the original problem 
is Turing reducible. So, the NP-easy problem is a problem, which is “no harder” than 
the NP complete problem for solving. A search problem is defined to be NP-hard if 
there exists some NP-complete problem that Turing reduces to this problem. So, all 
NP-complete problems are NP-hard. Unfortunately this terminology is a bit unstable 
[Garey and Johnson 2003], but the maximum clique problem is at least NP-complete, 
and is NP-hard by this definition since the “Clique”, which is the NP-complete 
problem, is Turing reducible to it at vice versa, so it is neither easier nor harder than 
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the clique problem. That’s why we refer this problem in this study to be NP-hard as 
many other authors as well [Wood 1997, Östergård 2002].  

All this mean that finding of any better solution / algorithm for the maximum 
finding algorithm will result in more than just in improving of a performance of 
solving this problem, but could also mean finding better algorithms for other NP 
problems. That indicates great importance of our problem for researching. 

We conclude this subsection with some smaller issues regarding the maximum 
clique problem complexity. As we mentioned earlier the maximum clique problem is a 
time-complexity problem and therefore depends on a length of an input parameter; 
besides there are no polynomial algorithm to solve it. It is important to note here that 
any algorithm depend also on a programming language that implements the algorithm 
and on a computer on which the algorithm is run, but those two parameters are usually 
omitted. First of all those parameters can produce just some small polynomial 
differences from an algorithm point of view. Besides the computer science usually tries 
to depart from a particular computer and provides a function showing number of steps / 
processor tacts to solve the problem. The only important is to get this into account 
conducting comparative tests of different algorithms. We have to use the same 
computer, the same coding technique and the same language to avoid those parameters 
influence of on results. Moreover we will use algorithms’ spent time ratios to be 
computer independent in results and make them reproducible on any platform. 

Another important thing to note is a fact that most of classical or well-known 
algorithms work also fast on certain or a sufficient number of graph types. Those 
algorithms are having problems only because generally we say that we need an 
algorithm that has to solve all types of graphs and there are certain types of graphs, 
which are hard to solve by this algorithm. But those algorithms still provide us with a 
hope that we have captured some important graphs’ properties and we can extract those 
for using in new algorithms that will be better than already existing. 

Note: See the chapter “Scope and Background of the Research” below for some 
examples of graph types that can be solved in a polynomial time. 

1.5 Scope and Background of the Research 
During this work we will mainly concentrate on general graphs which are normally 
don’t have a well-known structure basing on which we could simplify our search. Of 
course there are certain types of graphs where the maximum clique can be found in a 
polynomial time, see for example permutation graphs [Kim 1990], more general class 
of graphs – perfect graphs [Berge and Chv'atal 1984, Bomze et al. 1999] that includes 
interval graphs, bipartite graphs [Bomze et al. 1999], but our aim is to invite better 
algorithms for a general case. Besides we will try to invite a meta-algorithm that can 
work both with general case and with special graphs using corresponding algorithms, 
so we’ll move to the higher, meta level in solving the maximum clique finding. 

The best known algorithm for the maximum independent set finding is developed 
by Robson [Robson 1986] and has a time complexity upper bound O (20.276n ), but 
unfortunately no experimental results/tests of this is known [Pardalos et al. 1998]. Note 
again that the maximum clique finding is exactly the same complexity task as the 
maximum independent set finding. The most efficient algorithm for solving this 
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problem was developed by Carraghan and Pardalos [Carraghan and Pardalos 1990a]. 
Moreover, it is an algorithm that is usually used for benchmarking new algorithms as it 
is proposed by DIMACS [DIMACS 1999, Johnson and Trick 1996]. Another set of 
algorithms that will be widely used in the study are algorithms proposed by Östergård 
and claimed to be the best at the moment – for unweighted [Östergård 2002] and 
weighted [Östergård 2001] graphs, so it should be enough to compare new algorithms 
with those to investigate new algorithms efficiency. 

1.6 Applications 
Here we investigate different applications of the maximum clique finding and show 
why inventing a better algorithm for the problem is so important. 

The maximum clique problem has many theoretical and practical applications. The 
most important theoretical application lays in the connection between NP-complete 
problems, as it was shown in the previous chapter. Consider for example a connection 
between the maximum clique problem and a quadratic programming problem 
established by Motzkin and Straus [Motzkin and Straus 1965].  

In fact, a lot of algorithms contain this problem as a subtask and this is another 
important applications area for the problem. We will list some such problems below. 

The first area of applications is data analyses / finding a similar data. For example, 
the next construction is used: a graph is constructed with vertices corresponding to data 
elements and similar data elements (vertices) are connected by edges. Another 
construction starts from building a bipartite graph, where the first set of vertices are 
data elements and the second set of vertices are properties. Data elements having a 
particular property are connected to a vertex corresponding to this property by an edge. 
Now, it is possible to connect all data elements and all properties by edges and search 
for a clique having both properties vertices and data element vertices. In both cases the 
maximum clique is a cluster. Those constructions are widely used and below we are 
going list just some such areas: the identification and classification of new diseases 
based on symptom correlation [Bonner 1964], computer vision [Ballard and Brown 
1982], and biochemistry [Miller 1992]. 

Another wide area of applying the maximum clique is the coding theory [Sloane 
1989, Brouwer et al. 1990]. The simplest example of such situation occurrence is 
transmitting a set of bytes, during which one byte is lost, but neither sender nor 
receiver know which one – this corresponds to the “Single deletion correction code” 
[Sloane 2001]. The general task here is to find the largest binary code consisting of 
binary words that can correct a certain number of errors. 

Another important application arises in the circuit design. A task is to build an 
optimal layout of elements on a circuit. In addition to that maximum cliques are widely 
used in the circuit testing for fault diagnosis [Brglez and Fujiwara, 1985]. For example, 
one such application is to place special elements on a circuit (or a board) part to detect 
if it is working correctly. Those elements can check only a restricted set of circuit 
components due the testing element size. The task here is to maximize a number of 
circuit components tested in one pass. Here components are vertices and edges connect 
components that can be checked in one pass. Clique detection can be used also for the 
distributed fault diagnosis in multiprocessor systems [Berman and Pelc 1990]. The task 
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is to identify a faulty processor. It is assumed that a fault-free processor in the system 
detects the faulty processor with some probability, while no assumptions are made on 
the performance of faulty processors. A major step in the algorithm is to find the 
maximum clique in an appropriate graph (a c-fat ring) [Pardalos et al. 1998]. Those 
graphs are to be included into tests for algorithms we are going to invite. 

The maximum-weight clique problem has also a lot of applications. For example in 
the coding theory [MacWilliams and Sloane 1979], geometric tiling [Corradi and 
Szabo 1990], fault diagnosis [Berman and Pelc 1990], pattern recognition [Horaud and 
Skordas 1989], molecular biology [Mitchell et al. 1989], and scheduling [Jansen et al. 
1997]. Additional applications arise in more comprehensive problems that involve 
graph problems with side constraints. More this problem is surveyed in [Bomze et al. 
1999]. 

There are much more application and we have listed only some of them. All it 
proves that the importance of the maximum clique finding for the today science is very 
high. The reason is highly abstracted model of the graph concept allowing applying it 
practically everywhere. 

1.7 Outline of the Study 
In the Chapter 1 of this Study a background of it is reviewed, basic concepts are 
presented and tasks to solve formulated. The complexity of the problem is also 
analysed and scopes and limitations of the study are identified. 

The review of earlier researches is done in the Chapter 2. This allows 
understanding of where the problem research is right now, what has been done, what 
methods gave negative results and what methods are best at the moment. Those best 
algorithms will be used either as a part of new algorithms or for comparing new 
algorithms to identify whether those are better and where. 

Main parts of this study are opened by the Chapter 3, where new algorithms for 
finding the maximum clique are developed. Here both weighted and unweighted 
graphs’ cases are researched. Each new algorithm is explained, published in a formal 
way and at least one example is played through. The second part of this chapter 
contains a description of tests and results including a description of graphs used for the 
testing. Results are presented as tables and graphs. 

The second main part of the study is located in the Chapter 4 and discusses a 
testing environment that was used to produce testing results of the previous chapter. 
The testing environment is an essential part of any researches and its architecture, 
philosophy of constructing are presented. 

The Chapter 5 introduces a new level in the maximum clique finding programs’ 
implementation – an idea of a meta-algorithm containing the maximum clique finding 
algorithms. Here ideas from other data analyses areas are collected and applied to the 
maximum clique problem. Besides, the real-time systems’ case is discussed. Some tests 
showing efficiency of algorithm in finding the maximum clique without proving that it 
is the maximum one are done and results are discussed. 

Lastly Chapter 6 concludes the study with a summary. 
 



 21

Programs’ codes are provided in an appendix to show how algorithms were 
implemented. This ensures correctness of algorithms comparison tests by making them 
reproducible as well as unambiguous understanding of the implementation of new 
algorithms. 
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2 REVIEW OF THE STATE OF THE ART 

2.1 Maximum Unweighted Clique / Exact Approaches 
This chapter contains two algorithms designed to find the maximum clique from an 
unweighted graph. Those algorithms produce an exact solution, i.e. a clique produced 
by any algorithm is the maximum one for the graph – there is surely no clique that 
could contain more vertices than the produced one.  

Two algorithms, which are presented below, are most important from the author’s 
point of view at the moment, although there are some other algorithms as well. The 
first algorithm is a classical one introduced in the early years of applied combinatorics 
in computer science by Carraghan and Pardalos [Carraghan and Pardalos 1990a]. It is 
easy to implement and it works very effectively in practise as well although it’s having 
certain problems on some graphs - for example on graphs with high density. The 
second algorithm, which is developed by Östergård [Östergård 2002], is claimed to be 
the best / fastest one at the moment. Another plus of this algorithm is that it is very 
similar to the first one although contains some important modifications making it much 
quicker. It happens because both algorithms use a branch and bound technique in 
finding the maximum clique. The same ideas will be used in our new algorithms. 
Therefore those two algorithms can be easily compared with new algorithms since we 
can use the same programming technique for all of them. This eliminates a risk of 
inadequate testing that occurs because of totally different algorithms that are 
implemented differently. Here it is easy to do mistakes in programming that leads to 
the inadequate testing. So, the only way to eliminate such risk is to use the same source 
code with some modifications for testing algorithms if it is possible. That could be 
perfectly done for the presented algorithms having very similar algorithmic structures. 

2.1.1 Carraghan and Pardalos algorithm 
This algorithm was introduced in 1990 by Carraghan and Pardalos [Carraghan and 
Pardalos 1990a]. The algorithm is very simple and efficient for finding the maximum 
clique on an arbitrary graph. It issued to be fastest for any types and densities of graphs 
until the end of the previous century. Currently it holds a title of the fastest algorithm 
for the low-density graphs.  

The algorithm by its nature is a branch and bound algorithm. Crucial to the 
understanding of this algorithm is the notation of the depth. The algorithm forms 
depths by selecting an expanding vertex from the current depth and selecting into this 
new depth all vertices from the current, which are connected to the expanding vertex. 
Vertices at each step are expanded one by one while there are vertices that were not yet 
expanded on the depth and removed from the analysis on the depth. 

The main advantage of this algorithm is its pruning formula for a depth (branch) 
if d + ( m – i ) ≤ CBC then prune (go to the higher/previous depth), where d is a 

depth number (initial depth number equals to 1), m is the total number of vertices on 
the current depth, i is a sequential number of the expanding vertex on the current depth 
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and CBC is a size of the current best (maximum) clique. If the pruning formula 
works/holds on the first/initial depth then the algorithm stops. 

 
function Main  
      CBC := 0          // the maximum clique’s size 
      clique (V, 0) 
      return  
end function 
 
function clique(V, depth) 
      if’|V| = 0 then 
           if depth > CBC then  
              New record - save it. CBC := depth 
          end if 
          return 
      end if 
      i := 0 
      while i < |V| do    
              if depth + |V| - i ≤ CBC then return  // prune 
              i := i + 1 
             // form a new depth. N(vi) denotes a neighbourhood of vi. 
             clique (N(vi) | ∀vj : j > i, j ≤ |V|, depth + 1)  
      end while 
      return 
end function 
 
Authors have advised using the next order of vertices: starting from a vertex with 

the smallest degree up to a vertex with the highest degree. Such degree ordering can be 
done either only once before running the main part of the algorithm or can be reapplied 
on each depth except dense graph where it will not provide a lot improvement and is 
time consuming. The classical algorithm orders vertices only once. 

This quite a simple algorithm has shown in practise its efficiency – it is the best-
known algorithm for sparse graphs and very efficient for others as well. Mainly 
because it doesn’t spend the valuable time on different checks, which are usually 
irrelevant, and starts to work immediately. The only area where the algorithm is quite 
slow is dense graphs. Those graphs are hard to solve by this algorithm since its pruning 
formula doesn’t work on dense graphs as the number of remaining vertices on a 
subgraph usually is much bigger than CBC up to the last vertices. 

2.1.2 Östergård algorithm 
This algorithm is published by Östergård in 2002 and is based on the previous one with 
an important addition introduced: a backtrack search [Östergård 2002]. 

The algorithm considers subgraphs Gi of G, where i indicates the minimum 
sequential number of a vertex included into a subgraph: Vi = {vi,…,vn}. Those 
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subgraphs are searched for maximum cliques starting from the i = n-th upto the i = 1, 
i.e. in the backward order. The algorithm is also a branch and bound algorithm by its 
nature. It forms depths by selecting an expanding vertex form the current depth and 
putting to this new depth all vertices from the current, which are connected to the 
expanding vertex. Vertices at each step are expanded one by one while there are 
vertices that were not yet expanded on this depth. The pruning formula described for 
the previous algorithm is also used. 

The maximum clique size for each subgraph is saved in a cache for the later use for 
the maximum clique search on a subgraph with a smaller index i by the following 
pruning formula: 

if d + c[i] ≤ CBC then prune, where d is a level starting form 0, i is the minimal 
sequential number of a vertex among vertices existing on that level, CBC is a size of 
the current best (maximum) clique and c[i] is the maximum clique size of Gi.  

This c function or cache is the core idea of that algorithm. There is also defined a 
condition to stop searching the maximum clique basing on the CBC. 

if d + c[i] > CBC then stop since ∀ i: Gi-1 ⊆ Gi and therefore CBC is the maximum 
clique on Gi-1 as well as the maximum clique for Gi-1 either equal to the maximum 
clique of Gi or is bigger on 1. So, as soon as a bigger clique is found we could stop 
since the graph cannot contain any bigger clique. 

 
function Main   
     max :=0 
     for i := n downto 1 do 
          found := false 
          clique (Si & N(vi), 1) 
           c [ i ] :=max 
    end for 
    return 
end function  
 
function clique (U,size) 
    if |U| = 0 then 
       if size > max then 
          max :=size 
          New record; save it 
          found = true 
       end if 
       return     
    end if 
 
    while U ≠ Ø do 
          // prune as Carraghan and Pardalos algorithm does 
          if size + |U| ≤ max then  return                                  
          i :=min { j | vj ∈ U } 
          // new pruning technique 
          if size + c [ i ] ≤ max then return 
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         U :=U \ { vi } 
         clique(U & N(vi), size + 1) 
 
         if found = true then return  // stopping condition 
 
    end while 
    return  
end function 
 
Author advices to reorder vertices using the following heuristic algorithm: first find 

the vertex-colouring and then group vertices by colour classes. This heuristic algorithm 
is a greedy one. He also marked that other heuristic algorithms can be used to produce 
a “good” initial ordering if a better algorithm will be found. Experimental results show 
that this algorithm is generally the quickest algorithm for finding the maximum clique 
and also has to be granted to be one of the easiest to understand and implement. There 
are certain DIMACS graphs instances, where the algorithm is slow, like c-fat500-5, 
MANN_a27 and some others, but mostly it is one of the fastest on those graph instances 
as well. 

2.1.3 Some other heuristic vertex-colouring based 
algorithms 

Here we review some historical attempts to use a heuristic vertex-colouring for 
maximum clique finding. The heuristic vertex-colouring idea is interesting for us since 
algorithms invented in this study are based on such colouring and therefore it could be 
very interesting to see where this idea was used so far. Algorithms that we are going to 
describe are not very fast and therefore we will not include those into our comparative 
tests and those will be interesting only from a historical point of view. Please note that 
we do not mean here algorithms that only use a vertex-colouring to derive once bounds 
for the maximum clique, but rather review algorithms containing vertex-colouring as 
an important part of an algorithm for the maximum clique finding, i.e. where those 
bounds are permanently found. 

2.1.3.1 Babel and Tinhofer’s algorithm 
This is an algorithm proposed by Babel and Tinhofer in 1990 [Babel and Tinhofer 
1990], i.e. in the same year when Carraghan and Pardalos has released their brilliant 
algorithm described before [Carraghan and Pardalos 1990a]. This algorithm is also the 
branch and bound one and was positioned by authors as an algorithm, which is 
especially efficient for graphs with great edge density. The branching is the first phase 
of the algorithm, which is done exactly in the same way as the Carraghan and Pardalos 
one does [Carraghan and Pardalos 1990a]. The second phase, which is bounding uses 
mainly a well known fact that the chromatic number of a graph is always bigger or 
equal to the size of this graph maximum clique. The problem of vertex-colouring is 
NP-complete therefore the algorithm uses DSATUR technique to find a heuristic 
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vertex-colouring. This heuristic algorithm is to be described later in the “Vertex 
colouring / Heuristic approaches” subchapter. The following sentence describes an 
essence of Babel and Tinhofer algorithm: “In each Gi we look for a clique and a 
colouring”, where Gi is a subgraph that is produced during the branching algorithm. 
The algorithm can be presented using the following pseudo-code: 
 

function Main  
    CBC :=0   // the maximum clique’s size 
    clique (V, 0) 
    return  
end function 
 
function clique(V, depth) 
    if’|V| = 0 then 
        if depth > CBC then  
            New record - save it. CBC := depth 
        end if 
        return 
    end if 
 
    while V ≠ Ø do    
         if depth + |V| ≤ CBC then return  // prune 
         //use DSATUR to find the max. clique and a colouring 
         Q, C :=DSATUR(G(V)) // C = {C1,..,Ck}, Q – max. clique 
         if depth + |Q| > CBC then  
             New maximum clique: Q + vertices of previous depths.  
             CBC = depth + |Q| 
         end if 
         if depth + |C| ≤ CBC then return 
         clique (N(v1), depth + 1) 
         V := V \ v1 
    end while 
    return 
end function 

 
Please note that the DSATUR algorithm provides both a heuristic colouring and a 

heuristic maximum clique. The heuristic colouring is the main output and target of this 
algorithm, while the heuristic maximum clique is obtained first associations of colours 
to vertices, since saturation degree rule leads to colouring a clique first of all. The 
heuristic clique is formed by a set of vertices, which are coloured until any colour is 
reused – see the “DSATUR” subchapter below to find how this algorithm works. . 

We should mention that different modifications of this base algorithm were 
proposed by Babel and Tinhofer in their work to decrease the time for computing the 
upper and lower bounds, but those modifications do not change the base algorithm 
dramatically and therefore can be omitted for this review. The algorithm was 
successfully used for some types of graphs, including chordal graphs [Ballas and 
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Tinhofer 1990], but the general performance of the algorithm was quite bad in 
comparison to the Carraghan and Pardalos algorithm [Carraghan and Pardalos 1990a], 
which was released simultaneously, mostly due to the fact that the algorithm consumes 
too much time to find bounds in combinatorial cycles. 

2.1.3.2 Wood’s algorithm 
An algorithm invented by Wood in 1997 [Wood 1997] is another attempt to employ a 
heuristic vertex colouring for the maximum clique finding basing on previous works – 
mostly on Babel and Tinhofer algorithm [Babel and Tinhofer 1990] and Carraghan and 
Pardalos algorithm [Carraghan and Pardalos 1990a] and some their later works. The 
algorithm can be described using the following pseudo-code with a certain 
simplification of unimportant details, which will not change the main idea: 
 

function Main  
    CBC :=0   // the maximum clique’s size 
    clique (V, 0) 
    return  
end function 
 
function clique(V, depth) 
 
    //Sub step 1 
    Q :=greedy(V)   // find a clique using a greedy algorithm 
    if depth + |Q| > CBC then  
         New maximum clique: Q + vertices of previous depths.  
         CBC = depth + |Q| 
    end if 
 
    // substep 2 
    //Find a vertex colouring of G(V) by DSATUR 
    C :=DSATUR(G(V)) // C = {C1,..,Ck} 
    if depth + |C| ≤ CBC then return 
 
    while depth + |C| > CBC do   // pruning condition 
         k := |C| 
         v :=maxdegree(v ∈ Ck) 
         Ck := Ck \ v 
         if Ck = Ø then C := C \ Ck 
         clique ( N(vi), depth + 1)  
    end while 
    return 
end function 
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function greedy(V) 
    S := V 
    Q := Ø 
    while S ≠ Ø do 
        vi = maxdegree(v ∈ S) 
        Q := Q ∪ {vi} 
        S := S & {vi} 
    end while 
end function 

 
It is easy to see that the described algorithm is another branch and bound 

algorithm. The author mainly concentrates on three issues that he thought are very 
important for branch and bound algorithms: 

• How to find a good lower bound, i.e. a clique of large size? 
• How to find a good upper bound on the size of the maximum clique? 
• How to branch, i.e. break a problem into subproblems? [Wood 1997] 
The greedy algorithm for the heuristic maximum clique finding is used to find the 

lower bound, the heuristic DSATUR is used to find the upper bound and all this is 
done practically for each new branch, i.e. on each new depth. The original paper also 
employs a fractional colouring in addition to DSATUR to find a better upper bound, 
since the upper bound for pruning is set to be a minimum number of colours provide by 
those heuristic vertex-colouring algorithms – see this Wood paper for more details on 
fractional colouring and how it is used [Wood 1997]. The biggest differences from the 
previously described Babel and Tinhofer algorithm [Babel and Tinhofer 1990] are: 

• The algorithm looks for a heuristic clique and colouring only for a new branch, 
i.e. it is not done in the internal cycle of a branch. Please note that Babel and 
Tinhofer tried in their efficiency improving modifications for the original 
algorithm to speed up the colouring of each branch by reordering vertices of a 
branch [Babel and Tinhofer 1990], while Wood decided not to colour in the 
internal cycle; 

• More than one heuristic vertex colouring algorithm is used to provide a better 
bound. 

Although the algorithm meets the defined issues, it seems to be rather impractical 
since it still spends too much time on finding bounds and this affects its performance 
characteristics. Therefore this algorithm has mostly been seen as another unsuccessful 
attempt to use vertex-colouring for the maximum clique finding, which rather proved 
that vertex-colouring cannot be used for that. 

2.1.4 Other approaches 
Here we are going to review some other approaches to the maximum clique finding. So 
far we mainly concentrated on the so-called “integer programming” enumerative 
algorithms although some other ideas exist. We are going to review some of them to 
provide a full picture on the study subject. Core ideas and pros and cons will be briefly 
described. We should mark in advance that those other algorithms are evolving and 
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probably will be fastest in the future, but so far those are not a real alternative to the 
algorithms reviewed above. 

It is possible to see the original maximum clique problem, which has been 
described in the “Basic concepts” subchapter, from different points of view or 
formulate it differently. Therefore before reviewing any other algorithms we are going 
to define, what is the “integer programming” formulation, to identify the technique we 
concentrate on in this work. Besides it will help us to demonstrate differences with 
other approaches and techniques. The simplest “integer programming” formulation is 
the following edge formulation: 

max ∑
=

n

i 1

xi  , 

subject to xi + xj ≤ 1, ∀ (i, j) ∈ Ê, 
xi ∈ {0, 1}, i = 1,..., n. [Bomze et al. 1999] 

 
The branch and bound algorithms belong to the enumerative “integer 

programming” formulation where the branching is the enumerative part. 
There is another historically quite popular technique for solving the problem - 

“integer programming” approach by relaxation and decomposition. The classical 
approach here is a Lagrangian relaxation [Guignard and Kim 1987]. Generally saying 
the relaxation means that the original problem is decomposed (relaxed) in one or 
another way into easier to solve problems, while the problem’s solution remains 
feasible. This is done repetitively until an optimal level of relaxing is reached and the 
problem can be solved directly. Quite often the relaxation technique is used basing on 
another, so called “continuous” formulation, of the maximum clique problem. This 
formulation is derived from the Motzkin and Straus [Motzkin and Straus 1965] work. 
We will not provide detail information on this problem formulation and would like to 
refer to the review of the maximum clique finding, which were published in 1999 
[Bomze et al. 1999]. Unfortunately such “integer programming” relaxation generally 
needs a deep knowledge about a graph structure and therefore is used mostly as bounds 
for other algorithms or for special cases. That’s why we cannot recommend using this 
approach as a practical one for a general solution, although it is used very successfully 
to derive heuristic solutions of high quality [Pelillo 1995]. Besides, the relaxation is 
used much more for solving other NP-hard problems since it fits better there. Note that 
although branch and bound can be seen also as a decomposition some authors still 
name it enumerative “integer programming”. 

Another popular technique comes from the genetic algorithms field. Genetic 
algorithms are inspired by the evolutional mechanism of nature and can be used for a 
parallel search. Long strings of bits are called chromosomes in the genetic algorithm 
terminology. There is a function that can compute a probability of survival of each 
“individual”, which is a potential maximum clique case. Algorithms work using three 
major operations> reproduction, crossover and mutation trying to increase probability 
of survival. The mutation randomly change each individual bit, while crossover means 
that basing on two cases a new case is produced by swapping two or more bits’ 
substrings. Please see [Goldberg 1989] for more information. Those attempts are also 
quite mathematical so far and those algorithms’ performance doesn’t provide currently 
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hope on competing with other exact solutions. Therefore genetic algorithms are mostly 
used as heuristic [Hifi 1997, Marchiori 1998, Murthy et al. 1994] algorithms at present. 

