
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C26

Some Practical Algorithms to Solve
The Maximum Clique Problem

DENISS KUMLANDER

 2

Faculty of Information Technology

Department of Informatics

TALLINN UNIVERSITY OF TECHNOLOGY

Dissertation was accepted for the commencement of the degree of Doctor of
Philosophy in Engineering on November 07, 2005.

Supervisor: Prof Rein Kuusik, Faculty of Information Technology

Opponents: Prof Dr Mati Tombak, University of Tartu, Estonia
 Prof Dr Patric RJ Östergård, Helsinki University of Technology, Finland

Commencement: December 09, 2005

Declaration: Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of Technology
has not been submitted for any degree or examination.

Deniss Kumlander /

Copyright Deniss Kumlander, 2005

ISSN 1406-4731
ISBN 9985-59-581-5

 3

Abstract
It was found a long time ago that there are some problems that demand a lot of time to
find a solution, although it seems to be very simple. Later tremendously quick
evolution of computers has greatly motivated researches of algorithms and those
problems. Mainly researches have concentrated on problems that are hard to solve
algorithmically. A lot of such problems are abstracted into graph theory problems,
since graph theory provides a possibility to represent an essence of a problem by
distancing from its unimportant details.

The main topic of this thesis is the maximum clique finding from an arbitrary
undirected graph. This task is well known to be NP-hard, so nobody has found an
algorithm that can solve it in a polynomial time. Nowadays this problem has been
recognised as a sub-problem in a plenty number of tasks in different people activities
areas like medicine, transportation, design, geology, sociology and many others.
Therefore any better algorithm for the maximum clique finding providing could be
very important since would improve performance of different tasks in a lot of areas.
Besides, such a high implication for real economical problems promote us to
concentrate in our study also on practical aspects of the maximum clique finding. We
tried to make thesis results to be easy to implement and therefore applicable for solving
real problems.

In this thesis we first start from algorithms for finding the maximum clique from
both weighted and unweighted graphs. We use the branch and bound type of
algorithms to find maximum cliques and propose several algorithms for both graph
cases. The main contribution of this thesis is a technique for finding the maximum
clique using colour classes, which are produced by a heuristic vertex colouring. Unlike
earlier algorithms those colour classes are found only once and then rapidly used to
prune branches on all algorithm steps. A proposed algorithm of recalculating the
number of existing colour classes is extremely important here. Unlike earlier attempts
of using vertex colouring, this algorithm makes vertex-colouring pruning quick and
efficient. Thereafter several step-by-step examples of using the proposed algorithms
are demonstrated and analysed to identify why those are working effectively. Practical
recommendations on algorithms programming are also provided to ensure their correct
implementation. Comparative tests on random and DIMACS graphs are conducted and
those tests demonstrate that the invented algorithms are quicker in most cases than the
algorithms, which are known to be best at the moment. Especially sufficiently is the
difference shown on dense graphs, where the new algorithms are up to 100 times
quicker.

A test environment for maximum clique finding algorithms has been worked out
during this study. A model of it is described in detail and consists of algorithms or
modules, utilities, a meta-algorithm and a user interface. The meta-algorithm is a core
of testing environment, which conducts tests and collects information. First of all each
element of the model is described to highlight most important aspects. Thereafter we
demonstrate how all those elements could be integrated including data flows and
standards needed to make all parts of the testing environment work smoothly.

Finally we discuss algorithms intelligence in the maximum clique finding area and
propose some ideas of a meta-algorithm and its implementation. This part of this thesis

 4

concentrates ideas derived from the previously described testing environment,
algorithms for finding the maximum clique, expert systems and knowledge we
obtained from algorithms’ testing that was done in this study. We start from reviewing
a real-time systems’ case, i.e. the case when an algorithm can be suddenly stopped and
the best result found so far returned. A new term – “incomplete solution” is introduced
to identify a moment of finding a clique, which is already the maximum one although
is not yet proved to be the maximum. Using this term we can analyse best known
algorithms’ performance on real-time systems. This is an important type of information
for meta-algorithms. In the thesis we propose two types of meta-algorithms – a fixed
rules meta-algorithm and an evolving one. We demonstrate how those meta-algorithms
can be built and discuss different meta-algorithms’ learning approaches.

Keywords: maximum clique, graph theory, branch and bound, incomplete solution,
vertex-colouring, colour classes, algorithm, NP-hard, NP-complete, meta-algorithm,
test environment.

 5

Kokkuvõte

Mõned praktilised algoritmid
suurima kliki probleemi lahendamiseks

Juba päris ammu leidsid inimesed, et on olemas probleeme, mille lahendamine nõuab
palju aega, kuigi need algselt tunduvad olevat väga lihtsad. Arvutite kiire areng
motiveeris oluliselt niisuguste probleemide ja algoritmide uurimist. Uurijad
keskendusid peamiselt probleemidele, mis olid keerulised. Paljud niisugused
probleemid on koondunud graafiteooriasse ja taandatavad graafidele, kuna see
võimaldab esitada probleemi olemust vähetähtsatest detailidest vabana.

Käesoleva väitekirja peamiseks uurimisobjektiks on suurima kliki leidmine
suunamata lõplikust graafist. Keerukusteooriast on teada, et see ülesanne on NP-
keeruline ja senini pole leitud algoritmi, mis lahendaks selle ülesande polünomiaalse
aja jooksul. Tänapäeval on see ülesanne identifitseeritud alamosana paljudes inimese
tegevusvaldkondades nagu meditsiin, transport, disain, geoloogia, sotsioloogia jne.
Seetõttu võib iga efektiivsem algoritm suurima kliki leidmiseks osutada väga tähtsaks,
kuna võimaldab säästa palju aega erinevate valdkondade ülesannete lahendamisel.
Sellepärast keskendusime suurima kliki leidmisele praktilisest aspektist lähtuvalt,
proovides luua algoritme, mis ei oleks keerulised realiseerida ja oleks rakendatavad
praktiliste ülesannete lahendamisel.

Käesolevas töös käsitletakse suurima kliki leidmise algoritme kaalutud ja mitte
kaalutud graafide jaoks. Suurima kliki leidmise uute algoritmide loomisel kasutasime
baasalgoritmidena „haru-ja-piir” tüüpi algoritme ja värviklasside kärpimise tehnikat,
kus klasse genereeritakse heuristilise tippude värvimise abil. Teiste algoritmidega
võrreldes seisneb peamine erinevus selles, et värviklassid leitakse ainult üks kord, töö
alguses, samas kasutatakse neid pidevalt harude kärpimisel. Kirjeldatud lähenemine
võimaldas tõsta algoritmide efektiivsust kuni kaks suurusjärku. Töös esitatakse ka
näited uute algoritmide töösammude demonstreerimiseks ja analüüsitakse neid näiteid
selgitamaks, miks uued algoritmid töötavad nii efektiivselt. Töös avaldatakse ka
programmeerimise nõuanded, mis kindlustavad algoritmide õige ja efektiivse
realiseerimise ning rakendamise. Loodud algoritme testiti DIMACS ning juhuslikel
graafidel, mis näitas, et need on enamikul juhtudel efektiivsemad senituntuist. Eriti
suur erinevus tekkib tihedatel graafidel, kus uued algoritmid töötavad kuni 100 korda
kiiremini.

Töö käigus arendati välja suurima kliki leidmise algoritmide testimiskeskkond.
Väitekirjas kirjeldatakse testkeskkonna mudelit, mis koosneb algoritmidest (mida
testitakse), vahenditest, meta-algoritmist ja kasutajaliidesest. Meta-algoritm on
testimiskeskkonna tuum – see sisaldab algoritmi, testib neid ning kogub tulemused ja
statistika. Ka näidatakse, kuidas need elemendid integreeruvad koos andmevoogude ja
sisemise standardite kirjeldamisega.

Väitekirja lõpuosas käsitletakse algoritmi intelligentsust suurima kliki leidmise alas
ja esitatakse mõned ideed meta-algoritmi ehitamiseks. See väitekirja osa koondab
kokku eelnevalt töös kirjeldatud testimiskeskkonna ideed, suurima kliki leidmise
algoritmid, ekspertsüsteemid ja algoritmide testimise kogemused. Ka käsitletakse
reaalaja süsteemide keskkonda – need on süsteemid, kus algoritm võib olla peatatud

 6

suvalisel ajahetkel, tagastades hetke parima tulemuse. Töös pakutatakse uue termini
„lõpetamata lahendus” kasutusele võtmist. See võimaldab fikseerida hetke, millal
tegelik suurim klikk on juba leitud, kuigi me ei ole jõudnud veel tõestada, et see on
suurim. Nimetatud terminit kasutatakse töös tänapäeva parimate suurima kliki leidmise
algoritmide analüüsimiseks reaalajasüsteemides, võimaldamaks määrata, millised
nendest töötavad hästi ja milliseid nendest oleks parem mitte kasutada. See on oluline
informatsioon meta-algoritmide jaoks. Töös esitatakse ka kaks meta-algoritmi liiki –
fikseeritud reeglitega meta-algoritm ja keskkonnale adapteeruv meta-algoritm.
Näidatakse, kuidas niisuguseid meta-algoritme ehitada ning diskuteeritakse erinevate
õppimismetoodikate teemal.

Võtmesõnad: suurim klikk, graafi teooria, haru-ja-piir, lõpetamata lahendus, tippude
värvimine, värvi klassid, algoritm, NP-keeruline, NP-raske, testimiskeskkond, meta-
algoritm.

 7

Acknowledgements
It's been a long way, but we're here

Alan B. Shepard

Above all I would like to thank my supervisor Prof Rein Kuusik. He has always been
able to find time for me although was constantly heavily occupied with work as a
director of the department of informatics and with other students – teaching and
supervising. He is a key person in my university study, starting from my second year in
Tallinn University of Technology, when he was lecturing the “Monotonic systems”
course up to now. Thank you, my Teacher.

The accomplishing of this thesis would have been impossible without the support I
received from my wife Niina Kumlander. She has been so helpful and understanding
during all this years. Working on my thesis I also had to do my everyday work. I have
been missing you a lot spending many hours during weekends, vacations and evenings
writing down my thesis. In addition to motivating and supporting me, she had to do a
lot of things at our home instead of me and managed to survive without the man’s help.
I greatly appreciate that and promise to compensate that.

I would also like to thank Prof Emeritus Leo Võhandu. I always felt his presence
though he remained in a shadow in many cases. First of all I would like to thank him
for his seminars that taught me both what to write (i.e. a subject) and how to present
what has been written. He also motivated me a lot, especially during earlier years of
my doctorate study. His scientific criticism is never devastating, but rather motivating,
demanding, encouraging and influential.

I especially thank my colleague Veiko Laev and my university friends Roman
Konovalov and Vladislav Loidap for their suggestions and corrections. You have
always been patient with me and always offered your help when I needed it most. You
have never complained and I appreciate that very much. I would also like to thank
Mare-Anne Laane for her corrections in some of my papers. Her advices where both
extremely valuable and helpful and I really regret that I wasn’t able to reach the level
he wanted from me.

I am grateful to the Estonian Information Technology Foundation (EITSA) that
supported my participation in practically all conferences I attended. This gave me a
chance to present my work results and, what is much more important, to discuss them
with a lot of researchers. Many parts of this thesis have been motivated by those
conference conversations.

Last but not least – I thank my mother Jekaterina Barsukova. I have inherited her
interest in math and logical thinking. She always motivated me to study hard and
created the corresponding environment for me in my childhood. She accepts that I am
not able to visit her for months and always loves me.

 8

It would have been impossible to finish this thesis without a support from the company
I am working for. Thank you, Simple Concepts and above all Lars Gunnar Svensson.
You always provided me with day-offs, vacations when I needed those for conferences,
you accepted all my university visits during some work hours and I am very thankful to
you for doing that. I would also express my warmest thanks to all my colleagues who
made all this possible. Besides I extend my thanks to Andy Cheetham and CODA
Group Holdings Limited that acquired Simple Concepts. I already learned that you
support my doctorate study and I appreciate that.