2.2 Maximum-Weighted Clique / Exact Approaches 
The following algorithms are targeted to solve the same maximum clique problem, but 
on the weighted graphs. “Weighted” means that each vertex of a graph has a weight. 
There is also another type of weighted graphs – edge weighted graphs, but this type is 
not an issue of our study. Here we again describe only exact solutions, i.e. finding the 
clique that has maximum weight among cliques of the graph. 

The maximum-weighted clique problem has less different algorithms than the 
unweighted case and presented algorithms are mostly just modifications of the 
unweighted case algorithms. It is so because the unweighted case is much easier to 
think about and to produce different ideas and algorithms, therefore the unweighted 
case is a case researches are concentrating on. It is important to mention that the 
importance of this problem is much bigger than for the maximum clique problem 
although the number of algorithms is smaller, since the unweighted case can be treated 
as a special case of the weighted one – all weights are equal and can be omitted. 

This part contains the same algorithms as the previous one – “Maximum clique / 
Exact approaches“, which were modified for graphs with vertices of different weights. 
Other algorithms described in the previous subchapter can also be converted into 
maximum-weighted clique algorithms more or less successfully but still do not reach 
efficiency of algorithms to be described in this subchapter. 

2.2.1 Carraghan and Pardalos algorithm 
The only modification we need to apply here for finding the maximum-weight clique is 
using weights / sums of weights instead of counts of vertices. The pruning formula is 
modified in the following way: if w(d) + w(m,i) ≤ CBC then prune (go to the previous 
depth), where w(d) is an accumulated weight on previous (to d-th) levels, m is the total 
number of vertices on the current depth, i is a sequential number of the expanding 
vertex on the current depth, w(m, i) is a function returning a weights sum of current 
depth vertices from i to m, and CBC is a weight of the current best (maximum) clique. 
If the pruning formula works/holds on the first/initial depth then the algorithm stops. 

 
function Main  
    CBC := 0   // the maximum-weight clique’s weight 
    clique (V, 0) 
    return  
end function 
 
function clique(V, w_depth) 
    if’|V| = 0 then 
        if w_depth > CBC then  
            New record - save it. CBC = w_depth 
        end if 
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        return 
     end if 
 
      i := 0 
      while i < |V| do    
 
          wt=(∑weight [vj ] | i < j < |V|) 
          if w_depth + wt ≤ CBC then return  // prune 
 
           i := i + 1 
           clique( (N(vi) | ∀vj : j > i, j ≤ |V| ), w_depth + weight [ i ] )   
 
     end while 
     return 
end function 
 
Described modifications produce a new algorithm for the weighted case, which is 

still easy to implement. Unfortunately it is not as dramatically fast as it used to be 
before modifications on the unweighted case, but it is still very good. [Carraghan and 
Pardalos 1990b] 

2.2.2 Östergård algorithm 
There are two modifications needed in addition to the general modification of the 
maximum clique definition, which is now weighted. First of all instead of the level d 
we have to keep in memory an accumulated weight for a branch constructed in 
reaching a current level. Besides the algorithm cannot use the stopping condition for 
finding the maximum-weight clique on a subgraph Gi since the difference for stopping 
the search should be exactly equal to a weight of i-th vertex (instead of any as it was 
used before). The original paper and our study is going to use the algorithm that misses 
such stopping rule. 

So, the backward’s pruning formula now is formulated as if w(d) + c[i] ≤ CBC then 
prune, where w(d) is a weight accumulated on previous to d levels, i is the minimal 
sequential number of a vertex among vertices existing on that level, CBC is a weight of 
the current best (maximum)-weight clique and c[i] is the maximum-weight clique’s 
weight of Gi.  

 
function Main 
    max := 0 
    for i := n downto 1 do 
        wclique (Si  & N(vi), weight [ i ] ) 
        C[ i ] := max 
    end for  
    return 
end function 
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function wclique (U, w_depth)   
    if  | U | = 0 then 
       if weight > max then 
              max := weight  
              New record;save it. 
        end if 
        return 
    end if  
 
    while U ≠ Ø do 
 
        wt=(∑weight [ vj  ] | ∀ j : vj ∈ U ) 
        if w_depth + wt(U) ≤ max then return 
 
        i :=min { j | vj ∈ U } 
        if weight + C [ i ] ≤ max then return 
 
        U := U \ { vi }  
        Wclique (U & N ( vi ), w_depth + weight [ i ] ) 
 
    end while 
    return 
end function  
 
The initial ordering is also advised to be formed basing on a vertex colouring as for 

the unweighted case, i.e. using a heuristic greedy algorithm: first find the vertex-
colouring and then group vertices by colour classes. 

Practical results on randomly generated graphs show that this algorithm is the 
quickest one and the difference with others algorithms were sufficient. [Östergård 
2001] 

2.3 Vertex-Colouring / Heuristic Approaches 

2.3.1 A short review 
A variety of algorithms have been produced to solve heuristically vertex colouring 
problem. The most elementary one is a greedy algorithm that is quick and provides 
sometimes reasonably good solutions. The greedy way to find an “optimum” solution 
is widely discussed: is it good or bad. See for example [Kucera 1991; Borodin et al. 
2003] for this discussion. The next algorithm after the greedy one that is worth to name 
is DSatur, which was developed by Brelaz [Brelaz 1979]. This algorithm is widely 
adopted to be used as a benchmark for testing other algorithms. Later researches have 
been split on two major approaches in the finding the heuristic vertex colouring: local 
search algorithms and backtracking algorithms. The local search approach tries to 
search a better solution than already found in the neighbourhood of it using some set of 
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constraint violations. During this search this set is minimised and a solution is found 
when this set becomes empty. This technique is not able to exploit fully a graph 
structure and performance quite bad if the global optimum lies behind a local minimum 
from the already found local optimum. One of the most known examples of this 
technique is a tabu search. The backtracking approach tries to construct solutions from 
partial consistent assignments of domain values to variables. They often use techniques 
such as constraint propagation, value and variable ordering heuristics, branch-and-
bound and intelligent backtracking. [Prestwich 2001]. Both those approaches exist 
since none of them can outperform another one on all graphs. There are certain graph 
types or cases where one or another works much better: if we need to exploit a 
structure then backtrack is better, while local search could be used for large size 
problems. There are also different “add-in”s techniques that are able to optimise 
performance of core methods on 8-15%, for example see the article published by 
Walshaw in the year 2001 [Walshaw 2001] 

2.3.2 Greedy algorithm 
The greedy algorithm takes vertices one by one and tries to add them into one of the 
existing colour classes (i.e. colour it with a colour corresponding to this class). If none 
of classes can be used to assign this vertex then a new colour is organised. There exist 
different techniques for choosing an initial ordering of vertices to colour and for 
choosing colour classes in an attempt to colour a current vertex. The algorithm can be 
described in pseudo-code as following: 

 
Let’s say that we have n vertices and we have k colours at each step. 
 
k = 1; Colour v1 with C1 (Ck) 
For i := 2 to n 

Try to colour vi with colour Cj, where j = min (1,…,k) 
If none colour was used to colour vi then  

k := k+1 [Produce a new colour];  
Colour vi with Ck 

End if 
Next 
 
It was proved that there always exists such initial ordering that will allow 

generating an optimal vertex colouring by the greedy algorithm. So, the problem of this 
algorithm’s poor quality can be also formulated as a problem of a bad initial vertices 
ordering. One of the earliest attempts to produce a “good” ordering was made by 
Welsh and Powell [Welsh and Powell 1967] who suggested using a decreasing degree 
to order vertices.  

2.3.3 DSatur 
This heuristic algorithm was introduced by Brelaz [Brelaz 1979] and it is named 
degree of saturation largest first or DSATUR. It is a sequential colouring algorithm 
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where the saturation degree defined as a number of colours a vertex is adjusted to. So 
at each step of the algorithm we are identifying a vertex with the maximum saturation 
degree among uncoloured and colour it with the least possible colour for that vertex (in 
this coloured neighbourhood). If a saturation degree will be equal for several vertices 
then the number of uncoloured neighbours is advised to be the next measure to use for 
the choice.  

The saturation degree core idea is to try minimizing probability of setting an 
incorrect colour (that will increase number of colours require to colour a graph) by 
setting colours to a vertex with a maximum number of identified restrictions (by 
colours of already coloured neighbours). The algorithm can be described in pseudo-
code as the following: 

 
Let’s say that we have n vertices, W will be uncoloured vertices and Colour(v) 

function will provide a colour already assigned to the vertex v. 
 

While W ≠ Ø  (n steps) 
Find a vertex v ∈ W with a maximum saturation degree 
Find a minimum colour that is not used in neighbourhood of v: 

k := min (i | there is no s : Colour(s) = i , (s,v) ∈ E) 
Colour v with the k colour 
W = W \ v 

 
Practice shows that this method requires up to 30% less colours than for greedy 

type algorithms.  
 
There are also exist “backtracking” modifications of DSatur algorithm. One idea, 

for example, is to reorder vertices during backtrack as it was done by Korman [Korman 
1979] 

2.3.4 Iterated greedy 
The method that was invited by Culberson [Culberson 1992] follows the greedy way in 
finding a vertex colouring with one important modification. The greedy colouring is 
used several times, i.e. repeatedly. Moreover, the order of vertices is changed each time 
before running the algorithm basing on the previous colouring and in such a way that it 
is guaranteed that each call will produce a new colouring using no more colours than 
the previous colouring. DSatur algorithm described above can be used to generate an 
initial vertex colouring.  

 
Lemma: Let C be a k-colouring of a graph G, and π a permutation of the vertices such 
that if C(vπ(i)) = C(vπ(m)) = c, then C(vπ(j))  = c, for i ≤ j ≤ m. Then, applying the greedy 
algorithm to the permutation π will produce a colouring C’ using k or fewer colours. 
[Culberson 1992] 
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The main idea behind this lemma is the fact that reordering of vertices inside colour 
classes will not produce a bigger colouring. For example, reordering vertices for the 
next iteration in order of increasing colours will produce exactly the same colouring. 

 
 
The next reordering of colour classes found to be efficient:  

1. Reverse order 
2. Increasing colour classes size 
3. Decreasing size 
4. Mixed: Do some steps by reordering one, then 2 and finally by 3 and loop 

again 
 
The method makes vertex reordering and re-colouring until the specified colours 

number is reached or a specified number occurs without colouring improvements. 

2.3.5 Tabu search 
Tabu search is a local improvement search. It is based on partitioning the vertices of 

a graph into colour classes that may not represent a legal colouring, then the search 
attempts to reduce the number of colouring violations, or conflicts, by moving vertices 
from one class to another. Each iteration of it consists of generating a sample of 
neighbours; they are partitions that can be obtained from the current one by moving 
one vertex to a different class. Then it selects the neighbour partition that has the 
fewest conflicts, even if the neighbour has more conflicts than the current partition. 
The set of neighbours is restricted by an algorithm’s list that prevents a vertex from 
moving back into a class that it was recently a member of in a previous iteration. This 
helps the algorithm struggle out of local minima [Hertz and de Werra 1987]. 
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3 NEW ALGORITHMS 

3.1 Introduction Into a New Method 
We are going to present several new algorithms that are designed to solve the 
maximum clique problem in this chapter. There are two main classes of the maximum 
clique problem – weighted and unweighted case. Therefore two subchapters are 
introduced in this work, one for each problem’s case, containing algorithms to solve 
this particular case. 

New algorithms are based on the Carraghan and Pardalos algorithm [Carraghan and 
Pardalos 1990a], which is very efficient, easy to implement and is nothing more than a 
simple branch and bound algorithm with a brilliant idea of pruning. In other words it is 
a good starting point to introduce any ideas that could further improve this branch and 
bound algorithm further. 

The philosophy of researches says that the more we know about an object, the better 
we understand it and more efficiently we can resolve any problem about the 
investigated object. At the same time the practice shows that a lot of existing 
algorithms tend to do very complex researches that have a little implication on the later 
finding of the maximum clique. The most important property of the Carraghan and 
Pardalos algorithm is that this algorithm does not spend time on such “unusable” 
researches and concentrates on the primary task – the maximum clique finding. So, it 
looks like the theory and the practice are showing totally opposite results in case of the 
maximum clique and this seems to be illogical. Therefore we started our research and 
identified the main task of it to find such type of information about a graph that can be 
efficiently used. It means that a time needed to derive such information should be less 
that a time we will win during the maximum clique finding, i.e. we should benefit from 
discovering information.  

We have analysed the Carraghan and Pardalos algorithm and found that it heavily 
employs information about adjacent vertices and uses much less information on 
nonadjacent vertices. Although it looks to be just an opposite formulation of a question 
about vertices connections, we have found that there is a possibility to derive from it 
much more. New algorithms described below are built around the fact that nonadjacent 
vertices cannot be included into the same clique by the clique definition – any clique is 
formed by pairwise adjacent vertices. This property could be expanded from two 
nonadjacent vertices to a set of such vertices, which is called an “independent set” in 
the graph theory, i.e. only one vertex from any independent set can participate in a 
forming maximum clique. We used a vertex colouring algorithm to find such 
independent sets – each colour is nothing more that an “independent set”, and the 
vertex colouring task could provides us with the minimum number of such sets. Of 
course, we cannot use exact algorithms for finding a vertex colouring since this task is 
also NP-complete, but we can use a heuristic one that can provide us with a good 
enough colouring to start finding the maximum clique from. 
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So, generally saying, new algorithms analyse a graph to be solved before running a 
main part, store results of the analyse and use those later to make algorithms’ work 
more efficient. 

3.2 Unweighted Case 
In this chapter we are going to introduce new algorithms, explain those and bring some 
examples for graphs, which vertices have equal weights. Those weights are usually 
ignored or set to be equal to one for simplicity. Therefore such graphs called 
unweighted. 

3.2.1 “VColor-u” – An algorithm based on a vertex colouring 
In this subchapter we introduce an algorithm purely based on the idea of using 
independent sets without any additional speeding techniques. This algorithm mainly is 
used to verify if the idea is really worth to use, although it is also the best algorithm on 
some graph types – see the “Tests and Results” subchapter below. 

3.2.1.1 Description 
Before starting the algorithm we find a vertex-colouring by using any heuristic 
algorithm, for example in a greedy manner. We determine colour classes one by one as 
long as uncoloured vertices exist. The vertices are resorted in the order they are added 
into colour classes. This order affects the algorithm’s performance in finding the 
maximum clique and therefore is very important. 

 
Definition 1: A colour class is a set of vertices, which were coloured by the same 
colour during applying a vertex-colouring algorithm.  
Note: A similar definition has been proposed by West in 2001, who defined the colour 
class as the following: vertices receiving a particular label (colour) for a colour class. 

 
Definition 2: A colour class is called existing on a subgraph Gp if any vertex from this 
colour class belongs to this subgraph Gp. 

 
Definition 3: Degree of a subgraph Gp equals to the number of colour classes existing 
on that subgraph. 

 
Crucial to the understanding of the algorithm is a notation of the depth and pruning 

formula. Basely, at the depth 1 we have all vertices, i.e. G1≡G. We are going to expand 
all vertices of a subgraph so that vertex is deleted from the subgraph after it is 
expanded. Another way is to have a cursor pointing to the vertex under analyses, so 
vertices in the front of that are excluded from the analyses / a subgraph of the current 
depth. Suppose we expand vertex v1. At the depth 2, we consider all vertices adjacent 
to v1 from the previous depth vertices, i.e. belonging to G1. Those vertices form a 
subgraph G2. At the depth 3, we consider all vertices (that are at the depth 2) adjacent 
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to the vertex expanded in depth 2 etc. Let vd1 be the vertex we are currently expanding 
at the depth d. That is: 

 
Let’s say that Gd is a subgraph of G on a depth d that contains the following 
vertices: Vd=(vd1, vd2, …, vdm). The vd1 is the vertex to be expanded. 
Then a subgraph on the depth d+1 is Gd+1 = (Vd+1,E),  
where Vd+1=(vd+1 1, …, vd+1 k): ∀i vd+1 i ∈ Vd  and (vd+1 i , vd1)∈ E. 
 
As soon as a vertex is expanded and a subgraph, which is formed by this expansion, 

is analysed, this vertex is deleted from the depth and the next vertex of the depth 
become active, i.e. will be expanded. 

The pruning formula is the next: If d –1 + Degree(Gd) ≤ CBC, where CBC is a size 
of the current maximum clique then we prune, since the size of the largest possible 
clique (formed by expanding any vertex of Gd) would be less or equal to CBC. If we 
are at depth 1 and this inequality holds then we stop; we have found the maximum 
clique. 

We can prove that this pruning formula can be applied by the following theorem. 
 

Theorem 1: If a degree of a subgraph of G formed by vertices existing on a d-th depth 
and induced by E is smaller or equal to the size of the current maximum clique minus 
(d – 1) then this subgraph cannot form a clique, which is larger than the already found. 
 
Prove: It is clear to see that (d - 1) equals to the number of vertices formed the d-th 
depth subgraph, i.e which where expanded on previous depths. Those d - 1 vertices are 
connected pairways and to each vertex of the subgraph of the d-th depth by the logic of 
branch and bound algorithms. It will be possible to find a larger clique than the already 
found one if and only if this subgraph can contain a clique, which is larger than a size 
of the current maximum clique minus (d-1). If such clique exists then the maximal 
clique of the graph G will be the clique of the subgraph plus d-1 vertices selected on 
previous depths, which are connected to all vertices of the subgraphs by the branch and 
bound algorithms logic and this maximal clique will be larger than an already found, so 
it will be a new maximum one. So, the only statement we need to prove is: the Degree 
function’s value of the subgraph is never smaller than the maximum clique size that 
can be found on the subgraph, because then we can use in the pruning formula the 
degree function to estimate the size of the clique instead of finding it. The degree 
function gives a number of colours (colour classes) by definitions above and each 
colour class is an independent set of vertices existing on the depth. No more than one 
vertex of each colour class can participate in the maximum clique by the independent 
set’s definition. Therefore the number of colours classes existing on the subgraph 
always equals or is bigger than a size of the maximum clique that can exist on the 
subgraph. ■ 

Note, that this degree function can be bigger in case some colour classes are not 
presented in the maximum clique of the subgraph. 

 
A resorting of vertices during the vertex colouring can be used in the Degree 

function calculation to speed-up the algorithm - instead of calculating the degree of a 
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subgraph each time on a depth we will calculate it only once the depth is formed and 
later just adjust this value by the following rule: if the next vertex on the depth to be 
expanded is from the same colour class as the previous one then the degree remains the 
same otherwise the degree should be decreased by 1 (there are no more vertices from 
the previous vertex’ colour class and it is eliminated). 

3.2.1.2 Algorithm 

Algorithm for the maximum clique problem – “VColor-u” 
 

CBC - current best (maximum) clique 
d – depth 
Gd – subgraph of G formed by vertices existing on the d-th depth 

 
Step 0. Heuristic vertex-colouring: Find a vertex colouring and reorder vertices so 
that first vertices in the new order belong to the last found colour class, then vertices of 
the previous to the last colour class and so forth – vertices at the end should belong to 
the first colour class. Note: It is advisable to use a special array to solve order of 
vertices to avoid changing the adjacency matrix during vertices reordering. 
Step 1. Initialization: d = 1. 
Step 2. Check: If the current depth can contain a larger clique than the already found: 

If d –1 + Degree(Gd) ≤ |CBC| then go to the step 5. 
Step 3. Expand vertex: Get the next vertex to expand.  

If all vertices have been expanded or there are no vertices then: 
Check if the current clique is the largest one. If yes then save it. 
Go to the step 5. 

Step 4. The next depth: Form a new depth by selecting vertices that are connected to 
the expanding vertex among remaining vertices on the current depth;  

d = d + 1; 
Go to the step 2. 

Step 5. Step back:  
d = d – 1;  
Delete the expanded vertex from the analysis on this depth; either delete the vertex 
directly or move the cursor forward 
if d = 0, then go to the end, otherwise go to the step 2. 

End: Return the maximum clique. 

3.2.1.3 Examples 
Here we are going to present some examples of the previously described algorithm’s 
work step by step. It should make the algorithm and its logic easier to understand. 

A Moon-Moser graph has to be defined here before we will use it for our examples. 
The original paper of Moon and Moser defines this graph as a graph, vertices of which 
are divided into groups by three vertices and any vertex is connected to any other 
vertex doesn’t belonging to the same group. The number of clique in this graphs is 3n/3, 
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where n is the number of vertices [Moon and Moser 1965]. The more general 
definition says that this is a graph, where vertices are divided into groups, where any 
vertex is connected to all vertices of other groups. 

3.2.1.3.1 Example 1 

3.2.1.3.1.1 Description of the example 
graph 

Consider graph shown in Figure 2. It is easy 
to see that a core of that is the Moon-Moser 
type subgraph containing vertices 1, 2 and 5 
for the first class and vertices 6, 4 and 7 for 
the second class. Vertices 3, 9 and 8 are 
added to make the graph’s structure more 
complex and contain larger cliques that the 
Moon-Moser subgraph produces. 

3.2.1.3.1.2 Algorithm’s steps 

We determine colour classes one by one as 
long as uncoloured vertices exist in a 
greedy manner. This trivial algorithm for 
finding a vertex-colouring gives an 
acceptable result in average. The vertices 
are also resorted in an order they are added into colour classes. So, after the vertex 
colouring we have the next result:  

 
Colour class 1 = {1, 2, 5, 9} 
Colour class 2 = {3, 4, 6, 7} 
Colour class 3 = {8};  
The order of vertices is the following: {8, 7, 6, 4, 3, 9, 5, 2, 1} 
 
Let’s use the following notation in the example: CBC – the current best clique and 

|CBC| is its size. A grey vertex in the table below is a vertex under analysis and 
vertices in front of that are vertices that have been already analysed and cannot 
participate in the forming maximum clique any longer. So instead of deleting vertices 
we will just process them one by one in the example by moving a cursor, which always 
point to the grey vertex. 

 
Steps of the main algorithm’s part (finding the maximum clique) are described in 

the following table. 
 

 
Figure 2. “VColor-u” – Graph of the 

example number 1 
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Table 1. “VColor-u” - Example 1 / Steps of finding the maximum clique 

Depth Subgraph Step’s description 
Depth 1: 8,7,6,4,3,9,5,2,1 |CBC| is 0; Degree = 3, since all colour classes are 

still under analysis. d-1+Degree=1-1+3=3. We 
continue our analyses since 3>|CBC| and go to the 
next depth: 
The grey vertex vdi (v11) to be expanded. 

Depth 2: 7,3,9,5,2 |CBC| is 0; Degree = 2, since colour classes 2 
(vertices 7 and 3) and 1 (vertices 9, 5 and 2) exist.  
d-1+Degree=2-1+2=3. We continue our analyses 
since 3>|CBC| and go to the next depth: 
The grey vertex vdi (v21) to be expanded 

Depth 3: 9,5,2 |CBC| is 0; Degree = 1, since only vertices of the 
first colour classes exist. 
d-1+Degree=3-1+1=3. We continue our analyses 
since 3>|CBC| and go to the next depth: 
The grey vertex vdi (v31) to be expanded.  

Depth 4: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The formed 
clique is {8, 7, 9} and |CBC|=0, so CBC becomes 
{8, 7, 9}, and its size=3. Step back (up). 

Depth 3: 9,5,2 Degree=1 since remaining vertices are 5 and 2. 
All of them belong to the colour class 1. So, the 
number of existing colour classes is 1. 
We prune since d-1+Degree=3-1+1 = 3 ≤ 3 (size 
of CBC).  

Depth 2: 7,3,9,5,2 Degree=2 since remaining vertices (3, 9, 5, 2) 
belong to colour classes 1 and 2. 
We prune since d-1+Degree=2-1+2 = 3 ≤ 3 (size 
of CBC).  

Depth 1: 8,7,6,4,3,9,5,2,1 Degree=2 since remaining vertices belong to 
colour classes 1 and 2. 
We prune since d-1+Degree= 1 - 1 + 2 = 2 < 3 
(size of CBC). The current depth is 1 therefore we 
stop. 

The maximum clique is {8, 7, 9}, size = 3. 

3.2.1.3.1.3 Analysis of this example 

The overall efficiency of the algorithm work on this example graph seems to be very 
high. It needed just 7 steps of the main algorithm to find the maximum clique and it 
was found directly during the first drill-down steps’ sequence. The main reason of such 
efficiency is the Moon-Moser subgraph, which produce parallel structures. Those 
structures are the main successor part of the designed algorithm – instead of counting 
vertices of all parallel structures it gets into account just the largest one.  
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In this case we have found the maximum clique that covers all parallel maximum 
cliques – {8, 7, 9}. Besides, this maximum clique happens to be larger than Moon-
Moser’s subgraph, therefore we directly stepped back to the highest level and stopped 
the algorithm work.  

3.2.1.3.2 Example 2 

3.2.1.3.2.1 Description of the example graph 

Consider the graph shown in Figure 
3. It was shown in the previous 
example that the more parallel 
structures there are, the better it is 
for our algorithm. Besides, the closer 
a size of the maximum clique to the 
number of colours, the faster is the 
algorithm – we discuss this later in 
the “Preliminary analysis” 
subchapter of the “Test and Results” 
chapter. Therefore we tried to 
construct a graph that will be as 
“bad” as possible. Here we used the 
classical “Mycielski’s construction” 
[West 2001] to construct the graph 
that needs 4 colours to be coloured, 
although it is triangle free. 

3.2.1.3.2.2 Algorithm’s steps 

Again we determine colour classes one by one as long as uncoloured vertices exist in a 
greedy manner. The vertices are also resorted in an order they are added into colour 
classes. So the vertex colouring gives as the next result:  

 
Colour class 1 = {1, 3, 6, 8} 
Colour class 2 = {2, 5, 7, 10} 
Colour class 3 = {4, 9};  
Colour class 4 = {11}; 
The order of vertices is the following: {11, 9, 4, 10, 7, 5, 2, 8, 6, 3, 1} 
 
We use the same notation as in the previous example: CBC – the current best clique 

and |CBC| is the size of the current best clique. A grey vertex in the table below is a 
vertex under analysis and vertices in front of that are vertices that have been already 
analysed and cannot participate in the forming maximum clique any longer. So instead 
of deleting vertices we will just process them one by one by moving a cursor forward. 