 9

Table of Contents

1 INTRODUCTION ...12

1.1 BACKGROUND OF THE STUDY..12
1.2 DEFINITION OF BASIC CONCEPTS...12
1.3 RESEARCH PROBLEM...13
1.4 COMPLEXITY ...14
1.5 SCOPE AND BACKGROUND OF THE RESEARCH...18
1.6 APPLICATIONS ...19
1.7 OUTLINE OF THE STUDY ..20

2 REVIEW OF THE STATE OF THE ART ...22
2.1 MAXIMUM UNWEIGHTED CLIQUE / EXACT APPROACHES22

2.1.1 Carraghan and Pardalos algorithm...22
2.1.2 Östergård algorithm...23
2.1.3 Some other heuristic vertex-colouring based algorithms.............................25

2.1.3.1 Babel and Tinhofer’s algorithm ... 25
2.1.3.2 Wood’s algorithm .. 27

2.1.4 Other approaches...28
2.2 MAXIMUM-WEIGHTED CLIQUE / EXACT APPROACHES ...30

2.2.1 Carraghan and Pardalos algorithm...30
2.2.2 Östergård algorithm...31

2.3 VERTEX-COLOURING / HEURISTIC APPROACHES ..32
2.3.1 A short review ..32
2.3.2 Greedy algorithm ...33
2.3.3 DSatur ..33
2.3.4 Iterated greedy ...34
2.3.5 Tabu search..35

3 NEW ALGORITHMS...36
3.1 INTRODUCTION INTO A NEW METHOD...36
3.2 UNWEIGHTED CASE...37

3.2.1 “VColor-u” – An algorithm based on a vertex colouring............................37
3.2.1.1 Description... 37
3.2.1.2 Algorithm... 39
3.2.1.3 Examples ... 39

3.2.1.3.1 Example 1 .. 40
3.2.1.3.1.1 Description of the example graph .. 40
3.2.1.3.1.2 Algorithm’s steps ... 40
3.2.1.3.1.3 Analysis of this example .. 41

3.2.1.3.2 Example 2 .. 42
3.2.1.3.2.1 Description of the example graph .. 42
3.2.1.3.2.2 Algorithm’s steps ... 42
3.2.1.3.2.3 Analysis of this example .. 45

3.2.2 “VColor-BT-u” – An algorithm based on a vertex colouring......................45
3.2.2.1 Description... 45
3.2.2.2 Algorithm... 47
3.2.2.3 Examples ... 48

3.2.2.3.1 Example 1 .. 48
3.2.2.3.1.1 Description of the example graph .. 48
3.2.2.3.1.2 Algorithm’s steps ... 48
3.2.2.3.1.3 Analysis of this example .. 51

 10

3.2.2.3.2 Example 2 .. 52
3.2.2.3.3 Example 3 .. 52

3.2.2.3.3.1 Description of the example graph .. 52
3.2.2.3.3.2 Algorithm’s steps ... 53
3.2.2.3.3.3 Analysis of this example .. 59

3.2.3 Notes on the programming technique ..60
3.2.3.1 Calculating of a degree and recalculations... 60
3.2.3.2 Handling vertices and their sequence... 61

3.2.3.2.1 Vertex colouring vertices sequence ... 61
3.2.3.2.2 Remaining vertices .. 61

3.3 WEIGHTED CASE ...61
3.3.1 “VColor-BT-w” – An algorithm based on a vertex colouring62

3.3.1.1 Description... 62
3.3.1.2 Algorithm... 63
3.3.1.3 Example ... 64

3.3.1.3.1 Example 1: Pruning technique by colour classes ... 64
3.3.1.3.1.1 Description of the example graph .. 64
3.3.1.3.1.2 Algorithm’s steps ... 64

3.3.1.3.2 Example 2: Full example ... 66
3.3.1.3.2.1 Description of the example graph .. 66
3.3.1.3.2.2 Algorithm’s steps ... 66

3.4 TESTS AND RESULTS..70
3.4.1 Preliminary analysis ..70

3.4.1.1 General analysis... 70
3.4.1.2 Graphs “easy” to solve... 70
3.4.1.3 Graphs “hard” to solve... 71

3.4.2 Unweighted case ..71
3.4.2.1 Random graphs .. 72

3.4.2.1.1 Introduction.. 72
3.4.2.1.2 Graphs generation model ... 72
3.4.2.1.3 Time spent on the maximum clique finding... 75
3.4.2.1.4 Vertex colouring .. 78
3.4.2.1.5 Number of analysed branches / subgraphs ... 79
3.4.2.1.6 Conclusion ... 82

3.4.2.2 DIMACS graphs .. 84
3.4.3 Weighted case ..87

3.4.3.1 Graphs generation model ... 87
3.4.3.2 Time spent on the weighted maximum clique finding ... 88

3.5 SUMMARY ...89
4 TESTING ENVIRONMENT..91

4.1 GENERAL DESCRIPTION...91
4.2 MODULES ..92
4.3 UTILITIES...92
4.4 META-ALGORITHM ..93
4.5 USER INTERFACE ...94
4.6 INTEGRATION ..95
4.7 SUMMARY ...97

5 ALGORITHM’S INTELLIGENCE ..98
5.1 INCOMPLETE SOLUTION...98

5.1.1 Description...98
5.1.2 Tests ...100

5.1.2.1 Preliminary analysis... 100

 11

5.1.2.2 Results ... 101
5.2 ADAPTIVE ALGORITHM ...103

5.2.1 “Expert” type intelligence ...103
5.2.2 Algorithm learning and results knowledge base ..105

5.3 SUMMARY ...107
6 SUMMARY..108

6.1 RESEARCHED PROBLEM...108
6.2 THESIS SUMMARY ...108
6.3 FUTURE RESEARCH WORK ..112

REFERENCES..113
APPENDIX A: PROGRAMS LISTINGS...118

UNWEIGHTED CASE...118
VColor-u...118
VColor-BT-u...122

WEIGHTED CASE ...126
VColor-BT-w ..126

APPENDIX B: CURRICULUM VITAE ..131

 12

1 INTRODUCTION

1.1 Background of the Study
The main area of this study is graph theory, which is a key technique of discrete
optimisation, operations research, topology and a lot of others. A lot of scientists are
using graph theory as a powerful tool to analyse problems within their own area of
research. Although graph theory has already been used for many years it is still young
and contains a lot of unsolved problems and there is still a lot of space for researches to
introduce their own works and algorithms, for discussing and having fun. The number
of applications is growing quite fast and surely it will grow further making people’s
life and activities much more “optimal” and easier.

A graph is a representation of relationships between some objects. Specifically a
graph is built by two sets – a set of objects that is called vertices and a set of relations
that is called edges. Consider, for example, a society that contains a set of persons.
There could be relations between those persons of different type: friendship, parent-
children and so forth. This society could be modelled as a graph where a vertex
represents each person and if any two persons have any relation then it will be
represented by an edge between vertices representing those persons. Another
illustration of using graphs could be a problem of scheduling exams. Let’s say we have
a set of courses that will end up with an exam. Some students can take more than one
course among those; therefore it is not possible to schedule some exams at the same
time. We have to model somehow this situation before we will be able to apply any
mathematical tool to solve it. The most natural way is to use a graph by letting the
vertices to represent the courses and edges between any two courses if those two
courses are “incompatible” to share the same time since have shared students. So,
using graphs we can simplify a real world problem by abstracting it into a poor
mathematical model, which will contain a main core/idea of it. Many difficult
problems have been solved by converting them into graphs and using the graph theory.
Today the graph theory is hosting a lot of applications in such fields like sociology,
chemistry, geology, computer science and many others. With this consideration, it has
become important to study core problems of the graph theory keeping in mind that it
will help to advance the theory and the practice in a lot of others humans activities
fields.

1.2 Definition of Basic Concepts
Let G=(V,E) be an undirected graph, where V is the set of vertices and E is the set of
edges. Two vertices are called to be adjacent if they are connected by an edge. A
clique is a complete subgraph of G, i.e. one whose vertices are pairwise adjacent. An
independent set is a set of vertices that are pairwise nonadjacent. A complement graph
is an undirected graph Ĝ=(V,Ê), where Ê = { (vi , vj) | vi , vj ∈ V, i ≠ j, (vi , vj) ∉E } –
this is a slightly reformulated definition provided by Bomze et al 1999. A
neighbourhood of a vertex vi is defined as a set of vertices, which are connected to this

 13

vertex, i.e. N(vi) = {v1, …, vk | ∀ j: vj ∈ V, i ≠ j, (vi , vj) ∈ E } A maximal clique is a
clique that is not a proper subset of any other clique, in other words this clique doesn’t
belong to any other clique. The same can be stated about maximal independent set. All
definitions listed so far are obtained from the following sources: Bomze et al 1999,
Carraghan and Pardalos 1990a, Östergård 2002.

The maximum clique problem is a problem of finding maximum complete subgraph
of G, i.e. maximum set of vertices from G that are pairwise adjacent. In other words the
maximum clique is the largest maximal clique. It is also said that the maximum clique
is a maximal clique that has the maximal cardinality. The maximum independent set
problem is a problem of finding the maximum set of vertices that are pairways
nonadjacent. In other words, none of vertices belonging to this maximum set is
connected to any other vertex of this set. A graph-colouring problem or a colouring of
G is defined to be an assignment of colours to the graph’s vertices so that no pair of
adjacent vertices shares identical colours. So, all vertices, which are coloured by the
same colour, are nothing more than an independent set, although it is not always
maximal. The chromatic number - χ(G) is the minimum number of colours needed for
a colouring of G. The following references have been used to obtain previously listed
definitions: Bomze et al 1999, Butenko et al. 2001, Carraghan and Pardalos 1990a,
Klotz 2002, West 2001.

All those problems are computationally equivalent, in other words, each one of
them can be transformed to any other. For example, any clique of a graph G is an
independent set for the graph’s complement graph Ĝ. So the problem of finding the
maximum clique is equivalent to the problem of finding the maximum independent set
for a complement graph.

For more information on other transformations see the “Complexity” subchapter
below.

The same problems can be stated for weighted graphs, i.e. for an undirected graph
G=(V,E,W), where V is the set of vertices and E is the set of edges and W is the set of
weight of vertices from V (each vertex have one weight). In this case, the maximum
clique problem transforms into the maximum weighted clique (or the maximum-weight
clique) problem asking to find a clique of the maximum weight [Bomze et al 1999], i.e.
where sum of vertices’ weights belonging to the clique is maximum for the graph.

It is also possible to formulate the same problems with weighted edges, but those
problems are beyond of this work.

All those problems are NP-hard on general graphs [Garey and Johnson 2003] and
no polynomial time algorithms are expected to be found. There are also so called
“Heuristic algorithm” allowing finding a solution of a problem in a polynomial time
without guarantee that the found solution is the maximum / best one. Those algorithms
are widely used both as a possible way to solve problems at a reasonable time and as
subtasks of exact algorithms, for example for finding boundaries.

1.3 Research Problem
The basic research problems addressed in this study are “Construct new effective
algorithms for solving the problem of finding the maximum clique in an arbitrary

 14

undirected graph” and “Construct new effective algorithms for solving and the problem
of finding the maximum weighted clique in an arbitrary undirected graph”.

The following sub-problems have been formulated:

1. Identify properties of graphs that can be used to make quicker algorithms;

2. Develop better algorithms for the maximum clique and the maximum weighted

clique finding;

3. Build a test environment allowing comparing algorithms;

4. Research those algorithms and identify why one or another is better and on

what graphs;

5. Formulate a philosophy of building a meta-algorithm allowing increasing

intelligence of applying maximum clique finding algorithms in different

environments / for different graphs;

This study is based on the author’s previous researches, which were included into
his Master of Science work. That study reviewed some special graphs’ cases like for
example permutation graphs and contained algorithms based on finding triangles.
Some ideas of those algorithms were converted into initial algorithms’ that have shown
quite promising results and evolved into algorithms presented in this study. The test
environment idea was obtained in that study as a way for further development that will
be very helpful, while a meta-algorithms idea came later – rather during formulating
this study on later stages and wasn’t included into earlier draft of tasks list. So, an
initial task of developing better algorithms was reformulated by adding a test
environment research and ended in a wide formulation on the high level of meta-
algorithms, while maximum clique algorithms remained to be a core of the study.

1.4 Complexity
There are a lot of problems that are not so easy to solve as it looks like at first.
Therefore it is important to know a complexity of a problem you are trying to solve
before starting to work out an algorithm for solving this problem. More exactly, it is
important to know if this problem is NP-complete (Nondeterministically Polynomial),
i.e. very hard to solve.

We say that a function f(n) has complexity O(g(n)), where n is the size of the input
parameter or its length, whenever there exists such constant c, that | f(n) | ≤ c | g(n) | for
any n ≥ 0. A polynomial time algorithm is an algorithm whose time complexity
function is O(p(n)), where p(n) is a polynomial function. Any algorithm whose time
complexity function cannot be so bounded is an exponential time algorithm. An
example of such time complexity function could be an where a is a constant.
Sometimes such algorithms are called non-polynomial since this definition also
includes algorithms having nlog(n) time complexity although such complexity is neither
polynomial nor exponential. Of course, exponential algorithms can be even faster than

 15

polynomial ones in certain cases. For example consider algorithms having complexity
2n and n5, for 1 < n < 23. Unfortunately real live problems are having much larger n
than in the previous example. That’s why exponential algorithms are not regarded as
being useful in practise although are known for many problems.