Steps of the main algorithm’s part (finding the maximum clique) are described in 
the following table. 

 
Figure 3. “VColor-u” – Graph of the example 

number 2 
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Table 2. “VColor-u” - Example 2 / Steps of finding the maximum clique 

Depth Subgraph Step’s description 
Depth 1: 11,9,4,10,7,5,2,8,6,3,1 |CBC| is 0; Degree = 4, since all colour classes 

are still in the analyses. d-1+Degree=1-1+4=4. 
Since 4>|CBC| we continue our analyses and go 
to the next depth: 
The grey vertex vdi (v11) to be expanded. 

Depth 2: 9,10,7,8,6 |CBC| is 0; Degree = 3, since colour classes 3 
(vertex 9), 2 (vertices 10 and 7) and 1 (vertices 8 
and 6) exist. 
d-1+Degree=2-1+3=4. Since 4>|CBC| we 
continue our analyses and go to the next depth: 
The grey vertex vdi (v21) to be expanded 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The 
formed clique is {11, 9} and |CBC| =0, so CBC 
becomes {11, 9}, and its size=2. Step up (to the 
previous depth) 

Depth 2: 9,10,7,8,6 Degree=2 since colour classes 2 (vertices 10 and 
7) and 1 (vertices 8 and 6) exist. So, there exist 2 
colour classes. 
d-1+Degree=2-1+2=3. Since 3>|CBC| we 
continue our analyses and go to the next depth: 
The grey vertex vdi (v22) to be expanded 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The 
formed clique is {11, 10} and |CBC| =2, so CBC 
is not smaller. Step up. 

Depth 2: 9,10,7,8,6 Degree=2 since colour classes 2 (vertex 7) and 1 
(vertices 8 and 6) exist. 
d-1+Degree=2-1+2=3. Since 3>|CBC| we 
continue our analyses and go to the next depth: 
The grey vertex vdi (v23) to be expanded. 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The 
formed clique is {11, 7} and |CBC| =2, so CBC 
is not smaller. Step up. 

Depth 2: 9,10,7,8,6 Degree=1 since remaining vertices (8 and 6) 
belong to the colour class 1. 
We prune since d-1+Degree=2-1+1 = 2 ≤ 2 (size 
of CBC).  

Depth 1: 11,9,4,10,7,5,2,8,6,3,1 Degree=3 since remaining vertices belong to 
colour classes 1, 2 and 3.  
d-1+Degree=1-1+3=3. Since 3>|CBC| we 
continue our analyses and go to the next depth: 
The grey vertex vdi (v12) to be expanded. 
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Depth 2: 5, 3 Degree=2 since colour classes 2 (vertex 5) and 1 
(vertex 3) exist. 
d-1+Degree=2-1+2=3. Since 3>|CBC| we 
continue our analyses and go to the next depth: 
The grey vertex vdi (v21) to be expanded. 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The 
formed clique is {9, 5} and |CBC| =2, so CBC is 
not smaller. Step up. 

Depth 2: 5, 3 Degree=1 since only the first colour class exists 
(vertex 3). 
We prune since d-1+Degree=2-1+1=2≤ 2 (size 
of CBC). 

Depth 1: 11,9,4,10,7,5,2,8,6,3,1 Degree=3 since remaining vertices belong to 
colour classes 1, 2 and 3.  
d-1+Degree=1-1+3=3. Since 3>|CBC| we 
continue our analyses and go to the next depth: 
The grey vertex vdi (v13) to be expanded. 

Depth 2: 10, 5, 8, 3 Degree=2 since colour classes 2 (vertices 10 and 
5) and 1 (vertices 8 and 3) exist. 
d-1+Degree=2-1+2=3. Since 3>|CBC| we 
continue our analyses and go to the next depth: 
The grey vertex vdi (v21) to be expanded. 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The 
formed clique is {4, 10} and |CBC| =2, so CBC 
is not smaller. Step up. 

Depth 2: 10, 5, 8, 3 Degree=2 since colour classes 2 (vertex 5) and 1 
(vertices 8 and 3) exist. 
d-1+Degree=2-1+2=3. Since 3>|CBC| we 
continue our analyses and go to the next depth: 
The grey vertex vdi (v21) to be expanded. 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The 
formed clique is {4, 5} and |CBC| =2, so CBC is 
not smaller. Step up. 

Depth 2: 10, 5, 8, 3 Degree=1 since only the first colour class exists 
(vertices 8 and 3). 
We prune since d-1+Degree=2-1+1=2≤ 2 (size 
of CBC). 

Depth 1: 11,9,4,10,7,5,2,8,6,3,1 Degree=2 since remaining vertices belong to 
colour classes 1 or 2.  
We prune since d-1+Degree= 1 - 1 + 2 = 2 ≤ 2 
(size of CBC). The current depth is 1 therefore 
we stop. 

The maximum clique is {11, 7}, size = 2. 
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3.2.1.3.2.3 Analysis of this example 

The general efficiency of the algorithm this time wasn’t as high as it was for the 
previous example, although the main idea worked here also well on last steps. The 
algorithms had to analyse some parallel structures that seemed to be different, although 
it wasn’t so. It is easy to see that the reason of that is the special graph construction we 
used – to be quite “bad” for resolving by our algorithm.  

Note that the maximum clique was found again during the first sequence of steps as 
in the previous example. Besides, the pruning techniques worked here also and we 
needed just 19 steps to resolve a graph containing 11 vertices. There were still 8 
vertices in the analyses when the algorithm was able to conclude that the maximum 
clique is already found and stop the process. 

We can conclude, basing on all previously described, that even the “bad” 
construction of the graph wasn’t able to eliminate the power of using the introduced 
independent sets technique completely and it still works and shows quite good results. 
Another interesting fact we have seen in this example – vertices that produce a higher 
chromatic number (in compare with the maximum clique size) were analysed during 
first steps. As soon as those vertices were eliminated the algorithm work became very 
efficient and it was able stop the analyses. 

3.2.2  “VColor-BT-u” – An algorithm based on a vertex 
colouring 

In this chapter we introduce another algorithm that is still based on the idea of using 
independent sets. This new algorithm is constructed basing on the Östergård algorithm 
[Östergård 2002]. This algorithm is another modification of the Carraghan and 
Pardalos algorithm [Carraghan and Pardalos 1990a] and contains a very powerful 
backtracking idea that makes this algorithm to be the quickest one at the moment 
[Östergård 2002]. We are going to apply the idea of backtracking search on our 
previous algorithm, but we are going to backtrack on a higher level than Östergård 
algorithm does: by independent sets instead of by individual vertices.  

3.2.2.1 Description 
This algorithm is also based on the Carraghan and Pardalos algorithm [Carraghan and 
Pardalos 1990a] as the previous one and we are going to describe this part of the 
algorithm, but instead will describe all modifications. First of all we introduce a 
“vertices” backtracking technique used by Östergård [Östergård 2002] and then an 
“independent sets” backtracking technique. 

The original Carraghan and Pardalos algorithm considers first of all all cliques that 
contain the first vertex v1 and could contain other graph vertices. Then it considers all 
cliques that contain v2 and could contain all other vertices except v1. Generally saying, 
it considers at the i-th step all cliques that contain vi and could contain vertices {vi+1, 
vi+2, ... ,vn}. This technique is nothing else than a standard branch and bound way of 
drilling a graph for finding the solution.  



 46

The backtracking technique does the graph research in the opposite order, although 
the list of vertices on the i-th step is the same. First of all it considers all cliques that 
could be built using only vn. Then it considers all cliques that contain vn-1 and could 
contain vn, and so forth. The general rule – it considers at the i-th step all cliques that 
contain vi and could contain vertices {vi+1, vi+2, ... ,vn}. So we move from the n-th step 
to the first step decreasing the step number. Initially it looks like a slower technique in 
comparison to the original Carraghan and Pardalos algorithm [Carraghan and Pardalos 
1990a], but makes it possible to introduce a new backtracking pruning technique 
speeding up the algorithm’s work. First of all, note that the backtracking vertices 
selection is used only on the “general” level – as soon as vertices are selected for the i-
th backtracking step, the same branch and bound technique is used. The branch and 
bound algorithm uses the same Carraghan and Pardalos pruning technique and the new 
backtracking pruning technique described below. The algorithm uses to remember the 
maximum clique found for each vertex at the highest level into a special array b. So 
b[i] is the maximum clique for the i-th vertex while searching backward. These 
numbers are used later by the following rule: if we search for a clique of size greater 
than s, then we can prune the search, if we consider vi to become the (j + 1)-th vertex 
and j+ b[i] ≤ s [Östergård 2002]. Besides, we can stop the backtracking iteration and go 
to the next one if a new maximum clique is found since the maximum clique size of a 
subgraph formed by {vi+1, vi+2, ... ,vn} is either equal to the maximum clique size of a 
subgraph formed by {vi+2, vi+3, ... ,vn} (the previous step) or is larger on 1. Please refer 
to the original Östergård article [Östergård 2002] for proves that this technique always 
gives the exact solution. 

Now we are going to introduce the “independent sets” (or colour classes) 
backtracking technique. We do the same as described above, except we operate on the 
“independent sets” level of considering a graph. Let’s say that we have divided, as it is 
described previously in the “VColor-u” algorithm, all vertices by colour classes, i.e. V 
= {Cn, Cn-1, ..., C1}, where Ci is the i-th colour (or we call it the i-th colour class). First 
of all we consider all cliques that could be built only using vertices of the C1, i.e. of the 
first colour class. Then we consider all cliques that could be built using vertices of C1 
and C2, i.e. of the first and second colour classes, and so forth. The general rule – we 
consider at the i-th step all cliques that can contain vertices of {Ci, Ci-1, ..., C1}. Note 
that here we again move from the first step to the n-th since colour classes are in the 
backward order. 

Besides the algorithm uses to remember the maximum clique found for each step on 
the high level into a special array b. So b[i] is the maximum clique for a subgraph 
formed by {Ci, Ci-1, ..., C1} vertices while searching backward. This numbers are used 
later by the following rule: if we search for a clique of size greater than s, then we can 
prune the search if we consider vi to become the (j + 1)-th vertex and it belongs to the 
k-th colour class and j+ b[k] ≤ s. The stopping condition of the backtrack search 
iteration is also remains since the maximum clique size of a subgraph formed by {Ci, 
Ci-1, ..., C1} is either equal to the maximum clique size of a subgraph formed by {Ci-1, 
..., C1} or is larger on 1. It is so because each time we just add a colour class, i.e. an 
independent set in addition to the analysed set of vertices. The new maximum clique 
cannot differ more than on 1 vertex from the maximum clique on the previous iteration 
since all added vertices are pairways nonadjacent and therefore there are no two or 
more vertices which are adjacent and can be used / added to a new maximum clique. 
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Note: It is important again to sort vertices as we have shown it at the start of the 
description: V = {Cn, Cn-1, ..., C1}, i.e. first of all in the new sorted order vertices of the 
n-th colour class should appear, then vertices of the (n-1)-th colour class and so forth. 

The colour classes pruning technique, which where introduced earlier for the 
“VColor-u” algorithm is also used in parallel with the backtracking pruning. 

3.2.2.2 Algorithm 

Algorithm for the maximum clique problem – “VColor-BT-u” 
 

CBC - current best (maximum) clique 
d – depth 
i – index of the currently processed colour class in the backtracking 
b – array of the backtrack search results 
C(vi) – a function that return a colour class to which the vertex vi belongs 
Gd – subgraph of G formed by vertices existing on the depth d 

 
Step 0. Heuristic vertex-colouring: Find a vertex colouring and reorder vertices so 
that first vertices belong to the last found colour class then vertices of the previous to 
last colour class and so forth – vertices at the end should belong to the first colour 
class. Note: It is advisable to use a special array to solve order of vertices to avoid 
changing the adjacency matrix during reordering vertices. 

 
Step 1. Backtracking: For each colour class starting from the first one up to the last, 

i.e. i = i+1: 
Step 1.1. Subgraph building. Form the first depth by selecting all vertices of the 
current colour class under the analysis and other colour classes, whose index is 
smaller than the index of the current colour class.  

i = the index of the current colour class. 
Step 1.2. Run the subgraph research: Go to the step 2 

 
Step 2. Initialization: d = 1. 
Step 3. Check: If the current depth can contain a larger clique than already 
found: 

Step 3.1. If d –1 + Degree(Gd) ≤ |CBC| then go to the step 6. 
Step 3.2. if C(vd 1)>i then If d –1 + b[C(vd 1)] ≤ |CBC| then go to the step 6. 

Step 4. Expand vertex: Get the next vertex to expand. 
If all vertices have been expanded or there are no vertices then: 

Check if the current clique is the largest one. If yes then save it. 
Go to the step 1.3. 

Step 5. The next depth: Form a new depth by selecting all remaining vertices 
that are connected to the expanding vertex from the current depth;  

d = d + 1; 
Go to the step 3. 

Step 6. Step back:  
d = d – 1;  
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Delete the expanded vertex from the analysis on this depth;  
if d = 0, then go to the step 1.3, otherwise go to the step 3. 

 
Step 1.3. Completing iteration: b[i] =CBC, go to the step 1. 

End: Return the maximum clique. 
 
Steps from 2 to 6 can be considered as a subprocedure that the backtracking runs 

iteratively in a cycle for each colour class. 

3.2.2.3 Examples 
In this chapter we are going to demonstrate some examples of the described algorithm 
work. The same graphs will be used as for the previous algorithm. 

3.2.2.3.1 Example 1 

3.2.2.3.1.1 Description of the example graph 

Consider graph shown in Figure 4. Again it is 
a graph that is built using the Moon-Moser 
type subgraph containing vertices 1, 2 and 5 
for the first class and vertices 6, 4 and 7 for 
the second class. Vertices 3, 9 and 8 are used 
to make the graph’s structure more complex 
and contain larger cliques that the Moon-
Moser subgraph produces. 

3.2.2.3.1.2 Algorithm’s steps 

We determine colour classes one by one as 
long as uncoloured vertices exist in a greedy 
manner. Vertices are also resorted in an order 
those are added into colour classes. So, vertex 
colouring gives the following result:  

 
Colour class 1={1, 2, 5, 9} 
Colour class 2={3, 4, 6,7} 
Colour class 3={8};  
The order of vertices is the following: {8, 7, 6, 4, 3, 9, 5, 2, 1} 
 
We use the same notation as in the algorithm’s description above. A grey vertex in 

the table below is a vertex under analysis and vertices in front of that are vertices that 
have been already analysed and cannot participate in the forming maximum clique any 
longer. 

 

 

Figure 4. “VColor-BT-u” – Graph of 
the example number 1 
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Steps of the main algorithm’s part (finding the maximum clique) are described in 
the next table. 

Table 3. “VColor-BT-u” - Example 1 / Steps of finding the maximum clique 

Depth Subgraph Step’s description 
Depth 0: 8,7,6,4,3, 9,5,2,1 To do: Start a backtrack search from the first class 

by selecting vertices of it into the depth 1 and run 
main steps. 
i = 1 

Depth 1: 9,5,2,1 |CBC| is 0; Degree = 1, since only first colour class 
vertices exist.  
d-1+Degree=1-1+1=1. Since 1>|CBC| we can 
continue. 

 
C(v11)=1 since v11 belongs to the colour class 
number 1. The backtracking pruning is skipped 
since C(v11) = i. 

 
Go to the next depth: the grey vertex vdi (v11) to be 
expanded. 

Depth 2: ∅ The depth doesn’t contain any vertices ⇒ Check if 
the formed clique is the largest one: The formed 
clique is {9} and |CBC| =0, so CBC becomes {9}, 
size=1.  
b[1] =1. Go to the next iteration of the backtrack 
search. 

Depth 0: 8, 7,6,4,3,9,5,2,1 To do: Start the next step of the backtrack search by 
selecting into the depth 1 vertices of colour classes 1 
and 2, and run main steps. i = 2 

Depth 1: 7,6,4,3,9,5,2,1 |CBC| is 1; Degree = 2, since existing vertices 
belong to colour classes 1 and 2.  
d-1+Degree=1-1+2=2. Since 2>|CBC| we can 
continue. 

 
C(v11)=2 since v11 belongs to the colour class 
number 2. The backtracking pruning is skipped 
since C(v11) = i. 
 
Go to the next depth: the grey vertex vdi (v11) to be 
expanded. 

Depth 2: 9,5,2,1 |CBC| is 1; Degree = 1, since all vertices belong to 
the colour class number 1.  
d-1+Degree=2-1+1=2. Since 2>|CBC| we can 
continue. 
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C(v21)=1 since v21 belongs to the colour class 
number 1 => We can check the backtrack pruning 
condition: 
d –1 + b[C(v21)] = 2-1+1 = 2 >|CBC| we can 
continue. 

 
Go to the next depth: the grey vertex vdi (v21) to be 
expanded. 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check if 
the formed clique is the largest one: The formed 
clique is {7, 9} and |CBC| =1, so CBC becomes {7, 
9}, size=2.  
b[2] =2. Go to the next iteration of the backtrack 
search. 

Depth 0: 8,7,6,4,3,9,5,2,1 To do: Start the next step of the backtrack search by 
selecting into the depth 1 vertices of colour classes 
1, 2 and 3, and run main steps. i = 3 

Depth 1: 8,7,6,4,3,9,5,2,1 |CBC| is 2; Degree = 3, since vertices belong to 
colour classes 1, 2 and 3.  
d-1+Degree=1-1+3=3. Since 3>|CBC| we can 
continue. 

 
C(v11)=3 since v11 belongs to the colour class 
number 3. The backtracking pruning is skipped 
since C(v11) = i. 

 
Go to the next depth: the grey vertex vdi (v11) to be 
expanded. 

Depth 2: 7,3,9,5,2 |CBC| is 2; Degree = 2, since all vertices belong to 
colour classes 1 and 2.  
d-1+Degree=2-1+2=3. Since 3>|CBC| we can 
continue. 
C(v21)=2 since v21 belongs to the colour class 
number 2 => We can check the backtrack pruning 
condition: 
d –1 + b[C(v21)] = 2-1+2 = 3 >|CBC| we can 
continue. 

 
Go to the next depth: the grey vertex vdi (v21) to be 
expanded. 

Depth 3: 9,5,2 |CBC| is 2; Degree = 1, since all vertices belong to 
the colour class number 1.  
d-1+Degree=3-1+1=3. Since 3>|CBC| we can 
continue. 
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C(v31)=1 since v31 belongs to the colour class 
number 1 => We can check the backtrack pruning 
condition:  
d –1 + b[C(v31)] = 3-1+1 = 3 >|CBC| we can 
continue. 

 
Go to the next depth: the grey vertex vdi (v31) to be 
expanded. 

Depth 4: ∅ The depth doesn’t contain any vertices ⇒ Check if 
the formed clique is the largest one: The formed 
clique is {8, 7, 9} and |CBC| =2, so CBC becomes 
{8, 7, 9}, size=3.  
b[3] =3. Go to the next iteration of the backtrack 
search. 

Depth 0: 8,7,6,4,3,9,5,2,1 Since all colour classes are analysed the algorithm 
stops. 

The maximum clique is {8, 7, 9}, size = 3. 

3.2.2.3.1.3 Analysis of this example 

The algorithm needed just 17 steps to find the maximum clique from the graph of 8 
vertices. This result is very good, since the maximum clique finding problem is NP-
hard and a lot of algorithms just do an exhaustive search or need a sufficient number of 
steps to find a solution. So, the improvement is huge from this point of view. We 
should mark that 17 steps is more than 7 steps of the “VColor-u” algorithm for the 
same graph. It happens as this graph is not so “good” for applying with this type of 
algorithm – as you have probably marked the backtracking pruning formula never 
worked in this example. At the same time it is possible to learn a lot from this example 
as well. It demonstrated to us a power of using: 

 
1. The backtracking with independent sets – using of backtracking with 

independent sets has a set of advantages. First of all we do less iterations since 
select all vertices of a class. At the same moment the number of steps inside 
each iteration does not increase as colour class’ vertices are “parallel”, i.e. 
cannot be included into the same maximum clique and have equal b[i] value, 
since they are coloured into the same colour. 

 
2. The stopping condition of the backtracking iteration – We have skipped a lot 

of steps using a rule that if we have found a new maximum clique then we can 
go directly into the next backtracking iteration, since the current iteration’s 
subgraph cannot produce any larger clique. This stop condition is a very 
important technique in addition to the backtracking pruning rule. 
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3.2.2.3.2 Example 2 

Although we have analysed this 
graph for the “VColor-u” algorithm 
previously, we are not going to do it 
for this algorithm. A reason of that is 
simple - our independent sets based 
pruning technique dominates over 
the backtracking pruning technique 
on it and an example on this graph 
will be practically identical to the 
previous example. Everyone, who is 
interested to see this, can easily 
apply step by step our algorithm to 
this graph and see that. Our aim is to 
demonstrate cases and explain using 
of each important part of our algorithm, therefore we will go directly to the next 
example. 

3.2.2.3.3 Example 3 

3.2.2.3.3.1 Description of the example 
graph 

Consider graph shown in Figure 6. Here 
we have constructed a graph to 
demonstrate the backtracking pruning 
technique work. As it is possible to see, 
on that graph we have started from the 
“Mycielski’s construction” [West 2001] 
also to construct the graph that needs 3 
colours to be coloured although is triangle 
free – vertices 1, 2, 3, 4 and 5. At the next 
construction step we have duplicated this 
graph’s construction by adding vertices 6, 
7 and 8 and using vertices 2 and 3. Then 
we added a vertex 9 to produce a triangle 
with vertices 3 and 7. Finally we added a vertex 10 that should produce one more 
colour if we will use the greedy colouring, but will not produce any larger cliques than 
already existing.  
 

 
Figure 5. “VColor-BT-u” – Graph of the example 

number 2 

 
Figure 6. “VColor-BT-u” – Graph of the 

example number 3 
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Figure 7. “VColor-BT-u” – Graph of the 

example number 3 / step 1 
Figure 8. “VColor-BT-u” – Graph of the 

example number 3 / step 2 

                      
Figure 9. “VColor-BT-u” – Graph of the 

example number 3 / step 3 
Figure 10. “VColor-BT-u” – Graph of the 

example number 3 / step 4 
 
We made an assumption that only greedy colouring can be used to make the 

example smaller (less vertices), although we could construct a similar case using 
“Mycielski’s construction” where any re-colouring will not reduce the number of 
colours produced by other colouring techniques, but the backtracking technique will 
still work and save us from doing a lot of unnecessary steps. We will discuss this under 
the “Analysis” section of that example. 

3.2.2.3.3.2 Algorithm’s steps 

Again we determine colour classes one by one as long as uncoloured vertices exist in a 
greedy manner. Vertices are also resorted in an order they are added into colour 
classes. So, vertex colouring gives the following result:  

 
Colour class 1={1, 3, 6} 
Colour class 2={2, 4, 7} 
Colour class 3={5, 8};  
Colour class 4={9};  
Colour class 5={10};  
The order of vertices is the following {10, 9, 8, 5, 7, 4, 2, 6, 3, 1} 
 
The same notation is used as in the algorithm’s description above. A grey vertex in 

the table below is a vertex under analysis and vertices in front of that are vertices that 
have been already analysed and cannot participate in the forming maximum clique any 
longer. 



 54

The steps of the main algorithm’s part (finding the maximum clique) are described 
in the next table. 

Table 4. “VColor-BT-u” - Example 3 / Steps of finding the maximum clique 

Depth Subgraph Step’s description 
Depth 0: 10,9,8,5,7,4,2,6,3,1 To do: Start a backtrack search from the first class 

by selecting vertices of it into the depth 1 and run 
main steps. 
i =1 

Depth 1: 6,3,1 |CBC| is 0; Degree = 1, since only the first colour 
class vertices exist.  
d-1+Degree=1-1+1=1. Since 1>|CBC| we can 
continue. 
 
C(v11)=1 since v11 belongs to the colour class 
number 1. The backtracking pruning is skipped 
since C(v11)=i. 
 
Go to the next depth: the grey vertex vdi (v11) to be 
expanded. 

Depth 2: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The formed 
clique is {6} and |CBC|=0, so CBC becomes {6}, 
size=1.  
b[1] =1. Go to the next iteration of the backtrack 
search. 

Depth 0: 10,9,8,5,7,4,2,6,3,1 To do: Start the next step of the backtrack search 
by selecting into the depth 1 vertices of colour 
classes 1 and 2, and run main steps. i = 2 

Depth 1: 7,4,2,6,3,1 |CBC| is 1; Degree = 2, since vertices belong to 
colour classes 1 and 2.  
d-1+Degree=1-1+2=2. Since 2>|CBC| we can 
continue. 
 
C(v11)=2 since v11 belongs to the colour class 
number 2. The backtracking pruning is skipped 
since C(v11) = i. 
 
Go to the next depth: the grey vertex vdi (v11) to be 
expanded. 

Depth 2: 6 |CBC| is 1; Degree = 1, since all vertices belong to 
the colour class number 1.  
d-1+Degree=2-1+1=2. Since 2>|CBC| we can 
continue. 
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C(v21)=1 since v21 belongs to the colour class 
number 1 => We can check the backtrack pruning 
condition:  
d –1 + b[C(v21)] = 2-1+1 = 2 >|CBC| we can 
continue. 
 
Go to the next depth: the grey vertex vdi (v21) to be 
expanded. 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The formed 
clique is {7, 6} and |CBC|=1, so CBC becomes  
{7, 6}, size=2.  
b[2] =2. Go to the next iteration of the backtrack 
search. 

Depth 0: 10,9,8,5,7,4,2,6,3,1 To do: Start the next step of the backtrack search 
by selecting into the depth 1 vertices of colour 
classes 1, 2 and 3, and run main steps. i = 3 

Depth 1: 8,5,7,4,2,6,3,1 |CBC| is 2; Degree = 3, since vertices belong to 
colour classes 1, 2 and 3.  
d-1+Degree=1-1+3=3. Since 3>|CBC| we can 
continue. 
 
C(v11)=3 since v11 belongs to the colour class 
number 3. The backtracking pruning is skipped 
since C(v11) = i. 
 
Go to the next depth: the grey vertex vdi (v11) to be 
expanded. 

Depth 2: 7,3 |CBC| is 2; Degree = 2, since vertices belong to 
colour classes 1 and 2.  
d-1+Degree=2-1+2=3. Since 3>|CBC| we can 
continue. 
 
C(v21)=2 since v21 belongs to the colour class 
number 2 => We can check the backtrack pruning 
condition:  
d –1 + b[C(v21)] = 2-1+2 = 3 >|CBC| we can 
continue. 
 
Go to the next depth: the grey vertex vdi (v21) to be 
expanded. 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The formed 
clique is {8, 7} and |CBC|=2, so CBC is not 
smaller.  
Go up. 
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Depth 2: 7,3 |CBC| is 2; Degree = 1, since remaining vertex 3 
belongs to the colour class 1.  
We prune since d-1+Degree=2-1+1=2 ≤ 2 (size of 
CBC). 
Go up. 

Depth 1: 8,5,7,4,2,6,3,1 |CBC| is 2; Degree = 3, since vertices belong to 
colour classes 1, 2 and 3.  
d-1+Degree=1-1+3=3. Since 3>|CBC| we can 
continue. 
 
C(v12)=3 since v12 belongs to the colour class 
number 3. The backtracking pruning is skipped 
since C(v12) = i. 
 
Go to the next depth: the grey vertex vdi (v12) to be 
expanded. 

Depth 2: 4,3 |CBC| is 2; Degree = 2, since vertices belong to 
colour classes 1, and 2.  
d-1+Degree=2-1+2=3. Since 3>|CBC| we can 
continue. 
 
C(v21)=2 since v21 belongs to the colour class 
number 2 => We can check the backtrack pruning 
condition:  
d –1 + b[C(v21)] = 2-1+2 = 3 >|CBC| we can 
continue. 
Go to the next depth: the grey vertex vdi (v21) to be 
expanded. 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The formed 
clique is {5, 4} and |CBC| =2, so CBC is not 
smaller. Step up. 

Depth 2: 4,3 |CBC| is 2; Degree = 1, since remaining vertex 3 
belongs to the colour class 1.  
We prune since d-1+Degree=2-1+1=2 ≤ 2 (size of 
CBC). 
Go up. 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The formed 
clique is {4, 5} and |CBC| =2, so CBC is not 
smaller. Step up. 

Depth 1: 8,5,7,4,2,6,3,1 |CBC| is 2; Degree = 2, since vertices belong to 
colour classes 1 and 2.  
d-1+Degree=1-1+2=2. Since 2≤ 2 (size of CBC). 
Since d-1=0, then b[3]=2, go to the next iteration 
of the backtrack search. 



 57

Depth 0: 10, 9,8,5,7,4,2,6,3,1 To do: Start the next step of the backtrack search 
by selecting into the depth 1 vertices of colour 
classes 1, 2, 3 and 4, and run main steps. i = 4 

Depth 1: 9,8,5,7,4,2,6,3,1 |CBC| is 2; Degree = 4, since vertices belong to 
colour classes 1, 2, 3 and 4.  
d-1+Degree=1-1+4=4. Since 4>|CBC| we can 
continue. 
 
C(v11)=4 since v11 belongs to the colour class 
number 4. The backtracking pruning is skipped 
since C(v11) = i. 
 
Go to the next depth: the grey vertex vdi (v11) to be 
expanded. 

Depth 2: 8,7,3 |CBC| is 2; Degree = 3, since vertices belong to 
colour classes 1, 2 and 3.  
d-1+Degree=2-1+3=4. Since 4>|CBC| we can 
continue. 
 
C(v21)=3 since v21 belongs to the colour class 
number 3 => We can check the backtrack pruning 
condition:  
d –1 + b[C(v21)] = 2-1+2 = 3 >|CBC| we can 
continue. 
 
Go to the next depth: the grey vertex vdi (v21) to be 
expanded. 

Depth 3: 7, 3 |CBC| is 2; Degree = 2, since vertices belong to 
colour classes 1, and 2.  
d-1+Degree=2-1+2=3. Since 3>|CBC| we can 
continue. 
 
C(v31)=2 since v31 belongs to the colour class 
number 2 => We can check the backtrack pruning 
condition:  
d –1 + b[C(v31)] = 2-1+2 = 3 >|CBC| we can 
continue. 
 
Go to the next depth: the grey vertex vdi (v31) to be 
expanded. 

Depth 4: ∅ The depth doesn’t contain any vertices ⇒ Check 
if the formed clique is the largest one: The formed 
clique is {9, 8, 7} and |CBC|=2, so CBC becomes 
{9, 8, 7}, size=3.  
b[4]=2. Go to the next iteration of the backtrack 
search. 
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Depth 0: 10,9,8,5,7,4,2,6,3,1 To do: Start the next step of the backtrack search 
by selecting into the depth 1 vertices of colour 
classes 1, 2, 3, 4 and 5, and run main steps. 
i = 5 

Depth 1: 10,9,8,5,7,4,2,6,3,1 |CBC| is 3; Degree = 5, since vertices belong to all 
colour classes.  
d–1+Degree=1-1+5=5. Since 5>|CBC| we can 
continue. 
 
C(v11)=5 since v11 belongs to the colour class 
number 5. The backtracking pruning is skipped 
since C(v11) = i. 
 
Go to the next depth: the grey vertex vdi (v11) to be 
expanded. 

Depth 2: 9,5,4,3 |CBC| is 3; Degree = 4, since vertices belong to 
colour classes 1, 2, 3 and 4.  
d–1+Degree=2-1+4=5. Since 5>|CBC| we can 
continue. 
 
C(v21)=4 since v21 belongs to the colour class 
number 4 => We can check the backtrack pruning 
condition:  
d–1 + b[C(v21)] = 2-1+3 = 4 >|CBC| we can 
continue. 
 

Go to the next depth: the grey vertex vdi (v21) to be 
expanded. 

Depth 3: 3 |CBC| is 3; Degree = 1, since vertex belongs to the 
colour class 1.  
 
d–1+Degree=3-1+1=3. Since 3≤|CBC| we prune.  
Go up. 

Depth 2: 9,5,4,3 |CBC| is 3; Degree = 3, since vertices belong to 
colour classes 1, 2 and 3.  
d–1+Degree=2-1+3=4. Since 4>|CBC| we can 
continue. 
 
C(v22)=3 since v22 belongs to the colour class 
number 3 => We can check the backtrack pruning 
condition:  
d–1 + b[C(v22)] = 2-1+2 = 3 ≤|CBC| we prune. Go 
up. 

Depth 1: 10,9,8,5,7,4,2,6,3,1 |CBC| is 3; Degree = 4, since vertices belong to all 
colour classes except the 5-th colour class.  
d–1+Degree=1-1+4=4. Since 4>|CBC| we can 
continue. 
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C(v12)=4 since v12 belongs to the colour class 
number 4 => We can check the backtrack pruning 
condition:  
d–1 + b[C(v12)] = 1-1+3 = 3 ≤|CBC| we prune.  
Since d-1=0: b[5] =3 (|CBC|). Go to the next 
iteration of the backtrack search. 

Depth 0: 10,9,8,5,7,4,2,6,3,1 Since all colour classes are analysed the algorithm 
stops. 

The maximum clique is {9, 8, 7}, size = 3. 

3.2.2.3.3.3 Analysis of this example 

This example requires 30 main steps of the algorithm to find the maximum clique, 
which is also quite a good result with 10 vertices. The backtracking pruning technique 
worked at last steps. Potential sizes of subgraphs’ maximum cliques, which are 
calculated by both pruning techniques, are highlighted at last steps by bold. You can 
see that the backtracking estimation is more accurate than the direct estimation by 
independent sets and it prevents the algorithm to continue searching on those 
subgraphs and allows stepping out. 

So, the backtracking pruning technique is not an artificial technique that is always 
dominated by the independent sets pruning technique, but rather is another pruning 
way. Those techniques have to be combined in the algorithm and this produced the 
truly effective algorithm. 

Let’s now examine why the backtracking pruning estimation is more accurate than 
the independent sets one and what are those graph structures on which it occurs. As 
you probably remember we made an assumption in this example’s graph construction 
that we have to use the greedy colouring to produce this situation. This assumption 
allowed us to receive the following distribution of vertices among colour classes: 

Table 5. Values in the b array - Maximum clique sizes for each colour class of a subgraph 
formed by vertices belonging to this and previous colour classes 

b b[C5] b[C4] b[C3] b[C2] b[C1] 
V {C5,C4,C3,C2,C1} {C4,C3,C2,C1} {C3,C2,C1} {C2,C1} {C1} 
Value of b[Ci] 3 3 2 2 1 

 
As you can see, starting from b[C3] a number of colour classes is bigger than a size 

of the maximum clique formed by those colour classes. Now, each time the algorithm 
has to analyse any subgraph formed by {C3,C2,C1} vertices on depths 1 or 0, having 
already found the maximum clique of size 3, it will stop and go back. It happens since 
the algorithm already has information that subgraphs formed by {C3,C2,C1} cannot 
produce a larger clique than a clique having only two vertices (in the b array) - the 
current forming clique on those depths contains 1 or 0 vertices, so in the sum with 2 it 
is less that the already found clique size - 3. 

So, in the previous case the size of the b array value was less than a number of 
colour classes (independent sets) and the backtracking pruning worked (instead of the 
independent sets pruning) when those numbers difference was more than a size of the 
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currently forming clique. The next steps construct one example of a graph that is hard 
to solve by using only independent sets in compare to using the backtracking as well: 

 
1. Build a triangle free graph that needs a lot of colours (the more colours it needs 

the more complex it will be to solve by using independent sets and even more 
complex to solve without those); 

2. Continue construction by introducing a triangle into this graph; 
3. Continue by using the same principles as were used on the first step – 

introduce more vertices and colours, but keep the graph free from the 
maximum clique of size 4 (don’t increase the maximum clique size). 

 
An algorithm without the backtracking will have to do a lot of steps trying to 

prove that the maximum clique is found (having found the maximum clique) as 
long as vertices that were introduced during the first step of the construction 
process remain. The algorithm with backtracking will stop immediately basing on 
b values. 

 
Note, that you cannot make this graph easily solvable by independent sets by 

re-colouring, since there is no colouring better than that received by the greedy 
algorithm.  

3.2.3 Notes on the programming technique 
An algorithm work time for NP complete tasks greatly depends on the programming 
techniques. All small mistakes or improper programming that might remain unmarked 
in a standard, usual programming, become very time consuming in the combinatorial 
tasks. All time leaks or unnecessary operations are executed again and again million 
times and can dramatically decrease algorithms performance. Therefore we introduce 
this subchapter containing some notes and recommendations on how to avoid improper 
programming of the presented algorithms. 

3.2.3.1 Calculating of a degree and recalculations 
The new algorithms’ pruning technique is based on calculating the number of 
remaining colour classes (independent sets) instead of just considering the number of 
remaining vertices. This process is done “combinatorically”, i.e. for each analysed 
subgraph. So it is especially important to program this part correctly to avoid a 
sufficient decrease of algorithms speed. The number of colour classes is called a 
“degree” in presented algorithms. 

• Degree recalculation: The resorting of vertices during vertex colouring can be 
used. We know that all vertices are grouped by colour classes and colour 
classes are ordered one by one. Therefore the number of colour classes should 
be calculated only once on each depth – the first time the algorithm enters into 
this depth, instead of calculating it for each subgraph. Later, as number of 
remaining vertices decrease, the algorithm should only adjust this number of 
remaining colour classes (the degree function value) by the following rule: if 



 61

the next vertex on this depth to be expanded belongs to the same colour class 
as the previous one then degree remains the same, otherwise it should be 
decreased on 1 (there are no more vertices from the previous vertex colour 
class, so this colour class should be eliminated from the number of colour 
classes). 

• Degree calculation: The resorting of vertices can be used here again. The 
easiest way to calculate a degree (in an ordered set of vertices) is just to count 
the number of times two neighbour vertices belong to different colour classes. 
This method also does not require any sufficient memory use. 

3.2.3.2 Handling vertices and their sequence 

3.2.3.2.1 Vertex colouring vertices sequence 

It is advisable to use a special array to save/fix the order of vertices due re-colouring as 
well as for the vertices selection to each depth. The vertex re-colouring requires 
changing the sequence of vertices. Physical swapping of vertices’ columns in an 
adjacency matrix has obvious minuses: 

• It is very intensive process that might require a lot of time; 
• Sometimes the adjacency matrix is passed by a reference and the meta-

algorithm calling the algorithm finding the maximum clique could expect this 
matrix to remain unchanged. 

Therefore the new sequence can be captured using an additional array where 
vertices numbers will be stored in a new sequence – in our case in the vertex re-
colouring sequence as it is discussed above in algorithms’ descriptions. 

3.2.3.2.2 Remaining vertices 

It is advisable to move through existing vertices on a depth instead of direct vertices 
elimination from the depth. In case of using an array for storing vertices’ numbers 
remaining on the depth, the physical elimination will require shifting all those 
numbers. The number of required steps equals the number of remaining vertices. These 
steps again are done in the combinatorial search and therefore could mean a sufficient 
time loss. The moving through the array of existing vertices just needs to establish a 
cursor to point to a current vertex under analysis. The moving can be done just in one 
step, that is to re-point the cursor to the next vertex, and requires just one more 
memory cell on each depth to store the current position. Remaining vertices here will 
be all vertices starting from a vertex the cursor points to. Therefore this method of 
walking through the vertices array looks to be an acceptable technique to apply in 
described algorithms. This method is used in all examples of our work. 

3.3 Weighted Case 
In this chapter we are going to introduce a new algorithm, explain it and bring an 
example for the graphs case, where vertices have different weights. Those weights can 
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be of any value as long as we can compare these values and calculate the difference 
between them. 

3.3.1  “VColor-BT-w” – An algorithm based on a vertex 
colouring 

3.3.1.1 Description 
The previously described algorithm called “VColor-u” is the base for the maximum-
weight algorithm with the following changes. We cannot any longer determine values 
of the function Degree as a number of existing colour classes on a subgraph since 
vertices have different weights and a colour class’ maximum weight can differ from 1. 
Therefore a degree of a subgraph will be calculated as a sum of maximum weights of 
each colour class existing on this subgraph: for each existing class we have to find a 
vertex of the maximum-weight and then sum up weights of those vertices. 

The order of vertices here becomes even more important. Vertices should be 
resorted first of all by colour classes and then by weights inside each colour class. So, a 
vertex of the maximum weight in any colour class always will be the last inside this 
colour class. Therefore a degree of a subgraph equals the sum of the last vertex weights 
of each colour class existing on the subgraph independently of which vertices of a 
colour class exist on this subgraph. Moreover, instead of calculating a degree of a 
subgraph each time we will calculate it only first time on a depth and later only adjust 
by the following rule: if the next vertex on this depth to be expanded is from the same 
colour class as the previous one, then degree is decreased on a weight of the previous 
vertex and is increased on the weight of the current vertex, otherwise it should be 
decreased on a weight of the previous vertex (there is no more vertices from the 
previous vertex’ colour class and the previous vertex weight was the largest in that 
colour class by resorting and therefore was used to calculate the degree). 

Besides one more adjustment to the base algorithm will be done. We will use ideas 
of a backtrack search described by Östergård [Östergård 2001]. In the algorithm values 
of a function c(i) is calculated (i is a vertex number) which denotes the weight of the 
maximum-weight clique in the subgraph induced by the vertices {vi, vi+1,…,vn}. 
Obviously c(n) = weight of vn and с(1) is the weight of the maximum-weight clique. 
For each vertex starting from the last one and up to the first one a backtrack search is 
carried out to find c(i). Those values are used to prune the search of the maximum-
weight clique. As we search for a clique with a weight greater than W, if the total 
weight of the forming current clique vertices is W′ and we consider vi to be the next 
expanded vertex, then we can prune the search if W′ + c(i)≤W. Östergård has also 
advised using a vertex reordering by a vertex-colouring’s colour classes [Östergård 
2001, Östergård 2002], therefore the ordering for the first pruning strategy will not 
slow down this backtrack search. 

Other steps of the algorithm remain unchanged. 
Note: It is advisable to use a special array to solve the order of vertices to avoid 

changing adjacency matrix during reordering vertices. 
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3.3.1.2 Algorithm  
 

Algorithm for the maximum – weight clique problem 
 

N – number of vertices in the graph 
W – weight of the current best (maximum-weight) clique 
d – depth 
Gd – subgraph of G formed by vertices existing on depth d 
W(d) – weight of all vertices in the forming clique 
w(i) – weight of vertex i 
c – array of the backtrack search results 

 
Step 0. Heuristic vertex-colouring: Find a vertex colouring, reorder vertices and 
apply new vertices indexes (renumber vertices from 1 to N for using in the backtrack 
search). 

 
Step 1. Backtrack search runner:  

For n = N downto 1 
Go to the step 2 
c(n) = W 

Next 
Go to the End 
 

Step 2. Initialization: Form the depth 1 by selecting all vertices with an index less 
than n and connected to the vertex n. d=1. W(1)= w(n) 
Step 3. Check: If the current depth can contain a larger clique than already found: 

If W(d) + Degree(Gd) ≤ W then go to the step 7. 
Step 4. Expand vertex: Get the next vertex to expand. 

If all vertices have been expanded or there are no vertices then: 
Check if the current clique is the largest one. If yes then save it. 
Go to the step 7. 

Step 5. Check: If the current level can contain a larger clique than already found: 
If W(d) + c(expanding vertex index) ≤ W then go to step 7. 

Step 6. The next level: Form a new depth by selecting all remaining vertices that are 
connected to the expanding vertex from the current depth;  

W(d+1)=W(d) + w(expanding vertex index) 
d = d + 1; 
Go to the step 3. 

Step 7. Step back:  
d = d – 1;  
if d = 0, then return to the step 1 
Delete the expanded vertex from the analysis on this depth;   
Go to the step 3. 

 
End:    Return the maximum-weight clique. 
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3.3.1.3 Example 
We will demonstrate here two examples. The first one will demonstrate a technique of 
pruning by colour classes in weighted graphs without backtracking. The second 
example will include both pruning strategies and therefore will follow the described 
algorithm. 

3.3.1.3.1 Example 1: Pruning technique by colour classes 

3.3.1.3.1.1 Description of the example graph 

Consider the graph shown in Figure 11. and 
vertices’ weights that are shown in the Table 6. 

Table 6. „VColor-BT-w“ – Example 1 / vertices’ 
weights 

Vertex Weight 
8, 7, 4   1 
4, 3, 9, 5   3 
2, 1   4 
6 10 

 
Again it is a graph used for our examples 

before, which is built using the Moon-Moser 
type subgraph containing vertices 1, 2 and 5 
for the first class and vertices 6, 4 and 7 for the 
second class plus vertices 3, 9 and 8, which are 
used to make the graph’s structure a bit more 
complex and contain larger cliques that the Moon-Moser subgraph produces. 

3.3.1.3.1.2 Algorithm’s steps 

The first step is to determine colour classes one by one as long as uncoloured vertices 
exist in a greedy manner. Unlike the unweighted case, here vertices are sorted by 
weights inside each colour class in addition to sorting by colour classes. So, vertex 
colouring gives as the next result:  

 
Colour 1 = {5, 9, 1, 2} 
Colour 2 = {7, 4, 3, 6} 
Colour 3 = {8}; 
 

We define a sequence by including the first colour class into the end, then the 
second colour class in front of it, and so forth. Besides, vertices in colour classes are 
listed from the biggest (by weight) up to the smallest (by weight). 

Sequence of vertices: {8, 6, 3, 4, 7, 2, 1, 9, 5} 

 
Figure 11. “VColor-BT-w” – Graph of 

the colour classes pruning example 
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Let’s use the following notation in the example: W – a weight of the current best 
weighted clique, Wi is a weight accumulated on previous depths up to the i-th (incl.), d 
is a depth number, c is an array of the backtrack search results. A grey vertex in the 
table below is a vertex under analysis and vertices in front of that are vertices that have 
been already analysed and cannot participate in the forming maximum clique any 
longer. 

 
Let’s say that all vertices exist on a depth one and we start the algorithm without 

any additional information. 

Table 7. „VColor-BT-w“ - Example 1 / Steps of finding the maximum clique without 
backtracking 

Depth Subgraph Step’s description 
1: 8,6,3,4,7,2,1,9,5 Degree=1+10+4=15>W(0) 

The grey vertex vdi (v11) to be expanded 
W1=1 (weight of the vertex 8) 

2: 3,7,2,9,5 Degree=3+4=7      +1(W1)> W(0) 
The grey vertex vdi (v21) to be expanded 
W2=1(W1)+3(weight of the vertex 3) = 
4(accumulated) 

3: 2,5 Degree=4+4(W2)> W(0) 
The grey vertex vdi (v31) to be expanded 
W3=4+4=8 

4: Ø CBC=W3=8 ({8,3,2}) 
3: 2, 5 Degree=3         +4(W2)< W(8).  

Go up on the previous depth 
2: 3,7,2,9,5 Degree=1+4=5         +1(W1)< W(8).  

Go up on the previous depth 
1: 8,6,3,4,7,2,1,9,5 Degree=10+4=14     +0(W0)> W(8).  

Go further. W1=10 (weight of the vertex 6) 
2: 2,1,9,5 Degree=4 +10(W1)> W(8) 

The grey vertex vdi (v21) to be expanded 
W2=10+4=14 

3: Ø W=W2=14 ({6,2}) 
2: 2,1,9,5 Degree=4 +10(W1)≤ W(14).  

Go up on the previous depth. 
1: 8,6,3,4,7,2,1,9,5 Degree=3+4=7        +0(W0)< W(14).  

Go up on the previous depth. Since d=1 (is the 
first depth) then goto End 

The maximum weighted clique is {6,2}, and its weight is 14. 
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3.3.1.3.2 Example 2: Full example 

This second example demonstrates how the previously described algorithm works. In 
other words, here both pruning techniques are included. 

3.3.1.3.2.1 Description of the example graph 

Consider the graph shown in Figure 12 and 
vertices’ weights that are shown in the Table 8.  

Table 8. „VColor-BT-w“ – Example 2 / Vertices’ 
weights 

Vertex Weight (w) 
2, 6   1 
7   2 
1   7 
3, 5  10 
4  11 

 
This is a graph constructed to have three 

colours, which is a minimum for the “VColor-BT-w” algorithm to demonstrate the 
backtracking technique. 

3.3.1.3.2.2 Algorithm’s steps 

The first step is to determine colour classes one by one as long as uncoloured vertices 
exist in a greedy manner. Unlike the unweighted case, here vertices are sorted by 
weights inside each colour class in addition to sorting by colour classes. So, vertex 
colouring gives as the next result:  
 
Colour 1 = {2, 1, 3} 
Colour 2 = {6, 5, 4} 
Colour 3 = {7};  
 

We define a sequence by including the first colour class into the end, then the 
second colour class in front of it, and so forth. Besides vertices in colour classes are 
listed from the biggest (by weight) up to the smallest (by weight). 
 

Sequence of vertices: {7, 4, 5, 6, 3, 1, 2} 
 

Let’s use the following notation in the example: W – a weight of the current best 
weighted clique, Wi is a weight accumulated on previous depths up to the i-th (incl), d 
is a depth number, c is an array of the backtrack search results. A grey vertex in the 
table below is a vertex under analysis and vertices in front of that are vertices that have 
been already analysed and cannot participate in the forming maximum clique any 
longer. 

 

Figure 12. “VColor-BT-w” – Graph of 
the full example (example 2) 
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Table 9. „VColor-BT-w“ - Example 2 / Steps of finding the maximum clique 

Depth Subgraph Step’s description 
0: 7, 4, 5, 6, 3, 1, 2 To do: Start a backtrack search from the last 

vertex (which is grey) by selecting into the 
depth 1 all vertices that are adjacent to it among 
vertices after that. 

1: Ø W1 = 1(weight of the vertex 2);   d=1. 
Check: W1 + Degree = 1+0=1> W(0) go further 
No vertices => Check if maximum: W1 > W => 
save new record: W=1, max weighted 
clique={2}. 
d=d-1 => d=0 => c(vertex 2)=W=1; 
Go to the next backtracking iteration. 

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the 
previous vertex (which is grey) by selecting into 
the depth 1 all vertices that are adjacent to it 
among vertices after that. 

1: Ø W1 = 7(weight of vertex 1);   d=1. 
Check: W1 + Degree = 7+0=7> W(1) go further 
No vertices => Check if maximum: W1 > W => 
save new record: W=7, max weighted 
clique={1}. 
d=d-1 => d=0 => c(vertex 1)=W=7; 
Go to the next backtracking iteration. 

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the 
previous vertex (which is grey) by selecting into 
the depth 1 all vertices that are adjacent to it 
among vertices after that. 

1: Ø W1 = 10(weight of vertex 3);   d=1. 
Check: W1 + Degree = 10+0=10> W(7) go 
further 
No vertices => Check if maximum: W1 > W => 
save new record: W=10, max weighted 
clique={3}. 
d=d-1 => d=0 => c(vertex 3)=W=10; 
Go to the next backtracking iteration. 

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the 
previous vertex (which is grey) by selecting into 
the depth 1 all vertices that are adjacent to it 
among vertices after that. 

1: 3, 2 W1 = 1(weight of vertex 6);   d=1. 
Degree: all vertices belong to the same colour 
class so let’s use the most left vertex’s weight 
Degree = 10 (weight of vertex 3) 
Check: W1 + Degree = 1+10=11 > W(7) go 
further. 
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The next vertex to expand is the vertex 3 
Check: W1+c(vertex 3)=1+10=11> W(7) go 
further 
W2= W1+w(vertex 3)=1+10=11; d=d+1=2 

2: Ø Check: W2 + Degree = 11+0=11 > W(7) go 
further 
No vertices => Check if maximum: 
W2(11)>W(7) => save new record: W=11, max 
weighted clique={6,3}. 
d=d-1 => d=1 => go up. 