It is common to distinguish between two types of complexity:
1. Time complexity as we have seen so far, i.e. a problem is called hard to solve or

intractable if there are only exponential time algorithms to discover a solution.
2. A problem’s solution size complexity. This happens when the solution itself

cannot be described with an expression having length bounded by a polynomial
function of the input length [Garey and Johnson 2003]. A problem of finding all
cliques from a graph can be an example since for a general case number of
existing cliques is exponential.

The maximum clique problem’s complexity is the time complexity.
It is not proved right now that the problem of finding the maximum clique cannot

be solved in a polynomial time as well as vice versa. It means that nobody was able to
construct even theoretically such algorithm for any graph and nobody was able to
prove impossibility to have such algorithm. We are going to demonstrate the
algorithm’s complexity in terms of NP-completeness in the following subpart.

NP-complexity

The first most important researches in the algorithms complexity area were done by
Turing in the 1940s. Turing has demonstrated that some problems are “undecidable”,
i.e. those problems can be solved algorithmically. Moreover his works have greatly
affected complexity theory for “decidable” problems since his abstract computer
model, so called Turing machine, was used for researches and definitions in this area.
NP-class problems are defined as problems that can be solved on a none-deterministic
Turing machine in a polynomial time [Garey and Johnson 2003]. There is a P class as
well, which contains problems that can be solved in a polynomial time on the
deterministic Turing machine, which is also called just the Turing machine. Sometimes
NP-class is defined as a class of problems that cannot be solved on the Turing machine,
although it is not quite correct, since P ⊆ NP. So NP-P problems cannot be solved in a
polynomial time on the deterministic Turing machine. Besides, it will be wrong to say
that NP means none-polynomial, although it describes quite well an essence of those
problems from nowadays programming point of view. NP-completeness theory
foundations were laid in a Cook paper presented in 1971 [Cook 1971]. First of all, he
highlighted importance of “polynomial time reducibility”. It means that if we can show
that there exists a polynomial time transformation from one problem into another, then
any polynomial time algorithm for the second algorithm will provide us with a
polynomial algorithm for the first problem. Besides, basing on those ideas, he has
shown that any NP problem can be converted into the satisfiability problem in a
polynomial time. He also has demonstrated that there are some other problems, which
have the same complexity as the satisfiability problem. Those problems are “hardest”
problems or are an essence of NP-class. Later a lot of problems have been shown to be
as “hard” as the satisfiability problem [Karp 1972] and those problems were called NP-
complete problems.

 16

The formal definition for NP-complete is the following: a problem is NP-complete
if the problem belongs to NP-class and any other problem of NP-class can be
polynomially transformed into this problem.

NP-completeness proof for a problem S contains 4 steps:
1. Show that S is in NP;
2. Select a known NP-complete problem S’ to which S is most similar (or select

any);
3. Construct a function f that transforms S’ into S;
4. Proof that the transformation function f is a polynomial one.

So, it is important to consider a connection between different types of tasks before

starting to solve any of them since it could provide important and interesting
information on how it can be done. Although there are a lot of NP-complete problems,
just some of them are commonly use as “core” problems since those fit better for
transforming. Those core problems are listed below.

Satisfiability (SAT)
Condition: Given a collection of clauses C = {c1, c2,….,cm} over a finite set of

variables V.
Question: Is it possible to find such set of values for those variables that each

clause is satisfied.

3-Satisfiability (3-SAT)
Condition: Given a collection of clauses C = {c1, c2,….,cm} where each clause

contains exactly 3 literals (|ci|=3, 1 ≤ i ≤ m), over a finite set of variables V.
Question: Is it possible to find such set of values for those variables that each

clause is satisfied.

3-Dimensional Matching
Condition: Given a set M ⊆ W × X × Y, where W, X, Y are none intersecting

(disjoint) sets containing each q elements.
Question: Is it true, that M contains 3-dimensional matching, in other words is there

a subset M’⊆ M that have the following properties: | M’ | = q and there are no different
elements inside M’-which have equal coordinates (w, x, y)?

Vertex cover
Condition: Given a graph G = (V, E) and a number K: 0 ≤ K ≤ | V |.
Question: Is it possible to find on this graph G a vertex covering, which contains at

most K elements, or is their a subset V’⊆V, such that | V’ | ≤ K and {∀(x, y) ∈E; x or y
∈V’}?

Hamilton cycle
Condition: Given a graph G = (V, E).
Question: Is it true, that G contains a Hamilton cycle, or does there exist a vertices

series <v1, v2,…., vn>, such that n = | V |, {vi,vi+1}∈ E : ∀i, 1 ≤ i ≤ n ?

 17

Clique
Condition: Given a graph G = (V, E) and a number K: 0 ≤ K ≤ | V |
Question: Is it possible to find in the graph a clique containing K-vertices, in other

words does this graph contain a subset V ‘ ⊆ V, where | V ‘ | ≥ K and {∀ x, y ∈ V ‘;
(x, y) ∈E}?

Partitioning
Condition: Given a finite set A and weights s(a) ∈Z+ for each a∈A.
Question: Is it possible to find such subset A’⊆A that satisfies to the next condition

∑a∈A’ s(a)= ∑a∈A\A’ s(a)?

The next tree is used for NP-completeness proving:

Figure 1. The sequence of transformation of the six basic problems’ NP-completeness

proving

The maximum clique problem is polynomially equivalent to the clique problem;
therefore some authors refer this problem as NP-complete [Karp 1972, Bomze et al
1999]. The classical Garey and Johnson book names the maximum clique size problem
to be NP-easy [Garey and Johnson 2003]. A search problem is defined to be NP-easy
whenever there exists another problem belonging to NP to which the original problem
is Turing reducible. So, the NP-easy problem is a problem, which is “no harder” than
the NP complete problem for solving. A search problem is defined to be NP-hard if
there exists some NP-complete problem that Turing reduces to this problem. So, all
NP-complete problems are NP-hard. Unfortunately this terminology is a bit unstable
[Garey and Johnson 2003], but the maximum clique problem is at least NP-complete,
and is NP-hard by this definition since the “Clique”, which is the NP-complete
problem, is Turing reducible to it at vice versa, so it is neither easier nor harder than

SATISFIABILITY

3-SATISFIABILITY

3-DIMENSIONAL
MATCHING

VERTEX
COVERING

PARTITIONING HAMILTONIAN
CIRCUIT

CLIQUE

 18

the clique problem. That’s why we refer this problem in this study to be NP-hard as
many other authors as well [Wood 1997, Östergård 2002].

All this mean that finding of any better solution / algorithm for the maximum
finding algorithm will result in more than just in improving of a performance of
solving this problem, but could also mean finding better algorithms for other NP
problems. That indicates great importance of our problem for researching.

We conclude this subsection with some smaller issues regarding the maximum
clique problem complexity. As we mentioned earlier the maximum clique problem is a
time-complexity problem and therefore depends on a length of an input parameter;
besides there are no polynomial algorithm to solve it. It is important to note here that
any algorithm depend also on a programming language that implements the algorithm
and on a computer on which the algorithm is run, but those two parameters are usually
omitted. First of all those parameters can produce just some small polynomial
differences from an algorithm point of view. Besides the computer science usually tries
to depart from a particular computer and provides a function showing number of steps /
processor tacts to solve the problem. The only important is to get this into account
conducting comparative tests of different algorithms. We have to use the same
computer, the same coding technique and the same language to avoid those parameters
influence of on results. Moreover we will use algorithms’ spent time ratios to be
computer independent in results and make them reproducible on any platform.

Another important thing to note is a fact that most of classical or well-known
algorithms work also fast on certain or a sufficient number of graph types. Those
algorithms are having problems only because generally we say that we need an
algorithm that has to solve all types of graphs and there are certain types of graphs,
which are hard to solve by this algorithm. But those algorithms still provide us with a
hope that we have captured some important graphs’ properties and we can extract those
for using in new algorithms that will be better than already existing.

Note: See the chapter “Scope and Background of the Research” below for some
examples of graph types that can be solved in a polynomial time.

1.5 Scope and Background of the Research
During this work we will mainly concentrate on general graphs which are normally
don’t have a well-known structure basing on which we could simplify our search. Of
course there are certain types of graphs where the maximum clique can be found in a
polynomial time, see for example permutation graphs [Kim 1990], more general class
of graphs – perfect graphs [Berge and Chv'atal 1984, Bomze et al. 1999] that includes
interval graphs, bipartite graphs [Bomze et al. 1999], but our aim is to invite better
algorithms for a general case. Besides we will try to invite a meta-algorithm that can
work both with general case and with special graphs using corresponding algorithms,
so we’ll move to the higher, meta level in solving the maximum clique finding.

The best known algorithm for the maximum independent set finding is developed
by Robson [Robson 1986] and has a time complexity upper bound O (20.276n), but
unfortunately no experimental results/tests of this is known [Pardalos et al. 1998]. Note
again that the maximum clique finding is exactly the same complexity task as the
maximum independent set finding. The most efficient algorithm for solving this

 19

problem was developed by Carraghan and Pardalos [Carraghan and Pardalos 1990a].
Moreover, it is an algorithm that is usually used for benchmarking new algorithms as it
is proposed by DIMACS [DIMACS 1999, Johnson and Trick 1996]. Another set of
algorithms that will be widely used in the study are algorithms proposed by Östergård
and claimed to be the best at the moment – for unweighted [Östergård 2002] and
weighted [Östergård 2001] graphs, so it should be enough to compare new algorithms
with those to investigate new algorithms efficiency.

1.6 Applications
Here we investigate different applications of the maximum clique finding and show
why inventing a better algorithm for the problem is so important.

The maximum clique problem has many theoretical and practical applications. The
most important theoretical application lays in the connection between NP-complete
problems, as it was shown in the previous chapter. Consider for example a connection
between the maximum clique problem and a quadratic programming problem
established by Motzkin and Straus [Motzkin and Straus 1965].

In fact, a lot of algorithms contain this problem as a subtask and this is another
important applications area for the problem. We will list some such problems below.

The first area of applications is data analyses / finding a similar data. For example,
the next construction is used: a graph is constructed with vertices corresponding to data
elements and similar data elements (vertices) are connected by edges. Another
construction starts from building a bipartite graph, where the first set of vertices are
data elements and the second set of vertices are properties. Data elements having a
particular property are connected to a vertex corresponding to this property by an edge.
Now, it is possible to connect all data elements and all properties by edges and search
for a clique having both properties vertices and data element vertices. In both cases the
maximum clique is a cluster. Those constructions are widely used and below we are
going list just some such areas: the identification and classification of new diseases
based on symptom correlation [Bonner 1964], computer vision [Ballard and Brown
1982], and biochemistry [Miller 1992].

Another wide area of applying the maximum clique is the coding theory [Sloane
1989, Brouwer et al. 1990]. The simplest example of such situation occurrence is
transmitting a set of bytes, during which one byte is lost, but neither sender nor
receiver know which one – this corresponds to the “Single deletion correction code”
[Sloane 2001]. The general task here is to find the largest binary code consisting of
binary words that can correct a certain number of errors.

Another important application arises in the circuit design. A task is to build an
optimal layout of elements on a circuit. In addition to that maximum cliques are widely
used in the circuit testing for fault diagnosis [Brglez and Fujiwara, 1985]. For example,
one such application is to place special elements on a circuit (or a board) part to detect
if it is working correctly. Those elements can check only a restricted set of circuit
components due the testing element size. The task here is to maximize a number of
circuit components tested in one pass. Here components are vertices and edges connect
components that can be checked in one pass. Clique detection can be used also for the
distributed fault diagnosis in multiprocessor systems [Berman and Pelc 1990]. The task

 20

is to identify a faulty processor. It is assumed that a fault-free processor in the system
detects the faulty processor with some probability, while no assumptions are made on
the performance of faulty processors. A major step in the algorithm is to find the
maximum clique in an appropriate graph (a c-fat ring) [Pardalos et al. 1998]. Those
graphs are to be included into tests for algorithms we are going to invite.

The maximum-weight clique problem has also a lot of applications. For example in
the coding theory [MacWilliams and Sloane 1979], geometric tiling [Corradi and
Szabo 1990], fault diagnosis [Berman and Pelc 1990], pattern recognition [Horaud and
Skordas 1989], molecular biology [Mitchell et al. 1989], and scheduling [Jansen et al.
1997]. Additional applications arise in more comprehensive problems that involve
graph problems with side constraints. More this problem is surveyed in [Bomze et al.
1999].

There are much more application and we have listed only some of them. All it
proves that the importance of the maximum clique finding for the today science is very
high. The reason is highly abstracted model of the graph concept allowing applying it
practically everywhere.

1.7 Outline of the Study
In the Chapter 1 of this Study a background of it is reviewed, basic concepts are
presented and tasks to solve formulated. The complexity of the problem is also
analysed and scopes and limitations of the study are identified.

The review of earlier researches is done in the Chapter 2. This allows
understanding of where the problem research is right now, what has been done, what
methods gave negative results and what methods are best at the moment. Those best
algorithms will be used either as a part of new algorithms or for comparing new
algorithms to identify whether those are better and where.

Main parts of this study are opened by the Chapter 3, where new algorithms for
finding the maximum clique are developed. Here both weighted and unweighted
graphs’ cases are researched. Each new algorithm is explained, published in a formal
way and at least one example is played through. The second part of this chapter
contains a description of tests and results including a description of graphs used for the
testing. Results are presented as tables and graphs.

The second main part of the study is located in the Chapter 4 and discusses a
testing environment that was used to produce testing results of the previous chapter.
The testing environment is an essential part of any researches and its architecture,
philosophy of constructing are presented.

The Chapter 5 introduces a new level in the maximum clique finding programs’
implementation – an idea of a meta-algorithm containing the maximum clique finding
algorithms. Here ideas from other data analyses areas are collected and applied to the
maximum clique problem. Besides, the real-time systems’ case is discussed. Some tests
showing efficiency of algorithm in finding the maximum clique without proving that it
is the maximum one are done and results are discussed.

Lastly Chapter 6 concludes the study with a summary.

 21

Programs’ codes are provided in an appendix to show how algorithms were
implemented. This ensures correctness of algorithms comparison tests by making them
reproducible as well as unambiguous understanding of the implementation of new
algorithms.

 22

2 REVIEW OF THE STATE OF THE ART

2.1 Maximum Unweighted Clique / Exact Approaches
This chapter contains two algorithms designed to find the maximum clique from an
unweighted graph. Those algorithms produce an exact solution, i.e. a clique produced
by any algorithm is the maximum one for the graph – there is surely no clique that
could contain more vertices than the produced one.

Two algorithms, which are presented below, are most important from the author’s
point of view at the moment, although there are some other algorithms as well. The
first algorithm is a classical one introduced in the early years of applied combinatorics
in computer science by Carraghan and Pardalos [Carraghan and Pardalos 1990a]. It is
easy to implement and it works very effectively in practise as well although it’s having
certain problems on some graphs - for example on graphs with high density. The
second algorithm, which is developed by Östergård [Östergård 2002], is claimed to be
the best / fastest one at the moment. Another plus of this algorithm is that it is very
similar to the first one although contains some important modifications making it much
quicker. It happens because both algorithms use a branch and bound technique in
finding the maximum clique. The same ideas will be used in our new algorithms.
Therefore those two algorithms can be easily compared with new algorithms since we
can use the same programming technique for all of them. This eliminates a risk of
inadequate testing that occurs because of totally different algorithms that are
implemented differently. Here it is easy to do mistakes in programming that leads to
the inadequate testing. So, the only way to eliminate such risk is to use the same source
code with some modifications for testing algorithms if it is possible. That could be
perfectly done for the presented algorithms having very similar algorithmic structures.

2.1.1 Carraghan and Pardalos algorithm
This algorithm was introduced in 1990 by Carraghan and Pardalos [Carraghan and
Pardalos 1990a]. The algorithm is very simple and efficient for finding the maximum
clique on an arbitrary graph. It issued to be fastest for any types and densities of graphs
until the end of the previous century. Currently it holds a title of the fastest algorithm
for the low-density graphs.

The algorithm by its nature is a branch and bound algorithm. Crucial to the
understanding of this algorithm is the notation of the depth. The algorithm forms
depths by selecting an expanding vertex from the current depth and selecting into this
new depth all vertices from the current, which are connected to the expanding vertex.
Vertices at each step are expanded one by one while there are vertices that were not yet
expanded on the depth and removed from the analysis on the depth.

The main advantage of this algorithm is its pruning formula for a depth (branch)
if d + (m – i) ≤ CBC then prune (go to the higher/previous depth), where d is a

depth number (initial depth number equals to 1), m is the total number of vertices on
the current depth, i is a sequential number of the expanding vertex on the current depth

 23

and CBC is a size of the current best (maximum) clique. If the pruning formula
works/holds on the first/initial depth then the algorithm stops.

function Main
 CBC := 0 // the maximum clique’s size
 clique (V, 0)
 return
end function

function clique(V, depth)
 if’|V| = 0 then
 if depth > CBC then
 New record - save it. CBC := depth
 end if
 return
 end if
 i := 0
 while i < |V| do
 if depth + |V| - i ≤ CBC then return // prune
 i := i + 1
 // form a new depth. N(vi) denotes a neighbourhood of vi.
 clique (N(vi) | ∀vj : j > i, j ≤ |V|, depth + 1)
 end while
 return
end function

Authors have advised using the next order of vertices: starting from a vertex with

the smallest degree up to a vertex with the highest degree. Such degree ordering can be
done either only once before running the main part of the algorithm or can be reapplied
on each depth except dense graph where it will not provide a lot improvement and is
time consuming. The classical algorithm orders vertices only once.

This quite a simple algorithm has shown in practise its efficiency – it is the best-
known algorithm for sparse graphs and very efficient for others as well. Mainly
because it doesn’t spend the valuable time on different checks, which are usually
irrelevant, and starts to work immediately. The only area where the algorithm is quite
slow is dense graphs. Those graphs are hard to solve by this algorithm since its pruning
formula doesn’t work on dense graphs as the number of remaining vertices on a
subgraph usually is much bigger than CBC up to the last vertices.

2.1.2 Östergård algorithm
This algorithm is published by Östergård in 2002 and is based on the previous one with
an important addition introduced: a backtrack search [Östergård 2002].

The algorithm considers subgraphs Gi of G, where i indicates the minimum
sequential number of a vertex included into a subgraph: Vi = {vi,…,vn}. Those

 24

subgraphs are searched for maximum cliques starting from the i = n-th upto the i = 1,
i.e. in the backward order. The algorithm is also a branch and bound algorithm by its
nature. It forms depths by selecting an expanding vertex form the current depth and
putting to this new depth all vertices from the current, which are connected to the
expanding vertex. Vertices at each step are expanded one by one while there are
vertices that were not yet expanded on this depth. The pruning formula described for
the previous algorithm is also used.

The maximum clique size for each subgraph is saved in a cache for the later use for
the maximum clique search on a subgraph with a smaller index i by the following
pruning formula:

if d + c[i] ≤ CBC then prune, where d is a level starting form 0, i is the minimal
sequential number of a vertex among vertices existing on that level, CBC is a size of
the current best (maximum) clique and c[i] is the maximum clique size of Gi.

This c function or cache is the core idea of that algorithm. There is also defined a
condition to stop searching the maximum clique basing on the CBC.

if d + c[i] > CBC then stop since ∀ i: Gi-1 ⊆ Gi and therefore CBC is the maximum
clique on Gi-1 as well as the maximum clique for Gi-1 either equal to the maximum
clique of Gi or is bigger on 1. So, as soon as a bigger clique is found we could stop
since the graph cannot contain any bigger clique.

function Main
 max :=0
 for i := n downto 1 do
 found := false
 clique (Si & N(vi), 1)
 c [i] :=max
 end for
 return
end function

function clique (U,size)
 if |U| = 0 then
 if size > max then
 max :=size
 New record; save it
 found = true
 end if
 return
 end if

 while U ≠ Ø do
 // prune as Carraghan and Pardalos algorithm does
 if size + |U| ≤ max then return
 i :=min { j | vj ∈ U }
 // new pruning technique
 if size + c [i] ≤ max then return

 25

 U :=U \ { vi }
 clique(U & N(vi), size + 1)

 if found = true then return // stopping condition

 end while
 return
end function

Author advices to reorder vertices using the following heuristic algorithm: first find

the vertex-colouring and then group vertices by colour classes. This heuristic algorithm
is a greedy one. He also marked that other heuristic algorithms can be used to produce
a “good” initial ordering if a better algorithm will be found. Experimental results show
that this algorithm is generally the quickest algorithm for finding the maximum clique
and also has to be granted to be one of the easiest to understand and implement. There
are certain DIMACS graphs instances, where the algorithm is slow, like c-fat500-5,
MANN_a27 and some others, but mostly it is one of the fastest on those graph instances
as well.

2.1.3 Some other heuristic vertex-colouring based
algorithms

Here we review some historical attempts to use a heuristic vertex-colouring for
maximum clique finding. The heuristic vertex-colouring idea is interesting for us since
algorithms invented in this study are based on such colouring and therefore it could be
very interesting to see where this idea was used so far. Algorithms that we are going to
describe are not very fast and therefore we will not include those into our comparative
tests and those will be interesting only from a historical point of view. Please note that
we do not mean here algorithms that only use a vertex-colouring to derive once bounds
for the maximum clique, but rather review algorithms containing vertex-colouring as
an important part of an algorithm for the maximum clique finding, i.e. where those
bounds are permanently found.

2.1.3.1 Babel and Tinhofer’s algorithm
This is an algorithm proposed by Babel and Tinhofer in 1990 [Babel and Tinhofer
1990], i.e. in the same year when Carraghan and Pardalos has released their brilliant
algorithm described before [Carraghan and Pardalos 1990a]. This algorithm is also the
branch and bound one and was positioned by authors as an algorithm, which is
especially efficient for graphs with great edge density. The branching is the first phase
of the algorithm, which is done exactly in the same way as the Carraghan and Pardalos
one does [Carraghan and Pardalos 1990a]. The second phase, which is bounding uses
mainly a well known fact that the chromatic number of a graph is always bigger or
equal to the size of this graph maximum clique. The problem of vertex-colouring is
NP-complete therefore the algorithm uses DSATUR technique to find a heuristic

 26

vertex-colouring. This heuristic algorithm is to be described later in the “Vertex
colouring / Heuristic approaches” subchapter. The following sentence describes an
essence of Babel and Tinhofer algorithm: “In each Gi we look for a clique and a
colouring”, where Gi is a subgraph that is produced during the branching algorithm.
The algorithm can be presented using the following pseudo-code:

function Main
 CBC :=0 // the maximum clique’s size
 clique (V, 0)
 return
end function

function clique(V, depth)
 if’|V| = 0 then
 if depth > CBC then
 New record - save it. CBC := depth
 end if
 return
 end if

 while V ≠ Ø do
 if depth + |V| ≤ CBC then return // prune
 //use DSATUR to find the max. clique and a colouring
 Q, C :=DSATUR(G(V)) // C = {C1,..,Ck}, Q – max. clique
 if depth + |Q| > CBC then
 New maximum clique: Q + vertices of previous depths.
 CBC = depth + |Q|
 end if
 if depth + |C| ≤ CBC then return
 clique (N(v1), depth + 1)
 V := V \ v1
 end while
 return
end function

Please note that the DSATUR algorithm provides both a heuristic colouring and a

heuristic maximum clique. The heuristic colouring is the main output and target of this
algorithm, while the heuristic maximum clique is obtained first associations of colours
to vertices, since saturation degree rule leads to colouring a clique first of all. The
heuristic clique is formed by a set of vertices, which are coloured until any colour is
reused – see the “DSATUR” subchapter below to find how this algorithm works. .

We should mention that different modifications of this base algorithm were
proposed by Babel and Tinhofer in their work to decrease the time for computing the
upper and lower bounds, but those modifications do not change the base algorithm
dramatically and therefore can be omitted for this review. The algorithm was
successfully used for some types of graphs, including chordal graphs [Ballas and

 27

Tinhofer 1990], but the general performance of the algorithm was quite bad in
comparison to the Carraghan and Pardalos algorithm [Carraghan and Pardalos 1990a],
which was released simultaneously, mostly due to the fact that the algorithm consumes
too much time to find bounds in combinatorial cycles.