1: 3, 2 Degree: all remaining vertices belong to the 
same colour class, so let’s use the most left 
remaining vertex’s Degree = 1 (weight of the 
vertex 2). 
Check: W1 + Degree = 1+1=2 ≤ W(11) go back 
d=d-1 => d=0 => c(vertex 6)=W=11; 
Go to the next backtracking iteration. 

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the 
previous vertex (which is grey) by selecting into 
the depth 1 all vertices that are adjacent to it 
among vertices after that. 

1: 2 W1 = 10(weight of vertex 5);   d=1. 
Degree: all vertices belong to the same colour 
class, so let’s use the most left vertex’s weight 
Degree = 1 (weight of vertex 2) 
Check: W1 + Degree = 10+1=11 ≤ W(11) go 
back 
d=d-1 => d=0 => c(vertex 5)=W=11; 
Go to the next backtracking iteration. 

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the 
previous vertex (which is grey) by selecting into 
the depth 1 all vertices that are adjacent to it 
among vertices after that. 

1: 1, 2 W1 = 11(weight of vertex 4);   d=1. 
Degree: all vertices belong to the same colour 
class, so let’s use the most left vertex’s weight 
Degree = 7 (weight of vertex 1) 
Check: W1 + Degree = 11+7=18 > W(11) go 
further. 
The next vertex to expand is the vertex 1 
Check: W1+c(vertex 1)=11+7=18>W(11) go 
further. 
W2= W1+w(vertex 1)=11+7=18; d=d+1=2. 

2: Ø Check: W2 + Degree =18+0=18>W(11) go 
further. 
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No vertices => Check if maximum: 
W2(18)>W(11) => save new record: W=18, max 
weighted clique={4,1}. 
d=d-1 => d=1 => go up. 

1: 1,2 Degree: all remaining vertices belong to the 
same colour class, so let’s use the most left 
remaining vertex’s Degree = 1 (weight of 
vertex 2). 
Check: W1 + Degree = 11+1=12 ≤ W(18) go 
back. 
d=d-1 => d=0 => c(vertex 4)=W=18; 
Go to the next backtracking iteration. 

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the 
previous vertex (which is grey) by selecting into 
the depth 1 all vertices that are adjacent to it 
among vertices after that. 

1: 5, 6, 3 W1 = 2 (weight of vertex 7);   d=1. 
Degree: vertices belong to colour classes 1 and 
2, so let’s use the most left vertices of those 
classes  
Degree = 10 (weight of vertex 5) + 10 (weight 
of vertex 3) =20 
Check: W1 + Degree = 2+20=22 > W(18) go 
further 
The next vertex to expand is vertex 5 
Check: W1+c(vertex 5)=2+11=13 ≤ W(18) go 
back 
d=d-1 => d=0 => c(vertex 7)=W=18; 
Go to the next backtracking iteration. 

0; 7, 4, 5, 6, 3, 1, 2 No more vertices to analyse, go to End. 
The maximum weighted clique is {1, 4}, and its weight is 18. 
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3.4 Tests and Results 

3.4.1 Preliminary analysis 

3.4.1.1 General analysis 
It is a natural way to use a chromatic graph number as an upper bound during the 
maximum clique search and it is widely used [Babel and Tinhofer 1990, Wood 1997]. 
The maximum clique by its definition requires a special colour for each vertex. 
Therefore the maximum clique size cannot be larger than a chromatic number. 

There is a sandwich theorem [Knuth 1994] that is focused on a Lovasz number 
θ(Ĝ), which is said to be a sandwich between the minimum number of colours required 
(the chromatic number) and a size of the maximum clique: 

 
w(G) ≤ θ(Ĝ ) ≤ χ(G), 

 
where Ĝ is the complement to G graph. The Lovasz number could be calculated in a 

polynomial time [Bomze et al. 1999]. First of all this theorem shows that chromatic 
number is always larger that the maximum clique size. Besides it demonstrates that 
there could be some distance between those numbers. A size of this distance is a core 
element defining efficiency of the proposed algorithms. The smaller this distance, the 
faster algorithms are. Fortunately, in comparison to other (best) well-known 
algorithms, independently of this distance, the pruning formulas based on the vertex-
colouring are able to produce a faster solution than other algorithms, especially on 
dense graphs, where it is practically the only pruning technique that keeps working. 
The smaller density of a graph, the more depending on this distance become the 
algorithms in comparison to others. This dependency is explained by considering a 
question: if we already have found the maximum clique, then how fast could we prove 
somehow that it is the maximum one? This situation will be described in the 
“Incomplete solution” chapter. The main thing that makes our problem so hard is not 
the problem of finding the maximum clique but the problem of proving that it is the 
maximum. The closer a size of the maximum clique to a chromatic number, the more 
efficiently the algorithms prune and the faster it is possible to prove that the found 
clique is the maximum one. 

3.4.1.2 Graphs “easy” to solve 
As it was shown before, the “best” graphs to be solved by the new algorithms are 
graphs where the chromatic number is close to the maximum clique size. There are a 
sufficient number of graphs’ classes where it is true. The most interesting example of 
such graphs, if we consider the hardness to solve it by other algorithms, is a graph with 
a lot of semi-parallel structures like Moon-Moser graphs. The more such structures are 
there, the easier this graph is to solve by the introduced algorithms in comparison to 
other algorithms since the complexity of such structures are eliminated by using the 
vertex-colouring. It happens because the vertex-colouring degree function could 



 71

produce a closer estimation for a potential clique size in such (sub)graphs than other 
techniques. 

3.4.1.3 Graphs “hard” to solve 
Unfortunately there are much more graphs / graph classes where the chromatic number 
sufficiently differs from the maximum clique size [West 2001]. It is even possible to 
construct a graph with the chromatic number as big as you want while the maximum 
clique size remains the same. See for example the “Mycielski’s construction” [West 
2001] that does it. Such graphs should be “hard” to solve since the new pruning 
technique that has been invited in this thesis will not help to avoid producing again the 
combinatorial branch and bound search although the situation should be still better than 
the pruning strategy invited by Carraghan and Pardalos [Carraghan and Pardalos 
1990a]. Unfortunately this difference will not be enough for a sufficient change in a 
time needed to find the maximum clique. Another property of a graph “hard” to solve 
in addition to the previous one is to have as less parallel structure as possible. 
Otherwise vertices producing a large chromatic number would be eliminated during 
first steps and a graph will degenerate to the “easy” to solve case. Such example has 
been shown as the second example of the “VColor-u” algorithm. 

3.4.2 Unweighted case 
In this section results showing efficiency of the new algorithms will be presented. 

As it has been mentioned earlier a very simple and effective algorithm for the 
maximum algorithm problem proposed by Carraghan and Pardalos [Carraghan and 
Pardalos 1990a] was used as a benchmark in the Second DIMACS Implementation 
Challenge [Johnson and Trick 1996]. Besides, using of this algorithm as a benchmark 
is advised in one of the DIMACS annual reports [DIMACS 1999]. That’s why it will 
be also used in the benchmarking below. Moreover, the proposed algorithms are 
nothing else than modifications of the Carraghan and Pardalos algorithm [Carraghan 
and Pardalos 1990a] (we will call it a base algorithm). It gives us possibility to 
conclude that worse cases of new algorithms will not differ too much from worse cases 
of the base algorithm and comparing those algorithms on random graphs will be good 
enough to receive an overall picture. Later different graph classes will be checked as 
well to receive more precise picture by graph classes. We are going to use DIMACS 
graphs for that. 

We have chosen one more algorithm proposed by Östergård [Östergård 2002] to 
participate in the comparison test since this algorithm is reported to be the quickest at 
the moment and this algorithm is also another modification of Carraghan and Pardalos 
algorithm [Carraghan and Pardalos 1990a]. Moreover, our “VColor-BT-u” algorithm 
was based on his ideas. 

Results are presented as ratios of algorithms spent times on finding the maximum 
clique – so the same results can be reproduced on any platforms. The compared 
algorithms were programmed using the same programming language and the same 
programming technique (it was possible since Östergård [Östergård 2002] algorithm 
and the new algorithms are just modifications of Carraghan and Pardalos [Carraghan 
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and Pardalos 1990a] algorithm). The greedy algorithm was used to find a vertex-
colouring. 

3.4.2.1 Random graphs 

3.4.2.1.1 Introduction 

First of all we look at randomly generated graphs. This will give us a general picture of 
the algorithms speed characteristic and it will be possible to conclude if those 
algorithms are worth to use. 

The number of vertices for each density is chosen so, that any algorithm’s work 
time is no less than 2-3 seconds and is no more than an hour. This enables us to 
eliminate a standard error of a function measuring time, which is approximately 0.01 
seconds – less than 1%. 

For each table’s entry 100 graphs were generated and each generated graph is used 
as an input for each algorithm to be compared. 

3.4.2.1.2 Graphs generation model 

A meta-algorithm was used to test different algorithms. It includes a graph generation 
subtask and a subtask that runs algorithms to be researched and measures a spent time. 
The graph generation subtask uses a density and a number of vertices that a graph 
should have as an input. The next generation procedure, which is written in “Basic”, 
was used: 

 
ReDim arr(1 To Vertices, 1 To Vertices) 
Randomize 
For i = 1 To Vertices * (Vertices - 1) / 100 * Density / 2 
       Do 
              j = Int((Vertices * Rnd) + 1) 
              k = Int((Vertices * Rnd) + 1) 
        Loop Until arr(k, j) = False And j <> k 
        arr(j, k) = True 
        arr(k, j) = True 
Next 
 
where:  
Vertices is the number of vertices to be generated, 
Density is the density a graph should have (for example, if the density should be 

70%, then this parameter should be 70), 
arr is a Boolean array representing a generated graph’s adjacency matrix, i.e. for 

any vertices j, k - arr(j, k) is true if and only if those vertices are connected. 
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As it is easy to see, main functions that provide random numbers are Rnd and 
Randomize. Both functions are native Microsoft random numbers’ generators. Let’s 
examine them more: 

Randomize – a function that is used to initialise or reseed a sequence returned by 
Rnd using a value returned by the system timer as a new seed value. 

Rnd – a function that returns random single-precision numbers between 0.000000 
and 1.000000. It uses the linear-congruential method for random-number generation. 
The following pseudo code documents the algorithm used: 

 
x1 = ( x0 * a + c ) MOD (224) 

 
where: 

x1 is a new value, 
x0 is a previous value (for the first iteration it is called an initial value or seed), 
a equals 1140671485, 
c equals 12820163, 
MOD is an operator that returns the integer remainder after an integer division. 

[http://support.microsoft.com/default.aspx?scid=kb;en-us;231847, 2005-08-29]. 
 
This random numbers generation algorithm produces numbers that are surprisingly 

good quality. It is used even for high security cryptography, although some newer 
modules can provide a higher security. The integer constant, a, is approximately factor 
2 less than the square root of the maximum integer value (represented by 224) [Bennett 
1976]. It is not recommended to change the values of a and c without careful study and 
experimentation, since choosing the “wrong” values for a and c may compromise the 
pseudorandom characteristics. Often the choice of those values is "more of an art than 
a science", although this can be accomplished via specific algorithms [Schildt 1987]. 
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Figure 13. Distribution of randomly generated coordinates (adjacency matrix) 
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The above graph shows a randomly generated adjacency matrix to illustrate how the 
above algorithm generates graphs. A graph having 100 vertices and 60% density was 
produced. The x-axis here contains the first array dimension, the y-axis the second one 
and a dot is presented if there is an edge between vertices. As you see, numbers are 
distributed quite equally through the plot area and don’t tend to be grouping in some 
areas producing special graphs. Two examples of graphs having 10% density and 100 
vertices are shown below. 

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

i

j

 
Figure 14. Example 1 of edges of a graph having 10% density and 100 vertices 

(adjacency matrix) 
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Figure 15. Example 2 of edges of a graph having 10% density and 100 vertices 

(adjacency matrix) 
 
Those examples demonstrate that our graph generation function produce different 

graphs, therefore running the meta-algorithm enough times should test algorithm on 
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sufficiently different graphs and give acceptable average to make a general conclusion 
on algorithms efficiency. 

3.4.2.1.3 Time spent on the maximum clique finding 

Here a time spent on finding the maximum clique is presented for all algorithms, which 
participate in tests. 
 
PO – time needed to find the maximum clique by Carraghan and Pardalos [Carraghan 
and Pardalos 1990a] algorithm divided by time needed to find the maximum clique by 
Östergård [Östergård 2002] algorithm. 
VColor-u – time needed to find the maximum clique by Carraghan and Pardalos 
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the 
maximum clique by the “VColor-u” algorithm. 
VColor-BT-u – time needed to find the maximum clique by Carraghan and Pardalos 
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the 
maximum clique by the “VColor-BT-u” algorithm. 
 

Note that the density parameter is shown first of all and only then the number of 
vertices since the second parameter depends on the first one as we stated earlier – the 
number of vertices is chosen so, that the time spent on finding the maximum clique for 
a corresponding density is no less than 2-3 seconds and also is not too big (in our 
experiments no more than 1 hour). That’s why the lower density is, the more vertices 
are in use. 

Table 10. Unweighted case / Benchmark results at random graphs – General view – average 
ratios of time spent on the maximum clique finding / the base algorithm’s time divided by a 
corresponding algorithm’s time 

Edge density Vertices PO VColor-u VColor-BT-u 
0.1 1800 0.8  0.8   1.0 
0.2 1200 1.0  1.0   1.5 
0.3   750 1.1  1.0   1.6 
0.4   500 1.1  1.1   1.8 
0.5   300 1.2  1.3   2.3 
0.6   200 1.3  1.7   3.5 
0.7   150 1.5  2.5   5.6 
0.8   120 1.9 8.5  16.2 
0.9   100 4.2 50.1 102.1 

 
For example, 8.5 in the column marked VColor-u means that Carraghan and 

Pardalos [Carraghan and Pardalos 1990a] algorithm requires 8.5 times more time to 
find the maximum clique than the “VColor-u” algorithm. 

It is easy to see that all algorithms are faster than the base algorithm on densities 
more than 10%. The base algorithm is better on very small densities – 10% than others 
except “VColor-BT-u”. The “VColor-u” algorithm is slightly slower than Östergård 
[Östergård 2002] algorithm on densities up to 40%, but starting from 50% it becomes 
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better. The “VColor-BT-u” algorithm that inherits strong sides from both of those 
algorithms is the best one on all densities except 10% and smaller where it is 
approximately the same as the base one. The biggest speed difference is reached on 
dense graphs, where algorithms based on colour classes are 50-100 times faster than 
the base algorithm and 13-25 times faster than Östergård algorithm. The reason of that 
lies in a fact that on those densities the “colour classes” pruning technique still works 
while other algorithms’ pruning techniques don’t practically prune branches of the 
search tree. 

Now it looks to be interesting to see more details of the algorithms’ spent times and 
see extreme cases – minimum and maximum speed differences, i.e. the difference in 
time spent on analysing randomly occurred “good”/“bad” cases. 

Table 11. Unweighted case / Benchmark results at random graphs – Detailed view – ratios 
deviation of the time spent on the maximum clique finding / the base algorithm’s time divided 
by a corresponding algorithm’s time 

Edge density Vertices Type of 
measure PO VColor-u VColor-

BT-u 
0.1 1800 minimum 0.7  0.7 0.8 

 average 0.8 0.8 1.0 
 maximum 0.8 0.8 1.1 

0.2 1200 minimum 0.9 1.0 1.0 
 average 1.0 1.0 1.5 
 maximum 1.1 1.0 2.0 

0.3   750 minimum 0.9 1.0 1.1 
 average 1.1 1.0 1.6 
 maximum 1.3 1.2 2.6 

0.4   500 minimum 0.9 1.0 1.2 
 average 1.1 1.1 1.8 
 maximum 1.4 1.2 2.9 

0.5   300 minimum 0.9 1.2 1.2 
 average 1.2 1.3 2.3 
 maximum 1.5 1.5 3.5 

0.6   200 minimum 0.9 1.4 1.8 
 average 1.3 1.7 3.5 
 maximum 2.0 2.1 5.0 

0.7   150 minimum 1.0 1.7 3.0 
 average 1.5 2.5 5.6 
 maximum 2.6 4.2 11.0 

0.8   120 minimum 1.0 2.5 4.4 
 average 1.9 8.5 16.2 
 maximum 4.5 12.2 29.0 

0.9   100 minimum 1.4 14.9 25.2 
 average 4.2 50.1 102.1 
 maximum 8.9 88.9 287.0 
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The picture is practically the same as for averages. The “VColor-u” algorithm is 
never slower that Carraghan and Pardalos algorithm starting from 20% density and 
competes with Östergård [Östergård 2002] algorithm up to 40-50% starting from 
which it becomes also better. The “VColor-BT-u” algorithm surely wins all cases for 
all densities except densities smaller or equal to 10%, where is competes with the base 
algorithm. We are not presenting results of each our experiment here, but we should 
note that in all experiments this “VColor-BT-u” algorithm was never slower than either 
the “VColor-u” or Östergård algorithms. 
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Figure 16. Unweighted case / Benchmark results at random graphs – Detailed view 

 
This graph view containing results from the previous table by densities up to 70% 

provides most benefits for a graphical understanding of algorithms’ spent time ratios 
behaviour. Results on higher densities are easily extrapolateable from this graph, and 
only make presentation of results on low densities unclear – therefore those are 
omitted. 

The only algorithm, which is better than the base algorithm by the average and the 
maximum ratio of time spent on the maximum clique finding is the “VColor-BT-u” 
one. It means that this is the only algorithm, which is quicker than the best one by 
those ratios on any density. The minimum ratio for that algorithm is more than 1 only 
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starting from the 20% density, so the base algorithm is still sometimes better on low 
densities than the “VColor-BT-u” one. Another interesting part here are high densities, 
where even the minimum ratio for the “VColor-BT-u” algorithm more than the 
maximum ratio of Östergård [Östergård 2002] algorithm, so the first one is always 
quicker than the Östergård algorithm, and of course than the base Carraghan and 
Pardalos algorithm [Carraghan and Pardalos 1990a]. The “VColor-u” algorithm is not 
so good as the “VColor-BT-u” and is slower than Östergård’s algorithm up to high 
densities where it starts to perform much better and overcomes Östergård’s algorithm 
but do not reach the performance of the “VColor-BT-u” one. 

3.4.2.1.4 Vertex colouring 

Accordingly to the first step of our algorithms we should mark that the problem of 
finding an efficient vertex colouring can be treated as a separate problem. The problem 
of colouring a graph by the minimum number of colours (i.e. pure vertex colouring 
problem) is an NP-hard task; therefore we had to use a heuristic algorithm to do this. 
The heuristic algorithm is an algorithm that: 

• Doesn’t guarantee the best result, but finds a result that is close enough to the 
best one; 

• Is quicker than an exact algorithm. 
In our case we use a polynomial heuristic – a result is found in a polynomial time. 

 

The vertex-colouring step affects the overall result in the following ways:  
1. The closer number of colour classes to the size of the maximum clique, the quicker 

the maximum clique will be found because of more effective pruning; 
2. The more time we spent on vertex colouring, the slower our algorithm works in 

general (since the vertex colouring is a subroutine, which is included into the main 
algorithm and its time should be taken into account). 

 
Note that the presented algorithms can evolve without changing core steps by 

inventing a new and more effective heuristic algorithm for the vertex colouring. 

Table 12. Number of colour classes by a greedy vertex colouring 

Edge 
density Vertices Average size of the 

maximum clique 
Number of 

colour classes

Number of colour 
classes containing only 

1 vertex 
0.1 100 3.88 7.16 0.40 
0.2 100 5.08 10.36 0.48 
0.3 100 6.52 13.88 0.64 
0.4 100 8.24 17.20 0.92 
0.5 100 10.44 20.76 1.12 
0.6 100 13.60 24.80 1.56 
0.7 100 18.00 30.00 1.76 
0.8 100 24.04 37.24 3.16 
0.9 100 34.36 46.08 4.80 
0.99 100 69.56 71.20 42.48 
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Figure 17. Number of colour classes by a greedy vertex colouring (for a graph with 100 

vertices) 
 
It is easy to see that quite effective results of the new algorithms were reached not 

on the best splitting vertices into colour classes – an average number of colour classes 
is larger approximately on 50% (25% on dense graphs) than an average size of the 
maximum clique. This difference can be explained easily by the fact that we used a 
very simple greedy heuristic to find a graph’s vertices colouring. From another point of 
view there are a lot of graphs, where a number of colours will always be far from the 
maximum clique size [West 2001]. So, we cannot expect that the colours’ number will 
be very close to the maximum clique size and therefore there is no point to use an 
expensive heuristic if it will not provide us with a sufficient decrease of a number of 
colour classes. Therefore, it looks like the greedy heuristic is a reasonable choice for 
the moment to use in our algorithms. 

3.4.2.1.5 Number of analysed branches / subgraphs 

Another important characteristic that helps us to understand the invented algorithms’ 
work efficiency is a number of analysed branches. This characteristic can also be seen 
as an efficiency factor of pruning techniques – how many branches one or another 
technique (set of techniques) was able to prune – the less the number of analysed 
branches is, the more branches were pruned. This factor could demonstrate why one or 
another algorithm is faster and when it becomes faster than others. All algorithms that we 
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are comparing are nothing else than “branch and bounds” algorithms with different 
modifications, i.e. algorithms that are searching through all branches. That’s why the 
fewer branches we have to go through, the better an algorithm could be and therefore 
the factor is so important. 

A ratio of analysed branches is used again since we test on randomly generated 
graphs and a particular number of branches is less important than information on how 
more/less branches were analysed by one or another algorithm. 

 
PO – the number of branches analysed by Östergård [Östergård 2002] algorithm 
divided by the number of branches analysed by Carraghan and Pardalos [Carraghan 
and Pardalos 1990a] algorithm. 
VColor-u – the number of branches analysed by the “VColor-u” algorithm divided by 
the number of branches analysed by Carraghan and Pardalos [Carraghan and Pardalos 
1990a] algorithm. 
VColor-BT-u – the number of branches analysed by the “VColor-BT-u” algorithm 
divided by the number of branches analysed by Carraghan and Pardalos [Carraghan 
and Pardalos 1990a] algorithm. 

 
Note that this branches’ ratio is calculated by dividing a target algorithm analysed 
branches number on the analysed branches number of Carraghan and Pardalos 
algorithm unlike previously used time spent ratios. 

Table 13. Unweighted case / Benchmark results at random graphs – Analysed branches ratios / 
a corresponding algorithm’s number of branches divided the base algorithm’s number of 
branches 

Edge density Vertices PO VColor-u VColor-BT-u 
0.1 1000 98% 83% 59% 
0.2  800 96% 81% 55% 
0.3  500 96% 75% 50% 
0.4  500 94% 67% 44% 
0.5  300 90% 55% 36% 
0.6  200 88% 42% 27% 
0.7  100 75% 26% 16% 
0.8  100 62% 13%  6% 
0.9  100 35%  2% >1% 
 
For example, 55% in the column marked VColor-u means that the “VColor-u“ 

algorithm has analysed 55% of branches analysed by Carraghan and Pardalos 
[Carraghan and Pardalos 1990a] algorithm. 
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Figure 18. Unweighted case / Benchmark results at random graphs – Analysed branches 
ratios 

 
All algorithms analyse fewer branches than the base algorithm [Carraghan and 

Pardalos 1990a]. The higher the density is, the fewer branches are analysed. The best 
algorithm from the fewer branches point of view is the “V-Color-BT-u” algorithm on 
all densities and the difference is sufficient! The number of analysed branches is 
almost twice smaller on low densities than for the base algorithm or the “PO” one and 
is almost 30–100 smaller on high densities. The “V-Color-u” algorithm is not very 
efficient on low or average densities, but is starting to be closer and closer on high 
densities to the “V-Color-BT-u” algorithm. The diagram shows that the combination of 
the “V-Color-u” and the “PO” pruning strategies inside the “V-Color-BT-u” algorithm 
leads to very good results. Those strategies do not compete, but rather support one 
another (in different situation one or another works), although additional tests have 
shown that the “V-Color-u” strategy works more often. The same can be seen on the 
diagram – the “V-Color-u” number of analysed branches is always smaller than for the 
“PO” algorithm – approximately 2–3 times. All this allows saying that a suggestion we 
had before this test, that the “PO” pruning strategy will never work as it will be 
covered by the “V-Color-u” pruning strategy, was completely wrong and those 
strategies can be used simultaneously. 
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3.4.2.1.6 Conclusion 

Below we will concentrate into one graph view the ratios of time spent on the 
maximum clique finding and analysed branches numbers’ ratios for algorithms, which 
are under analysis. 
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Figure 19. Concluding view on unweighted maximum clique finding algorithms’ 
performance on random graphs 

 
An additional line is added – a “CP” level line, i.e. “Carraghan and Pardalos” line. 

A level of this line is always 1, since the ratio of spent time by the “Carraghan and 
Pardalos” algorithm [Carraghan and Pardalos 1990a] divided by the same number is 
always 1. This line allows seeing if other algorithms are faster or slower than the base 
algorithm and how big is this difference. The right y-axis is logarithmic to fit all data 
on the graph. 

It is easy to see that the fewer branches should be analyzed by an algorithm, the 
faster it is. An algorithm starts to be much faster (i.e. its time spent ratio line starts to 
grow very fast) as soon as fewer than approximately 40% of branches should be 
analysed. All algorithms are faster than the base one on average density and dense 
graphs, while the “V-Color-BT-u” algorithm is the best one. Algorithms are much 
faster than the base one on the dense graphs, where their pruning strategies are starting 
to be especially efficient. The “V-Color-BT-u” is faster than the base one in hundred 
times. The “V-Color-u” algorithm and the “PO” algorithm compete on average graphs, 
where those are approximately identical from the spent time point of view. The “V-
Color-u” starts to be faster from the 70% density and move quickly to the “V-Color-
BT-u” direction, while the “PO” algorithm’s time spent ratio line grows slower. An-
other interesting part of this diagram, that should be noted, locates at very low 
densities. Here the base algorithm is very efficient. It is practically as good on densities 
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10%–20% as others and is the best on densities less than 10% (with the “V-Color-BT-
u” algorithm). Sometimes it is even better than the “V-Color-BT-u” algorithm, which 
analyses 1.5–2 times less branches. So, it means that for very low densities the easiest 
base algorithm is the most efficient and additional steps that all remaining algorithms 
do to decrease number of branches to be analysed is rather unnecessary waste of time 
than valuable features. 