2.1.3.2 Wood’s algorithm
An algorithm invented by Wood in 1997 [Wood 1997] is another attempt to employ a
heuristic vertex colouring for the maximum clique finding basing on previous works –
mostly on Babel and Tinhofer algorithm [Babel and Tinhofer 1990] and Carraghan and
Pardalos algorithm [Carraghan and Pardalos 1990a] and some their later works. The
algorithm can be described using the following pseudo-code with a certain
simplification of unimportant details, which will not change the main idea:

function Main
 CBC :=0 // the maximum clique’s size
 clique (V, 0)
 return
end function

function clique(V, depth)

 //Sub step 1
 Q :=greedy(V) // find a clique using a greedy algorithm
 if depth + |Q| > CBC then
 New maximum clique: Q + vertices of previous depths.
 CBC = depth + |Q|
 end if

 // substep 2
 //Find a vertex colouring of G(V) by DSATUR
 C :=DSATUR(G(V)) // C = {C1,..,Ck}
 if depth + |C| ≤ CBC then return

 while depth + |C| > CBC do // pruning condition
 k := |C|
 v :=maxdegree(v ∈ Ck)
 Ck := Ck \ v
 if Ck = Ø then C := C \ Ck
 clique (N(vi), depth + 1)
 end while
 return
end function

 28

function greedy(V)
 S := V
 Q := Ø
 while S ≠ Ø do
 vi = maxdegree(v ∈ S)
 Q := Q ∪ {vi}
 S := S & {vi}
 end while
end function

It is easy to see that the described algorithm is another branch and bound

algorithm. The author mainly concentrates on three issues that he thought are very
important for branch and bound algorithms:

• How to find a good lower bound, i.e. a clique of large size?
• How to find a good upper bound on the size of the maximum clique?
• How to branch, i.e. break a problem into subproblems? [Wood 1997]
The greedy algorithm for the heuristic maximum clique finding is used to find the

lower bound, the heuristic DSATUR is used to find the upper bound and all this is
done practically for each new branch, i.e. on each new depth. The original paper also
employs a fractional colouring in addition to DSATUR to find a better upper bound,
since the upper bound for pruning is set to be a minimum number of colours provide by
those heuristic vertex-colouring algorithms – see this Wood paper for more details on
fractional colouring and how it is used [Wood 1997]. The biggest differences from the
previously described Babel and Tinhofer algorithm [Babel and Tinhofer 1990] are:

• The algorithm looks for a heuristic clique and colouring only for a new branch,
i.e. it is not done in the internal cycle of a branch. Please note that Babel and
Tinhofer tried in their efficiency improving modifications for the original
algorithm to speed up the colouring of each branch by reordering vertices of a
branch [Babel and Tinhofer 1990], while Wood decided not to colour in the
internal cycle;

• More than one heuristic vertex colouring algorithm is used to provide a better
bound.

Although the algorithm meets the defined issues, it seems to be rather impractical
since it still spends too much time on finding bounds and this affects its performance
characteristics. Therefore this algorithm has mostly been seen as another unsuccessful
attempt to use vertex-colouring for the maximum clique finding, which rather proved
that vertex-colouring cannot be used for that.

2.1.4 Other approaches
Here we are going to review some other approaches to the maximum clique finding. So
far we mainly concentrated on the so-called “integer programming” enumerative
algorithms although some other ideas exist. We are going to review some of them to
provide a full picture on the study subject. Core ideas and pros and cons will be briefly
described. We should mark in advance that those other algorithms are evolving and

 29

probably will be fastest in the future, but so far those are not a real alternative to the
algorithms reviewed above.

It is possible to see the original maximum clique problem, which has been
described in the “Basic concepts” subchapter, from different points of view or
formulate it differently. Therefore before reviewing any other algorithms we are going
to define, what is the “integer programming” formulation, to identify the technique we
concentrate on in this work. Besides it will help us to demonstrate differences with
other approaches and techniques. The simplest “integer programming” formulation is
the following edge formulation:

max ∑
=

n

i 1

xi ,

subject to xi + xj ≤ 1, ∀ (i, j) ∈ Ê,
xi ∈ {0, 1}, i = 1,..., n. [Bomze et al. 1999]

The branch and bound algorithms belong to the enumerative “integer

programming” formulation where the branching is the enumerative part.
There is another historically quite popular technique for solving the problem -

“integer programming” approach by relaxation and decomposition. The classical
approach here is a Lagrangian relaxation [Guignard and Kim 1987]. Generally saying
the relaxation means that the original problem is decomposed (relaxed) in one or
another way into easier to solve problems, while the problem’s solution remains
feasible. This is done repetitively until an optimal level of relaxing is reached and the
problem can be solved directly. Quite often the relaxation technique is used basing on
another, so called “continuous” formulation, of the maximum clique problem. This
formulation is derived from the Motzkin and Straus [Motzkin and Straus 1965] work.
We will not provide detail information on this problem formulation and would like to
refer to the review of the maximum clique finding, which were published in 1999
[Bomze et al. 1999]. Unfortunately such “integer programming” relaxation generally
needs a deep knowledge about a graph structure and therefore is used mostly as bounds
for other algorithms or for special cases. That’s why we cannot recommend using this
approach as a practical one for a general solution, although it is used very successfully
to derive heuristic solutions of high quality [Pelillo 1995]. Besides, the relaxation is
used much more for solving other NP-hard problems since it fits better there. Note that
although branch and bound can be seen also as a decomposition some authors still
name it enumerative “integer programming”.

Another popular technique comes from the genetic algorithms field. Genetic
algorithms are inspired by the evolutional mechanism of nature and can be used for a
parallel search. Long strings of bits are called chromosomes in the genetic algorithm
terminology. There is a function that can compute a probability of survival of each
“individual”, which is a potential maximum clique case. Algorithms work using three
major operations> reproduction, crossover and mutation trying to increase probability
of survival. The mutation randomly change each individual bit, while crossover means
that basing on two cases a new case is produced by swapping two or more bits’
substrings. Please see [Goldberg 1989] for more information. Those attempts are also
quite mathematical so far and those algorithms’ performance doesn’t provide currently

 30

hope on competing with other exact solutions. Therefore genetic algorithms are mostly
used as heuristic [Hifi 1997, Marchiori 1998, Murthy et al. 1994] algorithms at present.

2.2 Maximum-Weighted Clique / Exact Approaches
The following algorithms are targeted to solve the same maximum clique problem, but
on the weighted graphs. “Weighted” means that each vertex of a graph has a weight.
There is also another type of weighted graphs – edge weighted graphs, but this type is
not an issue of our study. Here we again describe only exact solutions, i.e. finding the
clique that has maximum weight among cliques of the graph.

The maximum-weighted clique problem has less different algorithms than the
unweighted case and presented algorithms are mostly just modifications of the
unweighted case algorithms. It is so because the unweighted case is much easier to
think about and to produce different ideas and algorithms, therefore the unweighted
case is a case researches are concentrating on. It is important to mention that the
importance of this problem is much bigger than for the maximum clique problem
although the number of algorithms is smaller, since the unweighted case can be treated
as a special case of the weighted one – all weights are equal and can be omitted.

This part contains the same algorithms as the previous one – “Maximum clique /
Exact approaches“, which were modified for graphs with vertices of different weights.
Other algorithms described in the previous subchapter can also be converted into
maximum-weighted clique algorithms more or less successfully but still do not reach
efficiency of algorithms to be described in this subchapter.

2.2.1 Carraghan and Pardalos algorithm
The only modification we need to apply here for finding the maximum-weight clique is
using weights / sums of weights instead of counts of vertices. The pruning formula is
modified in the following way: if w(d) + w(m,i) ≤ CBC then prune (go to the previous
depth), where w(d) is an accumulated weight on previous (to d-th) levels, m is the total
number of vertices on the current depth, i is a sequential number of the expanding
vertex on the current depth, w(m, i) is a function returning a weights sum of current
depth vertices from i to m, and CBC is a weight of the current best (maximum) clique.
If the pruning formula works/holds on the first/initial depth then the algorithm stops.

function Main
 CBC := 0 // the maximum-weight clique’s weight
 clique (V, 0)
 return
end function

function clique(V, w_depth)
 if’|V| = 0 then
 if w_depth > CBC then
 New record - save it. CBC = w_depth
 end if

 31

 return
 end if

 i := 0
 while i < |V| do

 wt=(∑weight [vj] | i < j < |V|)
 if w_depth + wt ≤ CBC then return // prune

 i := i + 1
 clique((N(vi) | ∀vj : j > i, j ≤ |V|), w_depth + weight [i])

 end while
 return
end function

Described modifications produce a new algorithm for the weighted case, which is

still easy to implement. Unfortunately it is not as dramatically fast as it used to be
before modifications on the unweighted case, but it is still very good. [Carraghan and
Pardalos 1990b]

2.2.2 Östergård algorithm
There are two modifications needed in addition to the general modification of the
maximum clique definition, which is now weighted. First of all instead of the level d
we have to keep in memory an accumulated weight for a branch constructed in
reaching a current level. Besides the algorithm cannot use the stopping condition for
finding the maximum-weight clique on a subgraph Gi since the difference for stopping
the search should be exactly equal to a weight of i-th vertex (instead of any as it was
used before). The original paper and our study is going to use the algorithm that misses
such stopping rule.

So, the backward’s pruning formula now is formulated as if w(d) + c[i] ≤ CBC then
prune, where w(d) is a weight accumulated on previous to d levels, i is the minimal
sequential number of a vertex among vertices existing on that level, CBC is a weight of
the current best (maximum)-weight clique and c[i] is the maximum-weight clique’s
weight of Gi.

function Main
 max := 0
 for i := n downto 1 do
 wclique (Si & N(vi), weight [i])
 C[i] := max
 end for
 return
end function

 32

function wclique (U, w_depth)
 if | U | = 0 then
 if weight > max then
 max := weight
 New record;save it.
 end if
 return
 end if

 while U ≠ Ø do

 wt=(∑weight [vj] | ∀ j : vj ∈ U)
 if w_depth + wt(U) ≤ max then return

 i :=min { j | vj ∈ U }
 if weight + C [i] ≤ max then return

 U := U \ { vi }
 Wclique (U & N (vi), w_depth + weight [i])

 end while
 return
end function

The initial ordering is also advised to be formed basing on a vertex colouring as for

the unweighted case, i.e. using a heuristic greedy algorithm: first find the vertex-
colouring and then group vertices by colour classes.

Practical results on randomly generated graphs show that this algorithm is the
quickest one and the difference with others algorithms were sufficient. [Östergård
2001]

2.3 Vertex-Colouring / Heuristic Approaches

2.3.1 A short review
A variety of algorithms have been produced to solve heuristically vertex colouring
problem. The most elementary one is a greedy algorithm that is quick and provides
sometimes reasonably good solutions. The greedy way to find an “optimum” solution
is widely discussed: is it good or bad. See for example [Kucera 1991; Borodin et al.
2003] for this discussion. The next algorithm after the greedy one that is worth to name
is DSatur, which was developed by Brelaz [Brelaz 1979]. This algorithm is widely
adopted to be used as a benchmark for testing other algorithms. Later researches have
been split on two major approaches in the finding the heuristic vertex colouring: local
search algorithms and backtracking algorithms. The local search approach tries to
search a better solution than already found in the neighbourhood of it using some set of

 33

constraint violations. During this search this set is minimised and a solution is found
when this set becomes empty. This technique is not able to exploit fully a graph
structure and performance quite bad if the global optimum lies behind a local minimum
from the already found local optimum. One of the most known examples of this
technique is a tabu search. The backtracking approach tries to construct solutions from
partial consistent assignments of domain values to variables. They often use techniques
such as constraint propagation, value and variable ordering heuristics, branch-and-
bound and intelligent backtracking. [Prestwich 2001]. Both those approaches exist
since none of them can outperform another one on all graphs. There are certain graph
types or cases where one or another works much better: if we need to exploit a
structure then backtrack is better, while local search could be used for large size
problems. There are also different “add-in”s techniques that are able to optimise
performance of core methods on 8-15%, for example see the article published by
Walshaw in the year 2001 [Walshaw 2001]

2.3.2 Greedy algorithm
The greedy algorithm takes vertices one by one and tries to add them into one of the
existing colour classes (i.e. colour it with a colour corresponding to this class). If none
of classes can be used to assign this vertex then a new colour is organised. There exist
different techniques for choosing an initial ordering of vertices to colour and for
choosing colour classes in an attempt to colour a current vertex. The algorithm can be
described in pseudo-code as following:

Let’s say that we have n vertices and we have k colours at each step.

k = 1; Colour v1 with C1 (Ck)
For i := 2 to n

Try to colour vi with colour Cj, where j = min (1,…,k)
If none colour was used to colour vi then

k := k+1 [Produce a new colour];
Colour vi with Ck

End if
Next

It was proved that there always exists such initial ordering that will allow

generating an optimal vertex colouring by the greedy algorithm. So, the problem of this
algorithm’s poor quality can be also formulated as a problem of a bad initial vertices
ordering. One of the earliest attempts to produce a “good” ordering was made by
Welsh and Powell [Welsh and Powell 1967] who suggested using a decreasing degree
to order vertices.

2.3.3 DSatur
This heuristic algorithm was introduced by Brelaz [Brelaz 1979] and it is named
degree of saturation largest first or DSATUR. It is a sequential colouring algorithm

 34

where the saturation degree defined as a number of colours a vertex is adjusted to. So
at each step of the algorithm we are identifying a vertex with the maximum saturation
degree among uncoloured and colour it with the least possible colour for that vertex (in
this coloured neighbourhood). If a saturation degree will be equal for several vertices
then the number of uncoloured neighbours is advised to be the next measure to use for
the choice.

The saturation degree core idea is to try minimizing probability of setting an
incorrect colour (that will increase number of colours require to colour a graph) by
setting colours to a vertex with a maximum number of identified restrictions (by
colours of already coloured neighbours). The algorithm can be described in pseudo-
code as the following:

Let’s say that we have n vertices, W will be uncoloured vertices and Colour(v)

function will provide a colour already assigned to the vertex v.

While W ≠ Ø (n steps)
Find a vertex v ∈ W with a maximum saturation degree
Find a minimum colour that is not used in neighbourhood of v:

k := min (i | there is no s : Colour(s) = i , (s,v) ∈ E)
Colour v with the k colour
W = W \ v

Practice shows that this method requires up to 30% less colours than for greedy

type algorithms.

There are also exist “backtracking” modifications of DSatur algorithm. One idea,

for example, is to reorder vertices during backtrack as it was done by Korman [Korman
1979]

2.3.4 Iterated greedy
The method that was invited by Culberson [Culberson 1992] follows the greedy way in
finding a vertex colouring with one important modification. The greedy colouring is
used several times, i.e. repeatedly. Moreover, the order of vertices is changed each time
before running the algorithm basing on the previous colouring and in such a way that it
is guaranteed that each call will produce a new colouring using no more colours than
the previous colouring. DSatur algorithm described above can be used to generate an
initial vertex colouring.

Lemma: Let C be a k-colouring of a graph G, and π a permutation of the vertices such
that if C(vπ(i)) = C(vπ(m)) = c, then C(vπ(j)) = c, for i ≤ j ≤ m. Then, applying the greedy
algorithm to the permutation π will produce a colouring C’ using k or fewer colours.
[Culberson 1992]

 35

The main idea behind this lemma is the fact that reordering of vertices inside colour
classes will not produce a bigger colouring. For example, reordering vertices for the
next iteration in order of increasing colours will produce exactly the same colouring.

The next reordering of colour classes found to be efficient:

1. Reverse order
2. Increasing colour classes size
3. Decreasing size
4. Mixed: Do some steps by reordering one, then 2 and finally by 3 and loop

again

The method makes vertex reordering and re-colouring until the specified colours

number is reached or a specified number occurs without colouring improvements.

2.3.5 Tabu search
Tabu search is a local improvement search. It is based on partitioning the vertices of

a graph into colour classes that may not represent a legal colouring, then the search
attempts to reduce the number of colouring violations, or conflicts, by moving vertices
from one class to another. Each iteration of it consists of generating a sample of
neighbours; they are partitions that can be obtained from the current one by moving
one vertex to a different class. Then it selects the neighbour partition that has the
fewest conflicts, even if the neighbour has more conflicts than the current partition.
The set of neighbours is restricted by an algorithm’s list that prevents a vertex from
moving back into a class that it was recently a member of in a previous iteration. This
helps the algorithm struggle out of local minima [Hertz and de Werra 1987].

 36

3 NEW ALGORITHMS

3.1 Introduction Into a New Method
We are going to present several new algorithms that are designed to solve the
maximum clique problem in this chapter. There are two main classes of the maximum
clique problem – weighted and unweighted case. Therefore two subchapters are
introduced in this work, one for each problem’s case, containing algorithms to solve
this particular case.

New algorithms are based on the Carraghan and Pardalos algorithm [Carraghan and
Pardalos 1990a], which is very efficient, easy to implement and is nothing more than a
simple branch and bound algorithm with a brilliant idea of pruning. In other words it is
a good starting point to introduce any ideas that could further improve this branch and
bound algorithm further.

The philosophy of researches says that the more we know about an object, the better
we understand it and more efficiently we can resolve any problem about the
investigated object. At the same time the practice shows that a lot of existing
algorithms tend to do very complex researches that have a little implication on the later
finding of the maximum clique. The most important property of the Carraghan and
Pardalos algorithm is that this algorithm does not spend time on such “unusable”
researches and concentrates on the primary task – the maximum clique finding. So, it
looks like the theory and the practice are showing totally opposite results in case of the
maximum clique and this seems to be illogical. Therefore we started our research and
identified the main task of it to find such type of information about a graph that can be
efficiently used. It means that a time needed to derive such information should be less
that a time we will win during the maximum clique finding, i.e. we should benefit from
discovering information.

We have analysed the Carraghan and Pardalos algorithm and found that it heavily
employs information about adjacent vertices and uses much less information on
nonadjacent vertices. Although it looks to be just an opposite formulation of a question
about vertices connections, we have found that there is a possibility to derive from it
much more. New algorithms described below are built around the fact that nonadjacent
vertices cannot be included into the same clique by the clique definition – any clique is
formed by pairwise adjacent vertices. This property could be expanded from two
nonadjacent vertices to a set of such vertices, which is called an “independent set” in
the graph theory, i.e. only one vertex from any independent set can participate in a
forming maximum clique. We used a vertex colouring algorithm to find such
independent sets – each colour is nothing more that an “independent set”, and the
vertex colouring task could provides us with the minimum number of such sets. Of
course, we cannot use exact algorithms for finding a vertex colouring since this task is
also NP-complete, but we can use a heuristic one that can provide us with a good
enough colouring to start finding the maximum clique from.

 37

So, generally saying, new algorithms analyse a graph to be solved before running a
main part, store results of the analyse and use those later to make algorithms’ work
more efficient.

3.2 Unweighted Case
In this chapter we are going to introduce new algorithms, explain those and bring some
examples for graphs, which vertices have equal weights. Those weights are usually
ignored or set to be equal to one for simplicity. Therefore such graphs called
unweighted.

3.2.1 “VColor-u” – An algorithm based on a vertex colouring
In this subchapter we introduce an algorithm purely based on the idea of using
independent sets without any additional speeding techniques. This algorithm mainly is
used to verify if the idea is really worth to use, although it is also the best algorithm on
some graph types – see the “Tests and Results” subchapter below.

3.2.1.1 Description
Before starting the algorithm we find a vertex-colouring by using any heuristic
algorithm, for example in a greedy manner. We determine colour classes one by one as
long as uncoloured vertices exist. The vertices are resorted in the order they are added
into colour classes. This order affects the algorithm’s performance in finding the
maximum clique and therefore is very important.

Definition 1: A colour class is a set of vertices, which were coloured by the same
colour during applying a vertex-colouring algorithm.
Note: A similar definition has been proposed by West in 2001, who defined the colour
class as the following: vertices receiving a particular label (colour) for a colour class.

Definition 2: A colour class is called existing on a subgraph Gp if any vertex from this
colour class belongs to this subgraph Gp.

Definition 3: Degree of a subgraph Gp equals to the number of colour classes existing
on that subgraph.

Crucial to the understanding of the algorithm is a notation of the depth and pruning

formula. Basely, at the depth 1 we have all vertices, i.e. G1≡G. We are going to expand
all vertices of a subgraph so that vertex is deleted from the subgraph after it is
expanded. Another way is to have a cursor pointing to the vertex under analyses, so
vertices in the front of that are excluded from the analyses / a subgraph of the current
depth. Suppose we expand vertex v1. At the depth 2, we consider all vertices adjacent
to v1 from the previous depth vertices, i.e. belonging to G1. Those vertices form a
subgraph G2. At the depth 3, we consider all vertices (that are at the depth 2) adjacent

 38

to the vertex expanded in depth 2 etc. Let vd1 be the vertex we are currently expanding
at the depth d. That is:

Let’s say that Gd is a subgraph of G on a depth d that contains the following
vertices: Vd=(vd1, vd2, …, vdm). The vd1 is the vertex to be expanded.
Then a subgraph on the depth d+1 is Gd+1 = (Vd+1,E),
where Vd+1=(vd+1 1, …, vd+1 k): ∀i vd+1 i ∈ Vd and (vd+1 i , vd1)∈ E.

As soon as a vertex is expanded and a subgraph, which is formed by this expansion,

is analysed, this vertex is deleted from the depth and the next vertex of the depth
become active, i.e. will be expanded.

The pruning formula is the next: If d –1 + Degree(Gd) ≤ CBC, where CBC is a size
of the current maximum clique then we prune, since the size of the largest possible
clique (formed by expanding any vertex of Gd) would be less or equal to CBC. If we
are at depth 1 and this inequality holds then we stop; we have found the maximum
clique.

We can prove that this pruning formula can be applied by the following theorem.

Theorem 1: If a degree of a subgraph of G formed by vertices existing on a d-th depth
and induced by E is smaller or equal to the size of the current maximum clique minus
(d – 1) then this subgraph cannot form a clique, which is larger than the already found.

Prove: It is clear to see that (d - 1) equals to the number of vertices formed the d-th
depth subgraph, i.e which where expanded on previous depths. Those d - 1 vertices are
connected pairways and to each vertex of the subgraph of the d-th depth by the logic of
branch and bound algorithms. It will be possible to find a larger clique than the already
found one if and only if this subgraph can contain a clique, which is larger than a size
of the current maximum clique minus (d-1). If such clique exists then the maximal
clique of the graph G will be the clique of the subgraph plus d-1 vertices selected on
previous depths, which are connected to all vertices of the subgraphs by the branch and
bound algorithms logic and this maximal clique will be larger than an already found, so
it will be a new maximum one. So, the only statement we need to prove is: the Degree
function’s value of the subgraph is never smaller than the maximum clique size that
can be found on the subgraph, because then we can use in the pruning formula the
degree function to estimate the size of the clique instead of finding it. The degree
function gives a number of colours (colour classes) by definitions above and each
colour class is an independent set of vertices existing on the depth. No more than one
vertex of each colour class can participate in the maximum clique by the independent
set’s definition. Therefore the number of colours classes existing on the subgraph
always equals or is bigger than a size of the maximum clique that can exist on the
subgraph. ■

Note, that this degree function can be bigger in case some colour classes are not
presented in the maximum clique of the subgraph.

A resorting of vertices during the vertex colouring can be used in the Degree

function calculation to speed-up the algorithm - instead of calculating the degree of a

 39

subgraph each time on a depth we will calculate it only once the depth is formed and
later just adjust this value by the following rule: if the next vertex on the depth to be
expanded is from the same colour class as the previous one then the degree remains the
same otherwise the degree should be decreased by 1 (there are no more vertices from
the previous vertex’ colour class and it is eliminated).

3.2.1.2 Algorithm

Algorithm for the maximum clique problem – “VColor-u”

CBC - current best (maximum) clique
d – depth
Gd – subgraph of G formed by vertices existing on the d-th depth

Step 0. Heuristic vertex-colouring: Find a vertex colouring and reorder vertices so
that first vertices in the new order belong to the last found colour class, then vertices of
the previous to the last colour class and so forth – vertices at the end should belong to
the first colour class. Note: It is advisable to use a special array to solve order of
vertices to avoid changing the adjacency matrix during vertices reordering.
Step 1. Initialization: d = 1.
Step 2. Check: If the current depth can contain a larger clique than the already found:

If d –1 + Degree(Gd) ≤ |CBC| then go to the step 5.
Step 3. Expand vertex: Get the next vertex to expand.

If all vertices have been expanded or there are no vertices then:
Check if the current clique is the largest one. If yes then save it.
Go to the step 5.

Step 4. The next depth: Form a new depth by selecting vertices that are connected to
the expanding vertex among remaining vertices on the current depth;

d = d + 1;
Go to the step 2.

Step 5. Step back:
d = d – 1;
Delete the expanded vertex from the analysis on this depth; either delete the vertex
directly or move the cursor forward
if d = 0, then go to the end, otherwise go to the step 2.

End: Return the maximum clique.

3.2.1.3 Examples
Here we are going to present some examples of the previously described algorithm’s
work step by step. It should make the algorithm and its logic easier to understand.

A Moon-Moser graph has to be defined here before we will use it for our examples.
The original paper of Moon and Moser defines this graph as a graph, vertices of which
are divided into groups by three vertices and any vertex is connected to any other
vertex doesn’t belonging to the same group. The number of clique in this graphs is 3n/3,

 40

where n is the number of vertices [Moon and Moser 1965]. The more general
definition says that this is a graph, where vertices are divided into groups, where any
vertex is connected to all vertices of other groups.

3.2.1.3.1 Example 1

3.2.1.3.1.1 Description of the example
graph

Consider graph shown in Figure 2. It is easy
to see that a core of that is the Moon-Moser
type subgraph containing vertices 1, 2 and 5
for the first class and vertices 6, 4 and 7 for
the second class. Vertices 3, 9 and 8 are
added to make the graph’s structure more
complex and contain larger cliques that the
Moon-Moser subgraph produces.

3.2.1.3.1.2 Algorithm’s steps

We determine colour classes one by one as
long as uncoloured vertices exist in a
greedy manner. This trivial algorithm for
finding a vertex-colouring gives an
acceptable result in average. The vertices
are also resorted in an order they are added into colour classes. So, after the vertex
colouring we have the next result:

Colour class 1 = {1, 2, 5, 9}
Colour class 2 = {3, 4, 6, 7}
Colour class 3 = {8};
The order of vertices is the following: {8, 7, 6, 4, 3, 9, 5, 2, 1}

Let’s use the following notation in the example: CBC – the current best clique and

|CBC| is its size. A grey vertex in the table below is a vertex under analysis and
vertices in front of that are vertices that have been already analysed and cannot
participate in the forming maximum clique any longer. So instead of deleting vertices
we will just process them one by one in the example by moving a cursor, which always
point to the grey vertex.