The general conclusion for random graphs is: 
• If the density is less than 10% then the best algorithm to use is the base one 

[Carraghan and Pardalos 1990a]; 
• If the density is higher, then the best choice is the “V-Color-BT-u” algorithm, 

which is especially efficient on average and high densities. 
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3.4.2.2 DIMACS graphs 
Here the same algorithms are analysed on DIMACS graphs, which are a special 
package of graphs used in the Second DIMACS Implementation Challenge [DIMACS 
1999; Johnson and Trick 1996] to test different algorithms and find out which of them 
is the best one on one or another type of graphs. 

 

PO – time needed to find the maximum clique by Carraghan and Pardalos [Carraghan 
and Pardalos 1990a] algorithm divided by time needed to find the maximum clique by 
Östergård [Östergård 2002] algorithm. 
VColor-u – time needed to find the maximum clique by Carraghan and Pardalos 
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the 
maximum clique by the “VColor-u” algorithm. 
VColor-BT-u – time needed to find the maximum clique by Carraghan and Pardalos 
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the 
maximum clique by the “VColor-BT-u” algorithm 

Table 14. Unweighted case / Benchmark results at DIMACS graphs – ratios of time spent on 
the maximum clique finding / the base algorithm’s time divided by a corresponding algorithm’s 
time 

Graph name Edge 
density Vertices Maximum 

clique size PO VColor-u VColor-
BT-u 

brock200_1 75% 200 21 2.1 2.5 8.4 
brock200_2 50% 200 12 2.3 1.0 4.0 
brock200_3 61% 200 15 1.2 1.6 3.2 
brock200_4 66% 200 17 2.0 1.6 6.0 
c-fat200-5 43% 200 58 58.2 91.4 49.2 
c-fat500-1 4% 500 14 0.7 1.0 0.8 
c-fat500-2 7% 500 26 1.2 2.2 2.2 
c-fat500-5 19% 500 64 72.1 185.0 85.4 
Hamming6-2 90%   64 32 493.0 4 930.0 493.0 
Hamming8-4 64% 256 16 247.8 7.9 7848.3 
johnson8-4-4 77%   70 14 11.9 32.0 53.3 
johnson16-2-4 76% 120 8 4.4 21.6 20.9 
keller4 65% 171 11 2.8 4.2 11.8 
MANN_a9 93%   45 16 12.5 42 400.0 42 400.0 
p_hat300-1 24% 300 8 1.0 1.0 1.3 
p_hat300-2 49% 300 25 2.0 0.8 6.6 
p_hat500_1 25% 500 9 0.9 0.8 1.5 
p_hat700_1 25% 700 11 1.1 0.8 1.9 
sanr400_0.7 70% 400 21 1.7 2.5 5.6 
2dc.256* 47% 256 7 4.6 12.5 14.5 

 
* - An original task for those graphs is to find the maximum independent set, so the 

maximum clique is found from the complement graph. 
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Note: An advantage of using spent time ratios – independency from a platform – 
was fully used in applying algorithms to DIMACS graphs. Graph instances are very 
different and some of them can be solved on the platform we used as a standard in less 
than 0.01 seconds. Therefore an older and slower computer was used sometimes. 
Anyway, the ratio remains the same and it is not important to mark where and which 
platform was used. 

 
Some graph instances were too hard for solving by Carraghan and Pardalos 

algorithm. Other algorithms were more than 10 000 times faster on those instances. 
Therefore, we have isolated them into another table presented below, where we 
calculated spent time ratios using Östergård algorithm as the base one. 

 
VColor-u – time needed to find the maximum clique by Östergård [Östergård 2002] 
algorithm divided by time needed to find the maximum clique by the “VColor-u” 
algorithm. 
VColor-BT-u – time needed to find the maximum clique by Östergård [Östergård 2002] 
algorithm divided by time needed to find the maximum clique by the “VColor-BT-u” 
algorithm 

Table 15. Unweighted case / Benchmark results at DIMACS graphs – ratios of time spent on 
the maximum clique finding / the base algorithm’s time divided by a corresponding algorithm’s 
time / hard cases 

Graph name Edge 
density Vertices Maximum 

clique size VColor-u VColor-BT-u 

c-fat500-10 50%   200 12 6.9 0.9 
Hamming10-2 99% 1024 512 389.5 6.1 
san400_0.5_1 50%   400 13 284.3 958.2 

    
2dc.512* 58%   512 11 12.5 14.5 

 
* - An original task for those graphs is to find the maximum independent set, so the 

maximum clique is found from the complement graph. 
 
The following table provides a brief description of the used graphs: 

Table 16. Unweighted case / Description of DIMACS graphs 

Graph 
type 

Description 

Bro 

Instances from Mark Brockington and Joe Culberson’s generator that 
attempts to “hide” cliques in a graph where the expected clique size is much 
smaller. For more instances, see their generator in 
graph/contributed/brockington. From Mark Brockington 
brock@cs.ualberta.ca. 

CFat 
Problems based on fault diagnosis problems [Berman and Pelc 1990]. 

For more instances, see the generator in graph/contributed/pardalos. From 
Panos Pardalos pardalos@math.uflorida.edu. 
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Joh* 

Problems based on problem in coding theory. A Johnson graph with 
parameters n, w, d has a node for every binary vector of length n with 
exactly w 1s. Two vertices are adjacent if and only if their hamming 
distance is at least d. A clique then represents a feasible set of vectors for a 
code. For more instances, see the generator in graph/contributed/Pardalos. 
From Panos Pardalos pardalos@math.uflorida.edu. 

Ham* 

Another coding theory problem. A Hamming graph with parameters n 
and d has a node for each binary vector of length n. Two nodes are adjacent 
if and only if the corresponding bit vectors are hamming distance at least d 
apart. For more instances, see the generator in graph/contributed/pardalos. 
It has been noted by participants that n--2 graphs have a maximum clique of 
size 2n-1. For a proof of this, see the note in 
graph/contributed/bourjolly/hamming.  

From Panos Pardalos pardalos@math.uflorida.edu. 
 

Kel* 

Problems based on Keller’s conjecture on tilings using hypercubes 
[Lagarias and Shor 1992]. For more instances (though they get very large 
very fast) see either the generator in graph/contributed/shor or the generator 
in graph/contributed/pardalos. From Peter Shor shor@research.att.com 

MANN* 
(Stein) 

Clique formulation of the set covering formulation of the Steiner Triple 
Problem. Created using Mannino’s code to convert set covering problems 
to clique problems. From Carlo Mannino mannino@iasi.rm.cnr.it 

PHat* 

Random problems generated with the p hat generator which is a 
generalization of the classical uniform random graph generator. Uses 3 
parameters: n, the number of nodes, and a and b, two density parameters 
verifying 0 ≤ a ≤ b ≤ 1. Generates problem instances having wider node 
degree spread and larger clique sizes [Gendreau et al. 1993]. From Patrick 
Soriano and Michel Gendreau patrick@crt.umontreal.ca. 

San* Instances based on Sanchis paper [Sanchis 1992] From Laura Sanchis 
laura@cs.colgate.edu 

SanR* These are random instances with sizes similar to those in San. From 
Laura Sanchis laura@cs.colgate.edu 

2dc* Graphs From Two-Deletion-Correcting Codes. From N. J. A. Sloane 
njas@research.att.com 

 
The first result we see in previous result tables is that either the “VColor-u” or the 

“VColor-BT-u” algorithm is the quickest one in all graph instances. The only instances 
where the “VColor-u” is the best one are “CFat” type graphs and “hamming6-2”, 
“hamming10-2”, which are Hamming graphs having a high density. This occurs 
because the backtracking pruning technique is decreasing performance of the applying 
colour classes in these instances. 

Another interesting result is an extremely good performance of new algorithms for 
MANN and hamming type graphs. Those graphs are again graphs of a high density, 
where the “VColor-BT-u” is the best for a bit lower density and the “VColor-u” for 
very high densities. 
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Note that ratios numbers (i.e. proportions of times spent on finding the maximum 
clique) remain the same for “2dc” type graphs – for both 256 and 512 vertices cases. 

3.4.3 Weighted case 
Usually two types of test cases are used: randomly generated graphs and fixed 
instances like the DIMACS test graphs. Unfortunately for the later type such instances 
are lacking for the maximum-weight clique problem. The DIMACS graphs are not 
weighted and cannot be therefore used for our testing. That’s why only random graphs 
are tested. 

3.4.3.1 Graphs generation model 
The graph (vertices and edges) generation model remains the same as for the 
unweighted case. The only difference here is weights that we should also have. We 
could simplify the task by using only integer numbers from 1 to 100 since there is no 
big difference what numbers to use as long as we can compare them and find a 
difference. 

A special array is used to store weights for each vertex. The following code was 
used to generate those weights in addition to the randomly generated graph. 

 
  ReDim w(1 To Nodes) 
  Randomize 
  For i = 1 To Nodes 
    w(i) = Int((100 * Rnd) + 1) 
  Next 
 
Refer to the “Graphs generation model” part of the “Unweighted case” - “Random 

graphs” subchapter for more details on Rnd and Randomize functions that are random 
number generators. Int is a function that returns only the integer part of a number. 
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Figure 20. Distribution of randomly generated weights 
 
Here you see a distribution of 1000 times generated weights. Different weights 

occur again quite random number of times and do not tend to be grouped somewhere. 

3.4.3.2 Time spent on the weighted maximum clique finding 
Several algorithms were published since the 1975s. The easiest and effective one was 
presented in an unpublished paper by Carraghan and Pardalos [Carraghan and Pardalos 
1990b]. This algorithm is nothing else that their earlier algorithm [Carraghan and 
Pardalos 1990a] for the unweighted case applied to the weighted case. They have 
shown that their algorithm outperforms algorithms that they had compared it with. One 
more algorithm was published by Östergård [Östergård 2001] recently. He also has 
compared his algorithm with earlier published algorithms and had shown that his 
algorithm works better than other best known algorithms. 

Results are presented as a ratio of algorithms’ spent times on finding the maximum-
weight clique – so the same results can be reproduced on any platforms. Compared 
algorithms were programmed using the same programming language and the same 
programming technique (since the new and Östergård algorithms are just modifications 
of Carraghan and Pardalos algorithm). The greedy algorithm was used to find a vertex-
colouring. 

For each vertices/density case 100 graphs were generated and average time was 
measured. 

 
PO – time needed to find the maximum-weight clique by Carraghan and Pardalos 
algorithm [Carraghan and Pardalos 1990b] divided by time needed to find the 
maximum-weight clique by Östergård algorithm [Östergård 2001]. 
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VColor-BT-w – time needed to find the maximum-weight clique by Carraghan and 
Pardalos algorithm [Carraghan and Pardalos 1990b] divided by time needed to find the 
maximum-weight clique by the “VColor-BT-w” algorithm. 

Table 17. Weighted case / Benchmark results at random graphs - average ratios of time spent 
on the maximum-weight clique finding / the base algorithm’s time divided by a corresponding 
algorithm’s time 

Edge density Vertices PO VColor-BT-w 
0.1 1000 1.12 1.28 
0.2 800 1.23 1.93 
0.3 500 1.42 2.78 
0.4 300 1.63 2.81 
0.5 200 1.73 2.81 
0.6 200 1.90 4.90 
0.7 150 2.12 5.54 
0.8 100 2.27 6.83 
0.9 100 11.25 69.85 
 
For example, 6.83 in the column marked VColor-BT-w means that Carraghan and 

Pardalos [Carraghan and Pardalos 1990b] algorithm requires 6.83 times more time to 
find the maximum clique than the “VColor-BT-w” algorithm. Presented results show 
that the “VColor-BT-w” algorithm performs very well on any density. It is faster than 
both algorithms we compare it with. Especially great results are shown on the dense 
graphs, where the new algorithm is 69 times faster than Carraghan and Pardalos 
algorithm [Carraghan and Pardalos 1990b] and 6 times faster than Östergård algorithm 
[Östergård 2001]. 

3.5 Summary 
Here we have proposed several new algorithms for finding the maximum clique both 
for the unweighted and the weighted graphs. Those algorithms were best on all 
densities for all graph types that we have researched using for the comparative testing 
best general type algorithms, i.e. those, which should solve any graph types. The 
highest difference is reached on dense graphs. The main new technique we used to 
make algorithms to be quick is the pruning formula based on the vertex colouring, i.e. 
independent sets using the fact that vertices of the same independent set cannot be 
included into the same clique. This new technique sufficiently decreases a number of 
branches that the algorithms have to analyse in finding the maximum clique and that is 
the main reason why those perform better than previous algorithms. Several new 
algorithms were produced from a composition of using the backtracking search and 
independent sets. 

Other advantages of the invented algorithms are: 
• They require less memory since they are oriented on the colour classes’ number 

rather than on the vertices number, and this number is sufficiently smaller. 
Usually programs are allocating memory for all possible depth etc. at the start 
and it is where we are saving memory by allocating less; 
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• Algorithms inherit simplicity of programming and studying / explaining from 
the original branch and bound algorithm. This makes an algorithms’ realisation 
simpler; a risk of making bugs decreases also; algorithms are simpler to test 
since number of source code’s branches is smaller in comparison to many other 
algorithms’ source codes. So the new algorithms are easy and efficient. 

 
One component of the new algorithms is a heuristic vertex-colouring. We used the 

simple greedy heuristic because we wanted to concentrate mainly on the pruning 
technique using colours rather than on different vertex colouring heuristics. The 
heuristic’s result was 2 times more colours than the size of the maximum clique in 
average. We believe that this result could be slightly improved on random graphs, 
although those numbers will never match on average and the difference is expected to 
be around 30% on average. Another important result here is a concatenation of those 
two main classical problems inside one algorithm: finding the maximum clique and the 
vertex-colouring. The vertex colouring here is not just a subtask providing a bound that 
loses quickly actuality, but is an essential and important part of the algorithms. 

All those advantages make the proposed algorithms to be the best by the time spent 
on finding the maximum clique and from the applying point of view. 



 91

4 TESTING ENVIRONMENT 

4.1 General Description 
Here we describe the testing environment we used to test algorithms. In other 

words, it is the environment that is figured out during our work on the new algorithms. 
This discussion can be seen as the next step of experimental analysis of algorithms’ 
discussion started by Johnson in the year 2002 [Johnson 2002]. 

The goal of the testing environment, which is discussed here, is to test different 
algorithms for finding the maximum clique and mainly measure a time needed to find a 
solution, although some other parameters can be measured if corresponding parts are 
implemented for each module (algorithm) to be tested. 

 
The following requirements have figured out as essential needs for a testing 

environment of our type: 
1. It should be able to test different types of graph classes, like: 

a. Random graphs – in other words the system should have a module 
that is able to generate random graphs. Note that a „true” 
randomisation is required, since each time a lot of graphs of the 
same type should be provided. There is no point to generate graphs 
that are very similar and moreover it should not happen that 
randomisation is restarted each time a graph is generated and it 
leads to generating exactly the same graphs; 

 
b. It should be possible to load into the environment external graphs. 

Note that there are different standards therefore the following types 
of graphs’ definitions should be supported: 

i. DIMACS format graphs – both compressed and 
decompressed versions; 

ii. Adjacency matrix graphs, i.e. graphs that are defined by an 
adjacency matrix. 

 
2. It should be able to solve both problems: finding the maximum clique and 

finding the maximum independent set using the same modules (algorithms), 
since those problems are equivalent and there are different graphs for both 
problems. 

 
Taking into account those requirements the testing environment that contains the 

following main parts is proposed: 
1. Algorithms or modules that implement one or another algorithm; 
2. Utilities’ module that generates graphs, saves results etc.; 
3. A meta-algorithm that makes tests by rerunning algorithms with the same 

graphs; 
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4. A user interface 
a. Providing a feedback, i.e. info on events and the current processes 

status; 
b. Allowing selecting algorithms to be tested and graphs to be used 

for testing. 
 
Let’s now review each of those modules separately. 

4.2 Modules 
Modules are parts of the environment that are implementing algorithms. Each module 
should have two main properties: 

• It should be standard from the input/output interface point of view; 
• It should be written using the same programming language and techniques as 

other modules, as much as possible. This will ensure that neither algorithm is 
better due to the better programming. All tunings made for any algorithm 
should be transferred to others if it is possible. 

So, each algorithm is implemented as a standard module and can be easily added 
into / removed from the testing environment. The input parameter is a graph to be 
solved and the output is the size of the maximum clique. It is necessary to control 
during tests if all algorithms are working correctly and the size of the maximum clique 
obtained by different algorithms is the same. Note that we are mainly concentrating on 
spent times and sizes of the maximum clique, here in tests, rather than on actual 
maximum clique vertices as an output. 

It is also possible to measure some other parameters by programming into modules 
a standard block for that. The block is programmed once and then adopted inside each 
algorithm. The ideally programmed block should not require any adaptation since 
otherwise similarity of algorithms will decrease because of such unequal measuring. 
This is a way we have measured a number of analysed branches / iterations made by 
algorithms. An ideal method to activate such blocks is a global variable. Although it is 
not advised to have global variable, here it seems to be the best approach to go with as 
it allows controlling the algorithms work from one central place and makes algorithms 
easily moveable between the meta–algorithms slots that are activating algorithms’ 
modules. 

4.3 Utilities 
This is a part of the environment that provides a general level functionality. First of all 
those are input/output functions: 

1. Function allowing reading external graphs; 
2. Function allowing generating a random graph; 
3. Function allowing saving results in an output file. 

 
As we already stated before two main formats have to be used: DIMACS and the 

adjacency matrix. The first one is the main format that is used in researches. Graphs of 
this format are often compressed and stored in so called binary format, although the 
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decompression algorithm can be easily found from the Internet or in the same ftp folder 
of the DIMACS program, where graphs are stored. The second format is used in some 
university classes, since a graph definition using the adjacency matrix is more visual 
and therefore is easily understandable by students.  

The question of generating a random graph is discussed under the “Graphs 
generation model” subchapter. The only note that we can do on that - we used to 
generate fully random graphs in this study, although sometimes it is necessary to 
generate random graphs of some type (with some properties). So, it is possible to use 
more than one graphs generation technique and choose one of them using an option 
somewhere on the main user interface. 

Note that whatever way a graph is generated or whatever format of an external 
graph is used, internally the graph should be saved in one way, which is a “standard” 
for a particular test environment. This ensures that all graphs are treated in the same 
manner by modules. Besides, the graph’s reference, i.e. the input parameter stream for 
modules will be the same for all cases. 

4.4 Meta-algorithm 
A meta-algorithm is a main part of the testing environment that mainly glues parts 
together and manages those parts’ work. The main function of the meta-algorithm is to 
run algorithms one by one using the same parameters and capture a time spent on 
finding the maximum clique and check correctness of algorithms work by comparing 
results – the size of the maximum clique produced by different algorithms. The testing 
process is done in iterations for all densities and numbers of vertices that are required 
to be tested as many times as it is required. An alternative testing process is providing 
algorithms with an externally defined graph and capturing the same output parameters, 
as it was defined above. Anyway, each time exactly the same graph should be provided 
for each algorithm to be tested. Note that each testing iteration should be able to use (or 
activate) different modules. There should be a set of options in the user interface that 
defines which algorithms to test. 

Another important feature of the meta-algorithm is a possibility to store result and 
calculate statistic – minimal, maximal and average results. We have found that it is 
useful to output both individual numbers and the statistical information since the 
statistical information is the main research result while individual numbers allow 
understanding trends and make other calculations in case those were not planned in 
advance. 

An ideal structure of activating modules can be the next: 
• Modules should be built using the same base class, which will have a 

starting function having the same set of input/output parameters – those 
have been described earlier; 

• The meta-algorithm should have a set of slots (an array or a collection), 
which can contain base classes, so any module can be placed into any slot. 
Modules are put into slots if and only if those should be tested and this is 
defined by options at the user interface; 
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• Modules from each slot should be run one by one either for each generated 
graph or for an external graph and modules’ outputs captured. Note that 
ideally slots should be able to store those output parameters as well; 

• The activation, which is described on the previous step, should be done as 
many times as it is defined in the user interface. For example, this thesis’ 
comparative tests used to run each test 100 times to collect enough data to 
make a trustable statistic. The result of this process is an output using the 
utilities’ module to an external file; 

• If randomly generated graphs are tested then the previous step should be 
done for each vertices number / density. Densities should be defined as a 
range allowing testing more than one density at once (during one test 
process). Note that best practises make us to advise defining a vertices’ 
number for each density rather than one vertices number for all densities, 
since a time spent on finding the maximum clique on different densities for 
the same time differs dramatically. Therefore it is useful to orient on the 
spent time you want to have rather than on a particular number of vertices. 

The meta-algorithm should also produce events allowing seeing a status of the 
testing process. 

So, the meta-algorithm is a core part of the testing environment that manipulates 
modules and storing results of the test process. 

4.5 User Interface 
This is the last element of the testing environment but not least. Of course, it looks like 
the testing, i.e. the meta-algorithm and modules are main important parts, but it isn’t 
quite true. The visual feedback is very important as well as a possibility to define 
options in an easy and comprehensive manner. It makes the environment to be user 
friendly and allows testing more and does it quicker. 

The user interface should allow defining the following: 
• Should graphs be generated or provided externally; 
• If the graph is provided externally then: 

o The source of the file containing the graph description; 
o The type of the graph’s definition: DIMACS or the adjacency matrix; 
o The type of task: the “maximum clique finding” or the “maximum 

independent set finding”; 
• If graphs are to be generated then: 

o A range of densities and the step of moving inside the range. For 
example densities from 10% to 90% with a step equal to 10%; 

o A range of numbers of vertices and the step of moving inside the range 
or numbers of vertices for each density you are planning to have in the 
testing; 

o A number of times graphs should be produced and tested for each 
density / number of vertices; 

• A destination’s file for the output of the testing; 
• Options defining which algorithms to test – one for each algorithm / module; 
• Buttons allowing starting and cancelling of the testing process. 
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The user interface should also show the status of the testing process and a message 
on the end of it. It is practically impossible to calculate the time needed for all planned 
tests since different densities could require different time for finding the maximum 
clique, therefore the full testing time cannot be estimated. Under the status of the 
process we mean: 

• How many test iterations of the total iterations number has been done; 
• What algorithm is running now; 
• What graph case is being tested now: density / number of vertices. 
 
This helps to orient in the testing process workflow and detect as soon as possible if 

the test process has been poorly planned and if the graph case could require much more 
time to find the maximum clique than you have been expecting. 

The size of the maximum clique and the spent time should be shown on a message 
when the process is completed in case of running an algorithm for an external graph. It 
will save the tester from opening the results file to see this information. 

4.6 Integration 
This last subchapter gathers all modules together and shows how those are integrated / 
work together. Let us list parts of the environment once again: 

• Algorithms or modules that implement one or another algorithm; 
• Utilities module that generates graphs, etc.; 
• A meta-algorithm that run tests by rerunning algorithms with the same graphs; 
• A user interface providing a feedback and allowing defining options of the 

testing process. 
 

The integration can be done if and only if all modules are using the same standards 
/ interfaces, raising standard events and returning expected outputs. It was shown 
earlier in the “Modules” and the “Meta-algorithm” subchapters what the 
standardisation means for the modules’ structure and in the utilities’ part for graphs to 
be read or generated. It must be mentioned that the adjacency matrix was used as an 
internal structure to hold graphs. It is easier to manipulate with, although requires more 
memory than e.g. the DIMACS format. The integration of different parts can be 
illustrated using the following scheme: 
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Figure 21. High-level structure of the test environment 

 
The high-level model presented in the figure has three layers. The first layer is the 

user interface, which provides a user with possibilities to operate with the meta-
algorithm. This first layer is an intermediate layer between users and the meta-
algorithm that disables users to work directly with the meta-algorithm or modules (for 
example in a DOS like mode). This layer verifies correctness of input parameters. The 
second layer is the meta-algorithm’s layer – the core of the system that receives 
parameters from the user interface and runs tests. It is a testing logic layer. The third 
layer contains both utilities and modules. Those parts are indirectly interacting using a 
graph object that is created by utilities and consumed by modules (implementing 
algorithms), which are finding the maximum clique in it. 

This three layers’ model, with all standards defined earlier, fully describes the 
proposed testing environment. 
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4.7 Summary 
This chapter contains a description of the testing environment we used to test 
algorithms that were proposed and described in this work. This topic is usually 
undervalued in different researches, although it is an essential part of any research, 
even of a mathematical one, as it allows proving results and modelling real 
dependencies between different parameters, e.g. the graph type and the number of 
branches to be analysed. During our tests some guidelines where worked out in an 
enormous number of different experiments, mistakes and mis-modellings of the test 
environment. We hope that this model can be useful for other developers and 
researches at least as a starting point. Anyway it contains all our experience as a set of 
suggestions and as our vision of the testing environment. 

One of the most interesting topics for the future researches in this area can be 
building international standards on programming algorithms (for example by inheriting 
algorithms from a standard base class), graphs presentation, storing and outputting 
data. Of course there are some standards, for example the DIMACS standard for 
graphs, but no more. Under international standards we mean such as the ones used in 
the XML for data exchange, activating services remotely, etc. 
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5 ALGORITHM’S INTELLIGENCE 
Each complex problem has different aspects, varies in parameters and internal 
complexity. It is common for those problems that different problem cases can be 
solved using different algorithms or their variations. Besides problem “solving” can 
also mean different things in details, although a general problem remains the same. 