Steps of the main algorithm’s part (finding the maximum clique) are described in

the following table.

Figure 2. “VColor-u” – Graph of the

example number 1

 41

Table 1. “VColor-u” - Example 1 / Steps of finding the maximum clique

Depth Subgraph Step’s description
Depth 1: 8,7,6,4,3,9,5,2,1 |CBC| is 0; Degree = 3, since all colour classes are

still under analysis. d-1+Degree=1-1+3=3. We
continue our analyses since 3>|CBC| and go to the
next depth:
The grey vertex vdi (v11) to be expanded.

Depth 2: 7,3,9,5,2 |CBC| is 0; Degree = 2, since colour classes 2
(vertices 7 and 3) and 1 (vertices 9, 5 and 2) exist.
d-1+Degree=2-1+2=3. We continue our analyses
since 3>|CBC| and go to the next depth:
The grey vertex vdi (v21) to be expanded

Depth 3: 9,5,2 |CBC| is 0; Degree = 1, since only vertices of the
first colour classes exist.
d-1+Degree=3-1+1=3. We continue our analyses
since 3>|CBC| and go to the next depth:
The grey vertex vdi (v31) to be expanded.

Depth 4: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The formed
clique is {8, 7, 9} and |CBC|=0, so CBC becomes
{8, 7, 9}, and its size=3. Step back (up).

Depth 3: 9,5,2 Degree=1 since remaining vertices are 5 and 2.
All of them belong to the colour class 1. So, the
number of existing colour classes is 1.
We prune since d-1+Degree=3-1+1 = 3 ≤ 3 (size
of CBC).

Depth 2: 7,3,9,5,2 Degree=2 since remaining vertices (3, 9, 5, 2)
belong to colour classes 1 and 2.
We prune since d-1+Degree=2-1+2 = 3 ≤ 3 (size
of CBC).

Depth 1: 8,7,6,4,3,9,5,2,1 Degree=2 since remaining vertices belong to
colour classes 1 and 2.
We prune since d-1+Degree= 1 - 1 + 2 = 2 < 3
(size of CBC). The current depth is 1 therefore we
stop.

The maximum clique is {8, 7, 9}, size = 3.

3.2.1.3.1.3 Analysis of this example

The overall efficiency of the algorithm work on this example graph seems to be very
high. It needed just 7 steps of the main algorithm to find the maximum clique and it
was found directly during the first drill-down steps’ sequence. The main reason of such
efficiency is the Moon-Moser subgraph, which produce parallel structures. Those
structures are the main successor part of the designed algorithm – instead of counting
vertices of all parallel structures it gets into account just the largest one.

 42

In this case we have found the maximum clique that covers all parallel maximum
cliques – {8, 7, 9}. Besides, this maximum clique happens to be larger than Moon-
Moser’s subgraph, therefore we directly stepped back to the highest level and stopped
the algorithm work.

3.2.1.3.2 Example 2

3.2.1.3.2.1 Description of the example graph

Consider the graph shown in Figure
3. It was shown in the previous
example that the more parallel
structures there are, the better it is
for our algorithm. Besides, the closer
a size of the maximum clique to the
number of colours, the faster is the
algorithm – we discuss this later in
the “Preliminary analysis”
subchapter of the “Test and Results”
chapter. Therefore we tried to
construct a graph that will be as
“bad” as possible. Here we used the
classical “Mycielski’s construction”
[West 2001] to construct the graph
that needs 4 colours to be coloured,
although it is triangle free.

3.2.1.3.2.2 Algorithm’s steps

Again we determine colour classes one by one as long as uncoloured vertices exist in a
greedy manner. The vertices are also resorted in an order they are added into colour
classes. So the vertex colouring gives as the next result:

Colour class 1 = {1, 3, 6, 8}
Colour class 2 = {2, 5, 7, 10}
Colour class 3 = {4, 9};
Colour class 4 = {11};
The order of vertices is the following: {11, 9, 4, 10, 7, 5, 2, 8, 6, 3, 1}

We use the same notation as in the previous example: CBC – the current best clique

and |CBC| is the size of the current best clique. A grey vertex in the table below is a
vertex under analysis and vertices in front of that are vertices that have been already
analysed and cannot participate in the forming maximum clique any longer. So instead
of deleting vertices we will just process them one by one by moving a cursor forward.

Steps of the main algorithm’s part (finding the maximum clique) are described in
the following table.

Figure 3. “VColor-u” – Graph of the example

number 2

 43

Table 2. “VColor-u” - Example 2 / Steps of finding the maximum clique

Depth Subgraph Step’s description
Depth 1: 11,9,4,10,7,5,2,8,6,3,1 |CBC| is 0; Degree = 4, since all colour classes

are still in the analyses. d-1+Degree=1-1+4=4.
Since 4>|CBC| we continue our analyses and go
to the next depth:
The grey vertex vdi (v11) to be expanded.

Depth 2: 9,10,7,8,6 |CBC| is 0; Degree = 3, since colour classes 3
(vertex 9), 2 (vertices 10 and 7) and 1 (vertices 8
and 6) exist.
d-1+Degree=2-1+3=4. Since 4>|CBC| we
continue our analyses and go to the next depth:
The grey vertex vdi (v21) to be expanded

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The
formed clique is {11, 9} and |CBC| =0, so CBC
becomes {11, 9}, and its size=2. Step up (to the
previous depth)

Depth 2: 9,10,7,8,6 Degree=2 since colour classes 2 (vertices 10 and
7) and 1 (vertices 8 and 6) exist. So, there exist 2
colour classes.
d-1+Degree=2-1+2=3. Since 3>|CBC| we
continue our analyses and go to the next depth:
The grey vertex vdi (v22) to be expanded

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The
formed clique is {11, 10} and |CBC| =2, so CBC
is not smaller. Step up.

Depth 2: 9,10,7,8,6 Degree=2 since colour classes 2 (vertex 7) and 1
(vertices 8 and 6) exist.
d-1+Degree=2-1+2=3. Since 3>|CBC| we
continue our analyses and go to the next depth:
The grey vertex vdi (v23) to be expanded.

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The
formed clique is {11, 7} and |CBC| =2, so CBC
is not smaller. Step up.

Depth 2: 9,10,7,8,6 Degree=1 since remaining vertices (8 and 6)
belong to the colour class 1.
We prune since d-1+Degree=2-1+1 = 2 ≤ 2 (size
of CBC).

Depth 1: 11,9,4,10,7,5,2,8,6,3,1 Degree=3 since remaining vertices belong to
colour classes 1, 2 and 3.
d-1+Degree=1-1+3=3. Since 3>|CBC| we
continue our analyses and go to the next depth:
The grey vertex vdi (v12) to be expanded.

 44

Depth 2: 5, 3 Degree=2 since colour classes 2 (vertex 5) and 1
(vertex 3) exist.
d-1+Degree=2-1+2=3. Since 3>|CBC| we
continue our analyses and go to the next depth:
The grey vertex vdi (v21) to be expanded.

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The
formed clique is {9, 5} and |CBC| =2, so CBC is
not smaller. Step up.

Depth 2: 5, 3 Degree=1 since only the first colour class exists
(vertex 3).
We prune since d-1+Degree=2-1+1=2≤ 2 (size
of CBC).

Depth 1: 11,9,4,10,7,5,2,8,6,3,1 Degree=3 since remaining vertices belong to
colour classes 1, 2 and 3.
d-1+Degree=1-1+3=3. Since 3>|CBC| we
continue our analyses and go to the next depth:
The grey vertex vdi (v13) to be expanded.

Depth 2: 10, 5, 8, 3 Degree=2 since colour classes 2 (vertices 10 and
5) and 1 (vertices 8 and 3) exist.
d-1+Degree=2-1+2=3. Since 3>|CBC| we
continue our analyses and go to the next depth:
The grey vertex vdi (v21) to be expanded.

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The
formed clique is {4, 10} and |CBC| =2, so CBC
is not smaller. Step up.

Depth 2: 10, 5, 8, 3 Degree=2 since colour classes 2 (vertex 5) and 1
(vertices 8 and 3) exist.
d-1+Degree=2-1+2=3. Since 3>|CBC| we
continue our analyses and go to the next depth:
The grey vertex vdi (v21) to be expanded.

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The
formed clique is {4, 5} and |CBC| =2, so CBC is
not smaller. Step up.

Depth 2: 10, 5, 8, 3 Degree=1 since only the first colour class exists
(vertices 8 and 3).
We prune since d-1+Degree=2-1+1=2≤ 2 (size
of CBC).

Depth 1: 11,9,4,10,7,5,2,8,6,3,1 Degree=2 since remaining vertices belong to
colour classes 1 or 2.
We prune since d-1+Degree= 1 - 1 + 2 = 2 ≤ 2
(size of CBC). The current depth is 1 therefore
we stop.

The maximum clique is {11, 7}, size = 2.

 45

3.2.1.3.2.3 Analysis of this example

The general efficiency of the algorithm this time wasn’t as high as it was for the
previous example, although the main idea worked here also well on last steps. The
algorithms had to analyse some parallel structures that seemed to be different, although
it wasn’t so. It is easy to see that the reason of that is the special graph construction we
used – to be quite “bad” for resolving by our algorithm.

Note that the maximum clique was found again during the first sequence of steps as
in the previous example. Besides, the pruning techniques worked here also and we
needed just 19 steps to resolve a graph containing 11 vertices. There were still 8
vertices in the analyses when the algorithm was able to conclude that the maximum
clique is already found and stop the process.

We can conclude, basing on all previously described, that even the “bad”
construction of the graph wasn’t able to eliminate the power of using the introduced
independent sets technique completely and it still works and shows quite good results.
Another interesting fact we have seen in this example – vertices that produce a higher
chromatic number (in compare with the maximum clique size) were analysed during
first steps. As soon as those vertices were eliminated the algorithm work became very
efficient and it was able stop the analyses.

3.2.2 “VColor-BT-u” – An algorithm based on a vertex
colouring

In this chapter we introduce another algorithm that is still based on the idea of using
independent sets. This new algorithm is constructed basing on the Östergård algorithm
[Östergård 2002]. This algorithm is another modification of the Carraghan and
Pardalos algorithm [Carraghan and Pardalos 1990a] and contains a very powerful
backtracking idea that makes this algorithm to be the quickest one at the moment
[Östergård 2002]. We are going to apply the idea of backtracking search on our
previous algorithm, but we are going to backtrack on a higher level than Östergård
algorithm does: by independent sets instead of by individual vertices.

3.2.2.1 Description
This algorithm is also based on the Carraghan and Pardalos algorithm [Carraghan and
Pardalos 1990a] as the previous one and we are going to describe this part of the
algorithm, but instead will describe all modifications. First of all we introduce a
“vertices” backtracking technique used by Östergård [Östergård 2002] and then an
“independent sets” backtracking technique.

The original Carraghan and Pardalos algorithm considers first of all all cliques that
contain the first vertex v1 and could contain other graph vertices. Then it considers all
cliques that contain v2 and could contain all other vertices except v1. Generally saying,
it considers at the i-th step all cliques that contain vi and could contain vertices {vi+1,
vi+2, ... ,vn}. This technique is nothing else than a standard branch and bound way of
drilling a graph for finding the solution.

 46

The backtracking technique does the graph research in the opposite order, although
the list of vertices on the i-th step is the same. First of all it considers all cliques that
could be built using only vn. Then it considers all cliques that contain vn-1 and could
contain vn, and so forth. The general rule – it considers at the i-th step all cliques that
contain vi and could contain vertices {vi+1, vi+2, ... ,vn}. So we move from the n-th step
to the first step decreasing the step number. Initially it looks like a slower technique in
comparison to the original Carraghan and Pardalos algorithm [Carraghan and Pardalos
1990a], but makes it possible to introduce a new backtracking pruning technique
speeding up the algorithm’s work. First of all, note that the backtracking vertices
selection is used only on the “general” level – as soon as vertices are selected for the i-
th backtracking step, the same branch and bound technique is used. The branch and
bound algorithm uses the same Carraghan and Pardalos pruning technique and the new
backtracking pruning technique described below. The algorithm uses to remember the
maximum clique found for each vertex at the highest level into a special array b. So
b[i] is the maximum clique for the i-th vertex while searching backward. These
numbers are used later by the following rule: if we search for a clique of size greater
than s, then we can prune the search, if we consider vi to become the (j + 1)-th vertex
and j+ b[i] ≤ s [Östergård 2002]. Besides, we can stop the backtracking iteration and go
to the next one if a new maximum clique is found since the maximum clique size of a
subgraph formed by {vi+1, vi+2, ... ,vn} is either equal to the maximum clique size of a
subgraph formed by {vi+2, vi+3, ... ,vn} (the previous step) or is larger on 1. Please refer
to the original Östergård article [Östergård 2002] for proves that this technique always
gives the exact solution.