This chapter’s aim is to put together different ideas, possibilities and needs arising 
in the maximum clique finding and to synthesize an intelligent algorithm that could 
address all those issues. Here we look on the maximum clique finding problem again 
from the programming, i.e. applying point of view rather than from a poor 
mathematical point of view. Ideas about an intelligence of algorithms are widely 
discussed in data analyses, data mining and similar areas, and less in the NP-problems; 
although some ideas are used in heuristic algorithms – see for example a paper 
published by Jagota and Sanchis in 2001. An idea of a meta-algorithm that we are 
going to describe here sometimes is discussed in conference halls, but hasn’t been 
formalised until now. 

5.1 Incomplete Solution 

5.1.1 Description 
First of all we introduce an “incomplete solution” term that helps us to analyse 
algorithms. A term “most effective” algorithm classically means the quickest algorithm 
in finding a complete solution, see for example a review provided by Johnson and 
Trick in 1996, in other words a solution after all vertices of the graph have been 
analysed. But usually an algorithm finds the maximum clique somewhere in the middle 
of its work, and then tries to prove that it is the maximum one by looking through all 

Figure 22. Process of finding the maximum clique bounded to the time scale 
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remaining vertices. Moreover, some algorithms are able to find the best solution even 
on the first or second iteration [Carraghan and Pardalos 1990a], although sometimes it 
depends on vertices sorting.  

An “incomplete solution” is defined by us as a solution, which is already 
best/maximum for a particular graph, although it is not yet proved. As you see, it is 
rather a state of the maximum clique finding process than a type of solution, since at 
the end of ends the incomplete solution, will become a complete one. This state occurs 
as soon as the maximum clique is found and lasts up to the algorithm’s work end. So it 
is a question of time – how soon this state will occur and how long it will lasts. This is 
a new algorithm characteristic that can be important for some types of applications 
[Musliner et al. 1995, Gat et al. 1990]. For example, there can be a real-time system, 
which runs a maximum clique finding algorithm. After a certain time the maximum 
clique algorithm could be interrupted as no more time can be spent on it and the current 
solution will be used as the best one. 

It means that there can be a requirement to optimise the time needed to find the 
maximum clique in scope of the incomplete solution’s definition. Besides, it is possible 
to define a task to optimise the time needed to find a solution in the predefined interval 
from the best solution as well as by speed of moving towards the best solution. 

Figure 23. Incomplete solution: optimisation points 
 
So, we have two questions of optimisation: 
1. Optimise the time needed to find a solution, which is at least x% from the best, 

where x is a number from 0 to 100; 
Note that this is a general definition. The “incomplete solution” is a case when 
x equals 100. 

2. Optimise an overall speed of moving toward the maximum clique finding. 
 
Those optimisation tasks are not exactly the same. For example, an algorithm could 

be efficient in finding a maximal clique that is 75% from the maximum one, but the 
maximum clique will be found just on last steps. 

Note that we don’t mean that using heuristic solutions is a bad idea. We just mean 
that in some cases exact algorithms can perform as a heuristic one in finding a solution 
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and then continue trying to prove that this solution is optimal. Besides, it is always 
better to tune one algorithm to come up with a solution as soon as possible if there is a 
certain probability that the algorithm will work up to the end, than to run two 
algorithms: a heuristic and an exact. In our work we will research a question of how 
fast algorithms, analysed in this work, find the incomplete solution, i.e. 100%. 

5.1.2 Tests 
Here we are going to test algorithms that we used before to find how those perform in 
finding the “incomplete solution” to get a first overview of connections between 
existing algorithms and the “incomplete solution” concept. Two properties will be 
measured – time of finding the “incomplete solution” and the number of times an 
algorithm was the best. It shows an overall performance of algorithms and how close 
algorithms are to each other in finding the “incomplete solution”. 

5.1.2.1 Preliminary analysis 
The following preliminary results can be obtained from analysing examples that we 
played through in the “New algorithms” chapter before. The “VColor-u” algorithm 
should suit very well for finding the “incomplete solution” as it is efficient and is able 
to find a solution during first iterations. Especially it should be true for the dense 
graphs, since graphs with low densities can be efficiently solved by the Carraghan and 
Pardalos algorithm as well due to its speed of the direct solution’s search. The 
backtracking model is not very good here as it is starting from the “end” of a graph 
adding vertices one by one into analysis. It should lead to finding a solution 
somewhere in the middle or at the end of its work – at least it will not be found until all 
vertices of the maximum clique are added into the backtrack analysis. 

The question of vertices sorting could become especially important here. Different 
algorithms can be used. Generally saying the finding “incomplete solution” task is the 
sorting task much more than the maximum clique finding one, since here we don’t 
have to prove that the found clique is the maximum one, but rather have to speed up 
finding it. Unfortunately the question of finding the best sorting has the same 
complexity as the problem of finding the “incomplete solution” since the number of 
different sortings is exponential. Therefore we have to choose some sorting to be used 
by all algorithms. Different sorting algorithms can be more or less suitable for 
particular graph cases, so the question of choosing a better sorting algorithm is rather a 
topic to be discussed under the “Adoptive Algorithm” and the “Algorithm Learning 
and Results Knowledge Base” subchapters. Now we are going to investigate the 
general algorithms’ behaviour in terms of finding an “incomplete decision” and see 
what algorithms don’t perform well from this point of view. Therefore we are going to 
apply for algorithms the same vertices sorting algorithm as we did for “VColor-u” or 
“VColor—BT-u” algorithms – sorting by colouring. The question of finding a sorting 
technique will be postponed for later studies. 
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5.1.2.2 Results 
We use randomly generated graphs. See the “Graphs generation model” subsection for 
more details on the generation model. For each case 100 graphs of the case’s density 
and number of vertices were produced, i.e. each case contained 100 iterations. The first 
step of each iteration was to find out the maximum clique size and then to run 
algorithms analysed. As soon as an algorithm found a clique of the maximum clique 
size, it was stopped. 
 

The first property we are about to measure is a number of times one or another 
algorithm is the quickest one. 
 
CP – Carraghan and Pardalos [Carraghan and Pardalos 1990a] algorithm; 
PO – Östergård [Östergård 2002] algorithm; 
VColor-u – a new algorithm invited in this study – see the “VColor-u” algorithm. 
 
Note that here only the “VColor-u” algorithm is used, as the “VColor” type pruning for 
the “incomplete solution” is to be measured, and therefore the “VColor-u” and the 
“VColor-BT-u” are not wanted to compete. 

Table 18. Number of times algorithms are the quickest in finding an “incomplete solution”  

Edge density Vertices CP PO VColor-u 
0.1 1600 100 0 0 
0.2 1200 68 0 32 
0.3   750 48 0 52 
0.4   500 44 0 56 
0.5   300 41 0 59 
0.6   200 33 0 67 
0.7   150 24 0 76 
0.8   120 13 0 87 
0.9   100 5 0 95 
 
For example 41 in the CP column means that the Carraghan and Pardalos algorithm 

was the quickest in finding the “incomplete solution” 41 times for graphs of this row 
density and number of vertices. 

The first result seen in the table is zeroes in the “PO” column of Östergård 
algorithm that uses the backtracking search. It means that this algorithm, very efficient 
for finding the maximum clique, is not very good in finding the “incomplete solution” 
(as we were expecting). So results are distributed between the Carraghan and Pardalos 
algorithm – see the CP column, and the “VColor-u” algorithm – see the VColor-u 
column. The Carraghan and Pardalos algorithm was always the best on densities less 
than 10% and the best on the 20% density. The “VColor-u” has won more starting 
from 40% but was surely the best starting from the 60-70% densities. We should 
conclude that those algorithms were competing on densities starting from 30% and up 
to 50%. 
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The next property to be measured is the time spent on finding the “incomplete 
solution”. Again we are using the ratios of time to make result easily reproducible on 
any platforms – see “Appendix” for algorithms’ program codes. 
 
CP – time needed to find the “incomplete solution” by Carraghan and Pardalos 
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the 
“incomplete solution” by Carraghan and Pardalos [Carraghan and Pardalos 1990a] 
algorithm. 
Note that we use this as a normalising line needed for the later presentation of results 
on the graph view, since this ratio is 1 always by definition. 
PO – time needed to find the “incomplete solution” by Carraghan and Pardalos 
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the 
“incomplete solution” by Östergård [Östergård 2002] algorithm. 
VColor-u – time needed to find the maximum clique by Carraghan and Pardalos 
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the 
“incomplete solution” by the “VColor-u” algorithm. 

Table 19. How fast algorithms are in finding an “incomplete solution” – spent time 

Edge density Vertices CP PO VColor-u 
0.1 1600 1.0 0.1 0.2 
0.2 1200 1.0 0.3 0.8 
0.3   750 1.0 0.3 3.4 
0.4   500 1.0 0.2 5.4 
0.5   300 1.0 0.3 6.9 
0.6   200 1.0 0.3 8.5 
0.7   150 1.0 0.86 10.9 
0.8   120 1.0 0.75 17.5 
0.9   100 1.0 1.8 140.48 

 
For example 8.5 in the VColor-u column means that the Carraghan and Pardalos 

algorithm requires 8.5 times more time than the “VColor-u” algorithm to find the 
“incomplete solution”. 

First of all the PO column – the Östergård algorithm – is the slowest in finding the 
“incomplete solution” on all densities except 90%. We expected this result basing on 
zeroes in this column in the previous table showing number of times the algorithm was 
the quickest. It is surprising that this algorithm was quicker than that of Carraghan and 
Pardalos on average on the highest density, even when using the backtracking search. 
It should mean that the Carraghan and Pardalos algorithm’s pruning technique 
degenerated fully on this density allowing the Östergård algorithm be quicker on 
average. The fact that the Carraghan and Pardalos algorithm still was 5 times the 
quickest on this density of 90% should mean that for those won cases the sorting was 
“right” for finding the solution during first iterations and those 5 times are rather a 
statistical deviation, since a right sorting cannot be easily found. 
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Figure 24. Incomplete solution finding: number of 

wins and time spent by algorithms 
 
This graphical view contains results from both 

tables for two main algorithms that have been 
winning on different densities. It is easy to see that 
the number of wins and ratios of time for the 
“VColor-u” algorithm are growing proportionally 
with the density and therefore the same proportions 
are valid for the Carraghan and Pardalos algorithm 
but in the decreasing direction for the number of 

wins. The Carraghan and Pardalos algorithm is clearly the best by all parameters on 
low densities and the “VColor-u” algorithm is clearly the best starting from the middle-
high densities. So, both algorithms are worse to use on different densities for general 
graphs, although for a particular graph cases those graphics could be different. This 
question will be discussed in the next subchapters both for the general problem of 
finding the maximum clique and for finding the “incomplete solution”. 

5.2 Adaptive Algorithm 
Here we are going to present a philosophy of building an algorithm that concentrates 
inside itself all the best algorithms and is intelligent enough to apply the right one. This 
idea means that we need a meta-algorithm that will collect data and have some 
intelligence. Different types of intelligence could be used. The easiest way is to have 
an “expert systems” type meta-algorithm, which will have fixed type rules. The more 
complex one could be clever enough to learn like, for example, neural networks do. 

5.2.1 “Expert” type intelligence 
As we have already seen in the “Tests and results” chapter, there is no universal 
algorithm that solves all graphs cases faster than other algorithms. It is rather common 
to have a set of algorithms or modifications of those that have different strong sides 
and therefore are good in solving one or another particular graph case. 

So, it is possible to build a meta-algorithm with fixed rules that will select the best 
algorithm basing on the preliminary information about a graph to be solved, or basing 
on an initial analysis of the graph. The easiest information that we usually have before 
running the main algorithm is the graph’s density. The “Test and Results” chapter has 
shown that if the density is no bigger than 10% then there is no better algorithm than 
the trivial and powerful Carraghan and Pardalos one that will solve the problem of 
finding the maximum clique directly without spending valuable time to any 
unnecessary additional steps. Otherwise use the “VColor-BT-u” algorithm to solve all 
others densities in common case. The results of this work have shown that this 
algorithm is sufficiently faster than others. 

Another kind of information that we can have is the type of a graph. This 
information is not always available, but if you have it or know how the graph is built 
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then it is possible to save a lot of time by applying the right algorithm to find the 
maximum clique. For example, there are permutation and interval graphs that can be 
easily solved by corresponding algorithms in the polynomial time and there are no 
points to apply for them algorithms targeted to solve all possible types/structures of 
graphs. Certainly only some graphs can be solved in the polynomial time, but even for 
graphs that are hard to solve there could be algorithms that suit more. We have 
analysed some graph cases in the “DIMACS” subchapter of the “Tests and Results” 
chapter for the unweighted graphs and you can see, which algorithm is better for which 
graph’s type. Moreover, we never tuned our algorithms to perform better on one or 
another graph type, but this could be done. Reasons why we never did it are: 

• We tried to come up with a common solution/algorithm that will find the 
maximum clique on any graph; 

• We have compared our algorithms with other algorithms that we are not going 
to tune and those were not tuned by their authors; therefore we should not tune 
our algorithms as well to be honest in comparison tests. 

So there are a lot of possibilities to come up with tuning ideas for our main 
algorithm “VColor-BT-u” to make it better on certain graph types as well as for other 
algorithms. It is logical that all those modifications should be available for the meta-
algorithm to choose which of them to run. 

Another question we have been discussing before is the “incomplete solution” case, 
i.e. when it is necessary to provide with a maximal or even the maximum clique even if 
the algorithm will be interrupted somewhere in the middle of its work. An algorithm, 
that is chosen to be the best one, sometimes is not able to find the “incomplete 
solution” fast and could require running some other algorithms before to ensure 
returning of an acceptable solution in case it is interrupted. 

 
The meta-algorithm should follow the next general rules: 
1. If the type of a graph is known then it should run the best algorithm for that 

type; 
Note: It means that the meta-algorithm should have some knowledge base in 
addition to available algorithms that will allow choosing the right algorithm to 
run. 

2. Choose an algorithm basing on the graph’s density; 
3. If there is a probability that the maximum clique finding algorithm will be 

stopped and the algorithm chosen on the previous step is not known to be good 
in finding the “incomplete solution”, then run either a heuristic algorithm or an 
exact algorithm (and stop it after some time); 
Note: The obtained result will not only ensure that the algorithm will return an 
acceptable result, but also should be used as a low bound for the main exact 
algorithm. 

4. Run the algorithm that was chosen on the second step. 
 
We have figured out the following meta-algorithm rules basing on results published 

in this work for the unweighted case: 
 
1. If the type of graph is known then it should run the best algorithm for that type; 
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2. If the density of graph is smaller or equal to 10% then run Carraghan and 

Pardalos algorithm; 
 
3. If there is a probability that the maximum clique finding algorithm will be 

stopped then: 
a. If the density is up to 25%, run the Carraghan and Pardalos algorithm 

for some time and then go to the next step; 
b. If the density is between 25% and 60%, run the “VColor-u” algorithm 

for some time and then go to the next step; 
c. Otherwise go to the next step directly. 
Note that different heuristics can be useful here if any is reported to be the 
best for a particular case to be solved. 

 
4. Run the “VColor-BT-u” algorithm. 

Note that if the “VColor-u” algorithm was used on the previous step then the 
“VColor-u” algorithm’s colouring can be directly reused by the “VColor-BT-
u” algorithm. 

5.2.2 Algorithm learning and results knowledge base 
In the previous chapter possibilities to use fixed type rules have been reviewed . We 
have built the meta-algorithm, which is an expert in the maximum clique finding. We 
used “Expert systems” ideas and provided our meta-algorithm with all knowledge we 
have at the moment. Unfortunately, the same assumption is made again that we have to 
invent an algorithm that will deal with very different graphs and that should solve any 
graphs. There is one motto that is widely used nowadays – “Think globally, operate 
locally”. Any particular case could have its own aspects, properties etc. of graphs to be 
solved. We could not foresee all those aspects and, moreover, these can be opposite to 
what we were expecting, or those requirements could be opposite to an algorithm 
building point of view. Therefore the ideal case will be a self-learning algorithm. Of 
course, we do not talk about a meta-algorithm that will invent new algorithms to find 
the maximum clique. Probably it is too self-confidently to try invent such right know. 
What we mean is a meta-algorithm that will be able to collect some statistics about 
algorithms’ performance on graphs that were solved and later, basing on this statistics, 
will be able to choose, which algorithm to run. This meta-algorithm will adapt to a 
particular environment and graphs existing in this environment, to the environment 
where it has to operate. This adaptation will mean that we move from the general 
“expert system” to a more evolving algorithm, which is able to “survive” in any 
particular environment in the best way. 

Collecting information on which algorithm/modification is better generally means 
that the meta-algorithm will try to run all algorithms/modification with all graphs. 
Otherwise it will not be possible to answer a question: “Will any other algorithm 
perform better than the one we are going to use?” Another important aspect we should 
think about is providing more information than the meta-algorithm can collect by itself 



 106

like a graph’s density or number of vertices. Is there any additional information on the 
graph? Are all graphs the same or you know their types? Is it possible to distinguish a 
source of the graph? Any such information will be useful to keep statistics and better 
adapt for any particular graph cases. 

Now, we know all additional information and we can pass these details into the 
meta-algorithm. The main question is how to start collecting data. This can be done in 
two ways: 
 
Run other algorithms while in the stand-by mode 

The meta-algorithm that finds the maximum clique is rarely asked to do it 
continuously. So it doesn’t have to resolve immediately another problem after the 
previous one. In this case, after returning an answer, the meta-algorithm can use 
available free resources. It can try all other algorithms not used to give the answer, to 
find if there was a better/quicker way to perform the task. Basing on the collected 
information each algorithm could receive points (for example 1 point each time to the 
fastest one). Basing on those points an algorithm to be used next time should be 
chosen. If there is a high probability that a new task will arrive soon then the meta-
algorithm should try algorithms in the already obtained points’ sequence. This will 
allow trying first the most probable one to be the fastest, then the next probable one 
and so forth. 

 
Learn the meta-algorithm to use available algorithms 

Another idea is to train the meta-algorithm use its algorithms for finding the 
maximum clique prior to the real using. The idea allows collecting statistics before you 
start to use the meta-algorithm and it will not be necessary to spend resources on 
collecting statistics later while in operation. 

The training could be done by asking to solve as many different types of graphs as 
possible in all required modes if any exists – like a requirement to stop after e.g. 10 
seconds and provide the best found solution etc. For any type/mode as many graph 
examples as possible should be used. Instead of using artificial examples, it is always 
advisable to use such examples that will likely occur later during the real using of the 
meta-algorithm. 

It is also important to monitor the performance and changes in the environment. If 
graphs to be solved are changing due some changes in the requirements or you suspect 
that the meta-algorithm is not providing its best, then it is time to re-train the meta-
algorithm. 

 
Both ways have another very important advantage in addition to the described – 

those ways allow collecting information that makes it (also for you) possible to learn 
how well graphs are solved and which algorithms are used to solve any particular 
graph case. This gives a possibility to analyse collected statistics and to invent even 
better modifications of existing algorithms. 
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5.3 Summary 
This chapter has described some ideas of building an intelligent meta-algorithm that is 
able to adapt for graphs that have to be resolved in a particular environment and to 
apply the best variation of maximum clique finding algorithms for each individual 
graph case. We do not mean using special algorithms separately for any particular case, 
but rather using a universal meta-algorithm, which is able to adapt. These ideas came 
from expert systems and data analyses and can be successfully used in the maximum 
clique finding from our point of view. This discussion is more an applying part of the 
maximum clique finding, although this cannot be done without understanding of what 
the maximum clique finding problem is and which properties should be tracked by the 
meta-algorithm. Using such methods should increase the general performance of 
algorithms that are applied in this or another science area. 

Another area discussed was finding the maximum clique in the real-time 
environment when an algorithm can be stopped at any moment. The term “incomplete 
solution” has been introduced and embedded into the overall logic of the meta-
algorithm. The “incomplete solution” is nothing else than the maximum clique, which 
is not yet proved to be the maximum one. It means that although we know that the 
maximum clique is found, we have to scan all remaining branches to ensure that. Some 
tests have also been done to get the general overview of how existing best algorithms 
perform in the “incomplete solution” finding. These tests have shown that internal 
structures of algorithms are very different and some algorithms suit more for operating 
in the real-time environment than others. We also came up with some suggestions 
about meta-algorithm’s rules, which can take those properties into account. 

Using such meta-algorithm will allow automating the selection of the best 
maximum clique finding algorithm to run. This process could save a lot of time since 
we are dealing with NP-complete problems. Besides, it saves a lot of man-hours when 
a system is intelligent enough to make decisions. 
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6 SUMMARY 

6.1 Researched Problem 
The main topic of this study as it has been stated in the subchapter 1.3 is the maximum 
clique finding from an arbitrary undirected graph. Both weighted and unweighted 
graphs were researched. It has been shown in the thesis’ introduction that the studied 
maximum clique finding problem is important first of all from two points of view: 
complexity and applications. The problem’s complexity is reviewed in the subchapter 
1.4, where it has been demonstrated that this problem belongs to the class of NP-hard 
problems. It has also been shown in the subchapter (1.4) that a better understanding of 
this problem lets us understand better all other NP problems as well as a better and 
quicker algorithm can provide us with better ways of solving practically any other NP 
problem including main NP complete problems. Applications of the maximum clique 
finding are the second important implication of this problem and those were reviewed 
in the subchapter 1.6. The treated problem has a lot of extremely important 
applications in a variety of areas like biology, circuits’ design and testing, medicine, 
etc. This occurs because the theory of graphs provides all other science areas with a 
very good and sophisticated abstract model and the maximum clique problem is one of 
the central problems of the graph’s theory. Here it should be noted again that the 
maximum clique finding problem belongs to the NP problems’ class, i.e. is extremely 
time consuming for solving. That’s why any better algorithm is able to save hours, 
days of maybe even months of work time. This shows importance of this task and why 
achieving the main objectives of this thesis, declared in the subchapter 1.3, could have 
a strong economical impact if applied in any business, economical, transportation etc. 
applications. 

6.2 Thesis Summary 
It has been defined in subchapters 1.3 and 1.5 that the goals of this thesis are: 
proposing new algorithms for the maximum clique finding in an arbitrary undirected 
graph (both weighted and unweighted cases) through identifying graphs properties that 
should accelerate the maximum clique search; developing a methodology for building 
a suitable test environment for new algorithms and then concentrating the experience 
obtained so far by working out a philosophy of building a meta-algorithm for solving 
the maximum clique finding problem. That’s why the thesis has been divided into three 
major logical parts: the new algorithms, testing, and algorithms’ intelligence. 

During our researches we have detected a graphs’ property that provided us with 
better algorithms – very simple and therefore having so big impact: any vertices of an 
independent set cannot be included into the same clique. This property is used for a 
pruning formula of the simple but efficient branch and bounds algorithm. We have 
suggested in the presented thesis finding those independent sets using a vertex-
colouring algorithm. The last task is also NP-hard; therefore we used a heuristic 
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algorithm to find the vertex-colouring of a graph. We demonstrated using of this new 
approach directly by describing three new algorithms – the “VColor-u” and the 
“VColor-BT-u” for the unweighted graph case and the “VColor-BT-w” for the 
weighted graph case. Generally our algorithms are a very successful evolution of the 
classical algorithm invited by Carraghan and Pardalos [Carraghan and Pardalos 1990a]. 
We have demonstrated in this work that a number of colour classes (independent sets 
produced by a vertex-colouring algorithm) much better estimates a possible maximum 
clique size of any (sub)graph than the number of vertices used so far. A special 
algorithm for recalculating the number of existing colour classes on a subgraph has 
been proposed here serving the pruning formula. This algorithm is another important 
contribution of this paper since it makes possible to use the vertex-colouring measure 
quickly and effectively. It includes vertices reordering accordingly to their colours and 
a sub-procedure for recalculating the number of existing colours by shifting a 
previously obtained result. In addition, it includes reordering of vertices by weights in 
each colour class for the weighted case. All this has been demonstrated inside an 
extended explanation of each algorithm’s description, which makes the algorithms easy 
to implement and understand. A set of examples have been provided in addition to 
explanations and a formal formulation of the algorithm, which are simple to follow. 
We also have analysed each example to demonstrate what was important inside it and 
what knowledge could be derived from it. Our experience with other algorithm has 
shown that it is easy to mis-implement an algorithm by making a small mistake 
somewhere in algorithm’s details. Such mistake can lead to dramatic decrease in the 
performance. In order to eliminate such possibilities we have worked out a set of 
guidelines on our algorithms implementation, which are provided in the 3.2.3 
subchapter. We also have inherited a backtracking search idea invited by Östergård 
[Östergård 2002, Östergård 2001] into the algorithms having “BT” in their names. 
Here we have proposed using colour classes instead of individual vertices and have 
demonstrated that concatenation of the colour classes’ approach and the backtracking 
idea makes the algorithms’ work much more efficient. 

In the subchapter 3.4 we conducted a comparative study of the new algorithms. We 
used an algorithm proposed to be used for benchmarking by DIMACS [Johnson and 
Trick 1996, DIMACS 1999], which is invited by Carraghan and Pardalos [Carraghan 
and Pardalos 1990a] and called in the thesis - “base” algorithm. In order to demonstrate 
that the proposed algorithms are the quickest at the moment we picked up also 
algorithms, which are reported to be the quickest right now – invited by Östergård 
[Östergård 2002, Östergård 2001] – both weighted and unweighted cases. It is enough 
to use Östergård’s algorithms since he recently has done his comparative study with a 
lot of others algorithms and we fully trust into those results. We conducted our tests for 
the unweighted case both on randomly generated graphs – see the subchapter 3.4.2.1, 
and on special types of graphs mainly provided by DIMACS Challenges [DIMACS 
1999] – see the subchapter 3.4.2.2. We used only randomly generated graphs for the 
weighted case – see the subchapter 3.4.3, since there is a lack of special graph cases 
right now. It was shown, that all our algorithms behave very good on all graph cases, 
and always outperform the compared algorithms. Especially good results are shown on 
dense graphs, where a lot of other algorithms degenerate to the exhaustive search. 
Usage of this new pruning technique gave us algorithms, which are better than the base 
algorithm in hundreds times on dense graphs. The colour classes’ approach made the 



 110

backtracking search perform much better as we have shown through our test. We 
moved the backtracking search on another, a higher level of the operation and 
performance. The algorithms “VColor-BT-u” (unweighted case) and “VColor-BT-w” 
(weighted case) were best in most cases although for some graph cases we have seen 
that “VColor- u” out perform others. We also investigated a reason of this increase in 
the performance and have demonstrated that a number of subgraphs analysed during 
the maximum clique finding using colour classes fall dramatically. 

The algorithms proposed by us in this thesis also remain simple for understanding 
and implementation. This is an important property that is inherited from the branch and 
bound type of algorithms. Therefore the algorithms are not just the quickest (which is 
important by itself), but also are simple and this makes it possible to use those by 
universities for studying by students and effectively apply in real tasks. A lot of 
practical suggestions and examples are provided in this work to make implementation 
of those algorithms to be simple and quick. 

We concentrated in our thesis a lot on practical aspects of the maximum clique 
finding instead of been limited by researching only mathematical or theoretical aspects 
of this problem because of the high implication on the real economical problems 
described in the subchapter 1.6. Our aim was to make thesis’ results easily applicable 
and motivate further interest in this research from an applications point of view. That’s 
why there is fewer maths than somebody could expect. The same is about algorithms 
that could be very good from a mathematical complexity point of view but are hard to 
apply. That’s why we used for our comparative tests in the subchapter 3.4.2 best 
algorithms that are not only best from the mathematical point of view but are also can 
be really used in different applications – algorithms invited by Carraghan and Pardalos 
[Carraghan and Pardalos 1990a and Carraghan and Pardalos 1990b] and by Östergård 
[Östergård 2002, Östergård 2001]. 

Different versions of the presented algorithms have been recently published and 
presented on conferences [Kumlander 2003, Kumlander 2004a, Kumlander 2004b, 
Kumlander 2005a]. 

We continued our thesis in the next thesis part by describing a test environment, i.e. 
a methodology of building it. This topic is usually undervalued although is an essential 
part of any research in the graph theory since any mathematical model should be 
usually proved by practical results. A philosophy of constructing the test environment 
is discussed in the chapter 4 basing on a huge number of experiments and tests that 
have been done to test the new invited algorithms. The proposed model has been 
divided into several independent parts, which are grouped into several layers. The 
following parts have been identified as parts of the model: modules implementing 
algorithms – see the subchapter 4.2; a utilities library that enables reading graphs, 
generating graphs and outputting results – is described in the subchapter 4.3; a meta-
algorithm and a user interface are core elements of the model and are responsible for 
running tests – those are explained in subchapters 4.4 and 4.5. Those model parts are 
integrated using internal standards and a special architecture of the test environment. 
The model and data flows are presented in the subchapter 4.6. A lot of advices based 
on our experience are provided and the architecture is discussed in this chapter. This 
discussion is the next step of experimental analysis of algorithms discussion started by 
Johnson in the year 2002 [Johnson 2002]. 
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Finally an algorithms’ intelligence has been discussed in the subchapter 5 and 
several ideas of a meta-algorithm implementation are proposed. This chapter 
concentrates ideas derived from the meta-algorithm, which was described as a part of 
the test environment in the chapter 4 and the algorithms we started our thesis from. We 
have shown in this 5th chapter a philosophy of building the meta-algorithm and this 
study was initially influenced by different modifications of the new algorithms, which 
we wanted to have for some special graph cases. Here we proposed a model of the 
meta-algorithm, containing maximum clique finding algorithms, that can decide basing 
on some additional information, which of those algorithms to run. Although such meta-
algorithms are widely used in other data analyses areas, there are not adopted for the 
maximum clique problem until now or at least are rather weak. In this part of our thesis 
we collected different ideas and applied them to the maximum clique finding. The 
meta-algorithm can increase the performance of the system mostly by applying “right” 
algorithms for a particular graph case. Again it occurs mainly because of the 
complexity of the maximum clique finding problem since applying the best algorithm 
can save a lot of time in solving NP-hard problems. 

We started this topic with reviewing a case when an algorithm can be suddenly 
stopped during the maximum clique finding and a current best clique has to be returned 
as the best solution. A new term called “incomplete solution” has been introduced in 
the subchapter 5.1.1 meaning a clique, which is already the maximum one for a graph 
although it is not proved yet, i.e. a lot of branches should be analysed further until this 
clique will be returned as an answer. This helps us to fix a point of finding the 
maximum clique without proving its maximality and was used to test currently best 
algorithms, which have been used in the previous comparative testing, for such real-
time environment. This is a type of information that the intelligent meta-algorithm 
should certainly get into account. Results of the test are presented in the subchapter 
5.1.2.2. 

In the end of ends we concentrated all meta-algorithm’s issues in the subchapter 5.2 
where different meta-algorithms are proposed and a philosophy of those is discussed. 
The first type of the meta-algorithm announced in the subchapter 5.2.1 is the meta-
algorithm, which is implemented like expert systems containing some rules. The next 
proposed model is much more sophisticated and is able to train by collecting a statistic 
by main graph properties. Such self-learning meta-algorithm is presented in the 
subchapter 5.2.2. The strongest side of that meta-algorithm is its capability to adapt to 
any environment it should work in and resolve graphs in this environment in the best 
way. We have shown that this meta-algorithm acting locally rather than getting into 
account all possible cases that can exist in other environments. In addition to the 
intellectual way of working the described meta-algorithm collects statistic and provides 
a lot of interesting information for further development of the maximum clique finding 
algorithms used in it. The described approach to the algorithms intelligence in the 
maximum clique finding have been recently announced on the “Operational Research 
2005” conference [Kumlander 2005b]. 
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6.3 Future Research Work 
The main direction of future researches would be in the maximum clique algorithms 
field. We should continue looking for more properties of graphs that can be efficiently 
used for building new algorithms for finding the maximum clique. We hope that 
information of none existing edges is undervalued in algorithms based on analysing 
existing edges. Another interesting research topic would be to analyse further 
performance of the new algorithms on different types of graphs. This hopefully would 
enable to detect a new type of graphs, where the algorithms work especially well or 
bad. We should also investigate more dense graphs in further attempts to increase 
performance of algorithms there. Even the proposed algorithms’ performance there is 
not as good as we would like to have. Another type of graphs where algorithms are 
having problems is graphs where all so far developed estimations show that a larger 
maximum clique could be found than there really exists. Usually those graphs have 
quite a small maximum clique having average density, for example see error correction 
code graphs [Sloane 2002]. 

A necessary research topic to investigate could be whether there could be found a 
better heuristic vertex-colouring technique than the greedy colouring that we could use 
in our algorithms. From one hand we cannot expect much better results than the greedy 
algorithm can produce in general as we have shown in our analyses in the subchapters 
3.4.1 and 3.4.2.1.4. From another hand there could be a vertex-colouring algorithm that 
fits more into the new technique of pruning by colour classes. Besides it is important to 
check different colouring algorithms for different types of graphs since this 
information could be very useful to include into algorithms intelligence as well as for 
the general vertex-colouring problem researches. 

We should continue researching the meta-algorithm approach described in this 
dissertation. An interesting topic to investigate will be a number of iterations for the 
“incomplete solution” case for different algorithms. We also would like to find more 
properties basing on which graphs can be spread across different groups.  

Another area of researches could be developing an online maximum clique solver 
exposing web-services for the maximum clique problem. Inside this project both test 
environments ideas and algorithms intelligence principles could be combined. In the 
scope of this project we also would try to develop some standards for different areas of 
maximum clique finding like for example there is for the finance sector – a standard 
XML format’s data exchange – see XBRL. Those standards can be defined to make 
modules, which should be inherited from a base class or implement certain interfaces; 
standards on calling a service for finding the maximum clique via Internet and returned 
output etc. A free online service would promote using those standards and enable to 
gather opinions of the open society on further standards development. Another idea 
could be to release a component that can be used online on the customer side – this 
would decrease a load of the server. Anyway all those researches could promote further 
development the algorithms’ intelligence ideas described so far. 
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APPENDIX A: PROGRAMS LISTINGS 

Unweighted Case 

VColor-u 
Option Explicit 
  
' Optimised Carraghan, R., Pardalos, P. M. algorithm 
' by using a heuristic vertex colouring classes for pruning 
  
Private moClasses() As Long, mnClassesCount As Long 
Private nLevelDegree() As Long 
Private level_nodes() As Long, nStart() As Long, NodesNum() As Long 
Private t As Long, mnMaxClique As Long 
' 
  
Public Function Start() As Long 
  Dim i As Long, t_minus_1 As Long 
   
  ReDim level_nodes(1 To Nodes, 1 To Nodes) 
   
  mnMaxClique = 0 
  '''''' each level has its own set of nodes 
  For i = 1 To Nodes 
    level_nodes(1, i) = i 
  Next 
   
  ''''' 
  DefineClasses 
   
  ReDim NodesNum(1 To mnClassesCount) 
  ReDim nStart(1 To mnClassesCount) 
  ReDim nLevelDegree(1 To mnClassesCount) 
  NodesNum(1) = Nodes 
  
  t = 1 
  nStart(t) = 0 
  ''''''''''''''''''''''''''''''''''' 
  While t >= 1 
    nStart(t) = nStart(t) + 1 
     
    ''' Degree control 
    If NodesNum(t) < nStart(t) Then 
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      t = t - 1 
    Else 
      ''' if it is not first node (for fist node degree can not be adjusted) 
      ''' and prev. node class is not the same then decrease degree  
      ''' (can be done since vertices are sorted 
      ''' and if cur. vertex class is not the same as for previous then  
      ''' the prev. class is not any longer existing) 
      If nStart(t) > 1 Then 
        If (moClasses(level_nodes(t, nStart(t))) <> _ 

moClasses(level_nodes(t, nStart(t) - 1))) Then 
          nLevelDegree(t) = nLevelDegree(t) - 1 
        End If 
      Else 
        ''' calculate degree on new depth 
        nLevelDegree(t) = LevelDegree() 
      End If 
      If (t - 1 + nLevelDegree(t)) > mnMaxClique Then 
        t_minus_1 = t 
        t = t + 1 
        nStart(t) = 0 
        NodesNum(t) = 0 
        ''' define nodes for the next level 
        For i = nStart(t_minus_1) + 1 To NodesNum(t_minus_1) 
          If arr(level_nodes(t_minus_1, nStart(t_minus_1)), _  

level_nodes(t_minus_1, i)) Then 
            NodesNum(t) = NodesNum(t) + 1 
            level_nodes(t, NodesNum(t)) = level_nodes(t_minus_1, i) 
          End If 
        Next 
        If NodesNum(t) = 0 Then 
          t = t - 1 
          If t > mnMaxClique Then 
            mnMaxClique = t 
          End If 
        End If 
             
      Else 
        t = t - 1 
      End If 
    End If 
   
  Wend 
   
  ''' return size of maximum clique 
  Start = mnMaxClique 
End Function 
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Private Function LevelDegree() As Long 
  Dim res As Long, i As Long, nClass As Long, aClass As Long 
     
    For i = nStart(t) To NodesNum(t) 
      ''' for node on level define class (moClasses) and mark it as existing 
      nClass = moClasses(level_nodes(t, i)) 
      If nClass <> aClass Then 
        aClass = nClass 
        res = res + 1 
      End If 
    Next 
     
  LevelDegree = res 
End Function 
  
Private Sub DefineClasses() 
  Dim class_init() As Boolean '' show if node exist 
  Dim i As Long, k As Long 
  Dim mnRemainNodes As Long, bFirstNode As Boolean, nkNode As Long 
  Dim nNodeNum As Long 
     
  mnClassesCount = 0 
  ReDim class_init(1 To Nodes) 
  ''' get info about existing nodes 
  ReDim moClasses(1 To Nodes) 
  ''''' 
  mnRemainNodes = Nodes 
  While True 
    ''' build up new class 
    mnClassesCount = mnClassesCount + 1 
    bFirstNode = True 
    ''' position of first node 
    i = mnRemainNodes 
    While i > 0 
      ''' swap nodes 
      nNodeNum = level_nodes(1, i) 
      If i <> mnRemainNodes Then 
        ''' swap rows 
        level_nodes(1, i) = level_nodes(1, mnRemainNodes) 
        level_nodes(1, mnRemainNodes) = nNodeNum 
      End If 
      ''' 
      moClasses(nNodeNum) = mnClassesCount 
       
      mnRemainNodes = mnRemainNodes - 1 
      If mnRemainNodes = 0 Then Exit Sub 
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      If bFirstNode Then 
        For k = 1 To mnRemainNodes 
          nkNode = level_nodes(1, k) 
          class_init(nkNode) = arr(nNodeNum, nkNode) 
        Next 
      Else 
        For k = 1 To mnRemainNodes 
          nkNode = level_nodes(1, k) 
          class_init(nkNode) = arr(nNodeNum, nkNode) Or class_init(nkNode) 
        Next 
      End If 
      bFirstNode = False 
      For i = mnRemainNodes To 1 Step -1 
        If Not class_init(level_nodes(1, i)) Then Exit For 
      Next 
    Wend 
  Wend 
End Sub 
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VColor-BT-u 
 
Option Explicit 
  
' Optimised Carraghan, R., Pardalos, P. M. algorithm 
' by using a heuristic vertex colouring classes for pruning' and a backtrack search for  
' colour classes 
  
Private moClasses() As Long, mnClassesCount As Long 
Private nLevelDegree() As Long 
Private level_nodes() As Long, nStart() As Long, NodesNum() As Long 
Private t As Long, mnMaxClique As Long 
' 
Public Function Start() As Long 
  Dim i As Long, t_minus_1 As Long 
   
  ReDim level_nodes(1 To Nodes, 1 To Nodes) 
   
  mnMaxClique = 0 
 
  '''''' each level has its own set of nodes 
  For i = 1 To Nodes 
    level_nodes(1, i) = i 
  Next 
  
  DefineClasses 
   
  ReDim NodesNum(1 To mnClassesCount) 
  ReDim nStart(1 To mnClassesCount) 
  ReDim nLevelDegree(1 To mnClassesCount) 
  NodesNum(1) = Nodes 
  
  t = 1 
  nStart(t) = 0 
  ''''''''''''''''''''''''''''''''''' 
  While t >= 1 
    nStart(t) = nStart(t) + 1 
     
    ''' Degree control 
    If NodesNum(t) < nStart(t) Then 
      t = t – 1 
    Else 
      ''' if it is not first node (for first node degree can not be adjusted) 
      ''' and prev. node class is not the same then decrease degree  
      ''' (can be done since vertices are sorted 
      ''' and if the cur. vertex class is not the same as for previous then prev class is  
      ''' not any longer existing) 
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      If nStart(t) > 1 Then 
 
        If (moClasses(level_nodes(t, nStart(t))) <> _ 
          moClasses(level_nodes(t, nStart(t) - 1))) Then 
          nLevelDegree(t) = nLevelDegree(t) – 1 
        End If 
 
      Else 
 
        ''' calculate degree on new depth 
        nLevelDegree(t) = LevelDegree() 
      End If 
 
      If (t - 1 + nLevelDegree(t)) > mnMaxClique Then 
 
        t_minus_1 = t 
        t = t + 1 
        nStart(t) = 0 
        NodesNum(t) = 0 
 
        ''' define nodes for the next level 
        For i = nStart(t_minus_1) + 1 To NodesNum(t_minus_1) 
 
          If arr(level_nodes(t_minus_1, nStart(t_minus_1)), _ 
            level_nodes(t_minus_1, i)) Then 
            NodesNum(t) = NodesNum(t) + 1 
            level_nodes(t, NodesNum(t)) = level_nodes(t_minus_1, i) 
          End If 
 
        Next 
 
        If NodesNum(t) = 0 Then 
 
          t = t – 1 
          If t > mnMaxClique Then 
            mnMaxClique = t 
          End If 
 
        End If 
             
      Else 
        t = t – 1 
      End If 
    End If 
  Wend 
   
  ''' return size of maximum clique 
  Start = mnMaxClique 
  
End Function 
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Private Function LevelDegree() As Long 
  Dim res As Long, i As Long, nClass As Long, aClass As Long 
     
    For i = nStart(t) To NodesNum(t) 
      ''' for node on level define class (moClasses) and mark it as existing 
      nClass = moClasses(level_nodes(t, i)) 
      If nClass <> aClass Then 
        aClass = nClass 
        res = res + 1 
      End If 
    Next 
     
  LevelDegree = res 
End Function 
  
Private Sub DefineClasses() 
  Dim class_init() As Boolean '' show if node exists 
  Dim i As Long, k As Long 
  Dim mnRemainNodes As Long, bFirstNode As Boolean, nkNode As Long 
  Dim nNodeNum As Long 
     
  mnClassesCount = 0 
  ReDim class_init(1 To Nodes) 
  ''' get info about existing nodes 
  ReDim moClasses(1 To Nodes) 
  ''''' 
  mnRemainNodes = Nodes 
  While True 
    ''' build up new class 
    mnClassesCount = mnClassesCount + 1 
    bFirstNode = True 
    ''' position of first node 
    i = mnRemainNodes 
    While i > 0 
      ''' swap nodes 
      nNodeNum = level_nodes(1, i) 
      If i <> mnRemainNodes Then 
        ''' swap rows 
        level_nodes(1, i) = level_nodes(1, mnRemainNodes) 
        level_nodes(1, mnRemainNodes) = nNodeNum 
      End If 
      ''' 
      moClasses(nNodeNum) = mnClassesCount 
       
      mnRemainNodes = mnRemainNodes – 1 
      If mnRemainNodes = 0 Then Exit Sub 
      If bFirstNode Then 
        For k = 1 To mnRemainNodes 
          nkNode = level_nodes(1, k) 
          class_init(nkNode) = arr(nNodeNum, nkNode) 
        Next 
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      Else 
        For k = 1 To mnRemainNodes 
          nkNode = level_nodes(1, k) 
          class_init(nkNode) = arr(nNodeNum, nkNode) Or class_init(nkNode) 
        Next 
      End If 
      bFirstNode = False 
      For i = mnRemainNodes To 1 Step -1 
        If Not class_init(level_nodes(1, i)) Then Exit For 
      Next 
    Wend 
  Wend 
End Sub 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 126

Weighted Case 

VColor-BT-w 
 
Option Explicit 
  
' Optimised Carraghan, R., Pardalos, P. M. 
' by using a heuristic vertex colouring and a backtrack search 
  
Private moClasses() As Long, mnClassesCount As Long 
Private level_nodes() As Long, nStart() As Long, NodesNum() As Long ' number of 
nodes on level 
Private t As Long, mnMaxClique As Long 
Private nLevelWAcc() As Long 
Private nLevelDegree() As Long 
Private nMaxCliques() As Long 
' 
  
Public Function Start() As Long 
  Dim i As Long, t_minus_1 As Long, nn As Long, wt As Long 
   
  ReDim level_nodes(1 To Nodes, 1 To Nodes, 0 To 1) 
  ReDim nMaxCliques(1 To Nodes) 
  '''''' each level has its own set of nodes 
  For i = 1 To Nodes 
    level_nodes(1, i, 0) = i 
  Next 
  ''''''''''''''''''''''''''''''''''' 
  DefineClasses 
  ResortByWeights 
  For i = 1 To Nodes 
    level_nodes(1, i, 1) = i 
  Next 
  ReDim NodesNum(1 To mnClassesCount) 
  ReDim nStart(1 To mnClassesCount) 
  ReDim nLevelDegree(1 To mnClassesCount) 
  ReDim nLevelWAcc(1 To mnClassesCount) 
  NodesNum(1) = Nodes 
   
  For nn = Nodes To 1 Step -1 
    t = 2 
    NodesNum(t) = 0 
    nLevelWAcc(t) = w(level_nodes(1, nn, 0)) 
    For i = nn + 1 To Nodes 
      If arr(level_nodes(1, nn, 0), level_nodes(1, i, 0)) Then 
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        NodesNum(t) = NodesNum(t) + 1 
        level_nodes(t, NodesNum(t), 0) = level_nodes(1, i, 0) 
        level_nodes(t, NodesNum(t), 1) = level_nodes(1, i, 1) 
      End If 
    Next 
    If NodesNum(t) = 0 Then 
      t = t - 1 
      If nLevelWAcc(t + 1) > mnMaxClique Then 
        mnMaxClique = nLevelWAcc(t + 1) 
      End If 
    Else 
      nStart(t) = 0 
    End If 
     
    While t >= 2 
      nStart(t) = nStart(t) + 1 
             
      If NodesNum(t) < nStart(t) Then 
        t = t - 1 
      Else 
        If (nLevelWAcc(t) + nMaxCliques(level_nodes(t, nStart(t), 1))) > _ 
           mnMaxClique Then 
       
          If nStart(t) > 1 Then 
            If (moClasses(level_nodes(t, nStart(t), 0)) <> _ 
                            moClasses(level_nodes(t, nStart(t) - 1, 0))) Then 
                 nLevelDegree(t) = nLevelDegree(t) - w(level_nodes(t, nStart(t) - 1, 0)) 
            Else 
                 nLevelDegree(t) = nLevelDegree(t) – (w(level_nodes(t, nStart(t) - 1, 0)) _ 
                     + w(level_nodes(t, nStart(t), 0)) ) 
            End If 
          Else 
            ''' calculate degree on new depth 
            nLevelDegree(t) = LevelDegree() 
          End If 
         
          If (nLevelWAcc(t) + nLevelDegree(t)) > mnMaxClique Then 
            t_minus_1 = t 
            t = t + 1 
            nStart(t) = 0 
            NodesNum(t) = 0 
            nLevelWAcc(t) = nLevelWAcc(t_minus_1) + _ 
                    w(level_nodes(t_minus_1, nStart(t_minus_1), 0)) 
            ''' define nodes for the next level 
            For i = nStart(t_minus_1) + 1 To NodesNum(t_minus_1) 
              If arr(level_nodes(t_minus_1, nStart(t_minus_1), 0), _ 
                     level_nodes(t_minus_1, i, 0)) Then 
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                NodesNum(t) = NodesNum(t) + 1 
                level_nodes(t, NodesNum(t), 0) = level_nodes(t_minus_1, i, 0) 
                level_nodes(t, NodesNum(t), 1) = level_nodes(t_minus_1, i, 1) 
              End If 
            Next 
            If NodesNum(t) = 0 Then 
              t = t - 1 
              If nLevelWAcc(t + 1) > mnMaxClique Then 
                mnMaxClique = nLevelWAcc(t + 1) 
              End If 
            End If 
          Else 
            t = t - 1 
          End If 
        Else 
          t = t - 1 
        End If 
      End If 
    Wend 
    nMaxCliques(nn) = mnMaxClique 
  Next 
   
  ''' return size of maximu clique 
  Start = mnMaxClique 
End Function 
  
Private Sub DefineClasses() 
  Dim class_init() As Boolean '' show if node exists 
  Dim i As Long, k As Long 
  Dim mnRemainNodes As Long, bFirstNode As Boolean, nkNode As Long 
  Dim nNodeNum As Long 
  
  mnClassesCount = 0 
  ReDim class_init(1 To Nodes) 
  ''' get info about existing nodes 
  ReDim moClasses(1 To Nodes) 
  ''''' 
  mnRemainNodes = Nodes 
  While True 
    ''' build up new class 
    mnClassesCount = mnClassesCount + 1 
    bFirstNode = True 
    ''' position of first node 
    i = mnRemainNodes 
    While i > 0 
      ''' swap nodes 
      nNodeNum = level_nodes(1, i, 0) 
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      If i <> mnRemainNodes Then 
        ''' swap rows 
        level_nodes(1, i, 0) = level_nodes(1, mnRemainNodes, 0) 
        level_nodes(1, mnRemainNodes, 0) = nNodeNum 
      End If 
      ''' 
      moClasses(nNodeNum) = mnClassesCount 
       
      mnRemainNodes = mnRemainNodes - 1 
      If mnRemainNodes = 0 Then Exit Sub 
      If bFirstNode Then 
        For k = 1 To mnRemainNodes 
          nkNode = level_nodes(1, k, 0) 
          class_init(nkNode) = arr(nNodeNum, nkNode) 
        Next 
      Else 
        For k = 1 To mnRemainNodes 
          nkNode = level_nodes(1, k, 0) 
          class_init(nkNode) = arr(nNodeNum, nkNode) Or class_init(nkNode) 
        Next 
      End If 
      bFirstNode = False 
      For i = mnRemainNodes To 1 Step -1 
        If Not class_init(level_nodes(1, i, 0)) Then Exit For 
      Next 
    Wend 
  Wend 
End Sub 
  
Private Function LevelDegree() As Long 
  Dim res As Long, i As Long, nClass As Long, aClass As Long 
   
    For i = NodesNum(t) To nStart(t) Step -1 
      ''' for node on level define class (moClasses) and mark it as existing 
      nClass = moClasses(level_nodes(t, i, 0)) 
      If nClass <> aClass Then 
        res = res + w(level_nodes(t, i, 0)) 
        aClass = nClass 
      End If 
    Next 
  
  LevelDegree = res 
  
End Function 
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Public Sub ResortByWeights() 
  Dim i As Long, j As Long, maxi As Long, maxw As Long, aClass As Long 
  Dim nNode As Long 
  For i = Nodes To 2 Step -1 
    maxi = i 
    nNode = level_nodes(1, maxi, 0) 
    maxw = w(nNode) 
    aClass = moClasses(nNode) 
    For j = i - 1 To 1 Step -1 
      nNode = level_nodes(1, j, 0) 
      If moClasses(nNode) <> aClass Then Exit For 
      If maxw < w(nNode) Then 
        maxi = j 
        maxw = w(nNode) 
      End If 
    Next 
    If i <> maxi Then 
      nNode = level_nodes(1, i, 0) 
      level_nodes(1, i, 0) = level_nodes(1, maxi, 0) 
      level_nodes(1, maxi, 0) = nNode 
    End If 
  Next 
End Sub 
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