Now we are going to introduce the “independent sets” (or colour classes)
backtracking technique. We do the same as described above, except we operate on the
“independent sets” level of considering a graph. Let’s say that we have divided, as it is
described previously in the “VColor-u” algorithm, all vertices by colour classes, i.e. V
= {Cn, Cn-1, ..., C1}, where Ci is the i-th colour (or we call it the i-th colour class). First
of all we consider all cliques that could be built only using vertices of the C1, i.e. of the
first colour class. Then we consider all cliques that could be built using vertices of C1
and C2, i.e. of the first and second colour classes, and so forth. The general rule – we
consider at the i-th step all cliques that can contain vertices of {Ci, Ci-1, ..., C1}. Note
that here we again move from the first step to the n-th since colour classes are in the
backward order.

Besides the algorithm uses to remember the maximum clique found for each step on
the high level into a special array b. So b[i] is the maximum clique for a subgraph
formed by {Ci, Ci-1, ..., C1} vertices while searching backward. This numbers are used
later by the following rule: if we search for a clique of size greater than s, then we can
prune the search if we consider vi to become the (j + 1)-th vertex and it belongs to the
k-th colour class and j+ b[k] ≤ s. The stopping condition of the backtrack search
iteration is also remains since the maximum clique size of a subgraph formed by {Ci,
Ci-1, ..., C1} is either equal to the maximum clique size of a subgraph formed by {Ci-1,
..., C1} or is larger on 1. It is so because each time we just add a colour class, i.e. an
independent set in addition to the analysed set of vertices. The new maximum clique
cannot differ more than on 1 vertex from the maximum clique on the previous iteration
since all added vertices are pairways nonadjacent and therefore there are no two or
more vertices which are adjacent and can be used / added to a new maximum clique.

 47

Note: It is important again to sort vertices as we have shown it at the start of the
description: V = {Cn, Cn-1, ..., C1}, i.e. first of all in the new sorted order vertices of the
n-th colour class should appear, then vertices of the (n-1)-th colour class and so forth.

The colour classes pruning technique, which where introduced earlier for the
“VColor-u” algorithm is also used in parallel with the backtracking pruning.

3.2.2.2 Algorithm

Algorithm for the maximum clique problem – “VColor-BT-u”

CBC - current best (maximum) clique
d – depth
i – index of the currently processed colour class in the backtracking
b – array of the backtrack search results
C(vi) – a function that return a colour class to which the vertex vi belongs
Gd – subgraph of G formed by vertices existing on the depth d

Step 0. Heuristic vertex-colouring: Find a vertex colouring and reorder vertices so
that first vertices belong to the last found colour class then vertices of the previous to
last colour class and so forth – vertices at the end should belong to the first colour
class. Note: It is advisable to use a special array to solve order of vertices to avoid
changing the adjacency matrix during reordering vertices.

Step 1. Backtracking: For each colour class starting from the first one up to the last,

i.e. i = i+1:
Step 1.1. Subgraph building. Form the first depth by selecting all vertices of the
current colour class under the analysis and other colour classes, whose index is
smaller than the index of the current colour class.

i = the index of the current colour class.
Step 1.2. Run the subgraph research: Go to the step 2

Step 2. Initialization: d = 1.
Step 3. Check: If the current depth can contain a larger clique than already
found:

Step 3.1. If d –1 + Degree(Gd) ≤ |CBC| then go to the step 6.
Step 3.2. if C(vd 1)>i then If d –1 + b[C(vd 1)] ≤ |CBC| then go to the step 6.

Step 4. Expand vertex: Get the next vertex to expand.
If all vertices have been expanded or there are no vertices then:

Check if the current clique is the largest one. If yes then save it.
Go to the step 1.3.

Step 5. The next depth: Form a new depth by selecting all remaining vertices
that are connected to the expanding vertex from the current depth;

d = d + 1;
Go to the step 3.

Step 6. Step back:
d = d – 1;

 48

Delete the expanded vertex from the analysis on this depth;
if d = 0, then go to the step 1.3, otherwise go to the step 3.

Step 1.3. Completing iteration: b[i] =CBC, go to the step 1.

End: Return the maximum clique.

Steps from 2 to 6 can be considered as a subprocedure that the backtracking runs

iteratively in a cycle for each colour class.

3.2.2.3 Examples
In this chapter we are going to demonstrate some examples of the described algorithm
work. The same graphs will be used as for the previous algorithm.

3.2.2.3.1 Example 1

3.2.2.3.1.1 Description of the example graph

Consider graph shown in Figure 4. Again it is
a graph that is built using the Moon-Moser
type subgraph containing vertices 1, 2 and 5
for the first class and vertices 6, 4 and 7 for
the second class. Vertices 3, 9 and 8 are used
to make the graph’s structure more complex
and contain larger cliques that the Moon-
Moser subgraph produces.

3.2.2.3.1.2 Algorithm’s steps

We determine colour classes one by one as
long as uncoloured vertices exist in a greedy
manner. Vertices are also resorted in an order
those are added into colour classes. So, vertex
colouring gives the following result:

Colour class 1={1, 2, 5, 9}
Colour class 2={3, 4, 6,7}
Colour class 3={8};
The order of vertices is the following: {8, 7, 6, 4, 3, 9, 5, 2, 1}

We use the same notation as in the algorithm’s description above. A grey vertex in

the table below is a vertex under analysis and vertices in front of that are vertices that
have been already analysed and cannot participate in the forming maximum clique any
longer.

Figure 4. “VColor-BT-u” – Graph of
the example number 1

 49

Steps of the main algorithm’s part (finding the maximum clique) are described in
the next table.

Table 3. “VColor-BT-u” - Example 1 / Steps of finding the maximum clique

Depth Subgraph Step’s description
Depth 0: 8,7,6,4,3, 9,5,2,1 To do: Start a backtrack search from the first class

by selecting vertices of it into the depth 1 and run
main steps.
i = 1

Depth 1: 9,5,2,1 |CBC| is 0; Degree = 1, since only first colour class
vertices exist.
d-1+Degree=1-1+1=1. Since 1>|CBC| we can
continue.

C(v11)=1 since v11 belongs to the colour class
number 1. The backtracking pruning is skipped
since C(v11) = i.

Go to the next depth: the grey vertex vdi (v11) to be
expanded.

Depth 2: ∅ The depth doesn’t contain any vertices ⇒ Check if
the formed clique is the largest one: The formed
clique is {9} and |CBC| =0, so CBC becomes {9},
size=1.
b[1] =1. Go to the next iteration of the backtrack
search.

Depth 0: 8, 7,6,4,3,9,5,2,1 To do: Start the next step of the backtrack search by
selecting into the depth 1 vertices of colour classes 1
and 2, and run main steps. i = 2

Depth 1: 7,6,4,3,9,5,2,1 |CBC| is 1; Degree = 2, since existing vertices
belong to colour classes 1 and 2.
d-1+Degree=1-1+2=2. Since 2>|CBC| we can
continue.

C(v11)=2 since v11 belongs to the colour class
number 2. The backtracking pruning is skipped
since C(v11) = i.

Go to the next depth: the grey vertex vdi (v11) to be
expanded.

Depth 2: 9,5,2,1 |CBC| is 1; Degree = 1, since all vertices belong to
the colour class number 1.
d-1+Degree=2-1+1=2. Since 2>|CBC| we can
continue.

 50

C(v21)=1 since v21 belongs to the colour class
number 1 => We can check the backtrack pruning
condition:
d –1 + b[C(v21)] = 2-1+1 = 2 >|CBC| we can
continue.

Go to the next depth: the grey vertex vdi (v21) to be
expanded.

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check if
the formed clique is the largest one: The formed
clique is {7, 9} and |CBC| =1, so CBC becomes {7,
9}, size=2.
b[2] =2. Go to the next iteration of the backtrack
search.

Depth 0: 8,7,6,4,3,9,5,2,1 To do: Start the next step of the backtrack search by
selecting into the depth 1 vertices of colour classes
1, 2 and 3, and run main steps. i = 3

Depth 1: 8,7,6,4,3,9,5,2,1 |CBC| is 2; Degree = 3, since vertices belong to
colour classes 1, 2 and 3.
d-1+Degree=1-1+3=3. Since 3>|CBC| we can
continue.

C(v11)=3 since v11 belongs to the colour class
number 3. The backtracking pruning is skipped
since C(v11) = i.

Go to the next depth: the grey vertex vdi (v11) to be
expanded.

Depth 2: 7,3,9,5,2 |CBC| is 2; Degree = 2, since all vertices belong to
colour classes 1 and 2.
d-1+Degree=2-1+2=3. Since 3>|CBC| we can
continue.
C(v21)=2 since v21 belongs to the colour class
number 2 => We can check the backtrack pruning
condition:
d –1 + b[C(v21)] = 2-1+2 = 3 >|CBC| we can
continue.

Go to the next depth: the grey vertex vdi (v21) to be
expanded.

Depth 3: 9,5,2 |CBC| is 2; Degree = 1, since all vertices belong to
the colour class number 1.
d-1+Degree=3-1+1=3. Since 3>|CBC| we can
continue.

 51

C(v31)=1 since v31 belongs to the colour class
number 1 => We can check the backtrack pruning
condition:
d –1 + b[C(v31)] = 3-1+1 = 3 >|CBC| we can
continue.

Go to the next depth: the grey vertex vdi (v31) to be
expanded.

Depth 4: ∅ The depth doesn’t contain any vertices ⇒ Check if
the formed clique is the largest one: The formed
clique is {8, 7, 9} and |CBC| =2, so CBC becomes
{8, 7, 9}, size=3.
b[3] =3. Go to the next iteration of the backtrack
search.

Depth 0: 8,7,6,4,3,9,5,2,1 Since all colour classes are analysed the algorithm
stops.

The maximum clique is {8, 7, 9}, size = 3.

3.2.2.3.1.3 Analysis of this example

The algorithm needed just 17 steps to find the maximum clique from the graph of 8
vertices. This result is very good, since the maximum clique finding problem is NP-
hard and a lot of algorithms just do an exhaustive search or need a sufficient number of
steps to find a solution. So, the improvement is huge from this point of view. We
should mark that 17 steps is more than 7 steps of the “VColor-u” algorithm for the
same graph. It happens as this graph is not so “good” for applying with this type of
algorithm – as you have probably marked the backtracking pruning formula never
worked in this example. At the same time it is possible to learn a lot from this example
as well. It demonstrated to us a power of using:

1. The backtracking with independent sets – using of backtracking with

independent sets has a set of advantages. First of all we do less iterations since
select all vertices of a class. At the same moment the number of steps inside
each iteration does not increase as colour class’ vertices are “parallel”, i.e.
cannot be included into the same maximum clique and have equal b[i] value,
since they are coloured into the same colour.

2. The stopping condition of the backtracking iteration – We have skipped a lot

of steps using a rule that if we have found a new maximum clique then we can
go directly into the next backtracking iteration, since the current iteration’s
subgraph cannot produce any larger clique. This stop condition is a very
important technique in addition to the backtracking pruning rule.

 52

3.2.2.3.2 Example 2

Although we have analysed this
graph for the “VColor-u” algorithm
previously, we are not going to do it
for this algorithm. A reason of that is
simple - our independent sets based
pruning technique dominates over
the backtracking pruning technique
on it and an example on this graph
will be practically identical to the
previous example. Everyone, who is
interested to see this, can easily
apply step by step our algorithm to
this graph and see that. Our aim is to
demonstrate cases and explain using
of each important part of our algorithm, therefore we will go directly to the next
example.

3.2.2.3.3 Example 3

3.2.2.3.3.1 Description of the example
graph

Consider graph shown in Figure 6. Here
we have constructed a graph to
demonstrate the backtracking pruning
technique work. As it is possible to see,
on that graph we have started from the
“Mycielski’s construction” [West 2001]
also to construct the graph that needs 3
colours to be coloured although is triangle
free – vertices 1, 2, 3, 4 and 5. At the next
construction step we have duplicated this
graph’s construction by adding vertices 6,
7 and 8 and using vertices 2 and 3. Then
we added a vertex 9 to produce a triangle
with vertices 3 and 7. Finally we added a vertex 10 that should produce one more
colour if we will use the greedy colouring, but will not produce any larger cliques than
already existing.

Figure 5. “VColor-BT-u” – Graph of the example

number 2

Figure 6. “VColor-BT-u” – Graph of the

example number 3

 53

Figure 7. “VColor-BT-u” – Graph of the

example number 3 / step 1
Figure 8. “VColor-BT-u” – Graph of the

example number 3 / step 2

Figure 9. “VColor-BT-u” – Graph of the

example number 3 / step 3
Figure 10. “VColor-BT-u” – Graph of the

example number 3 / step 4

We made an assumption that only greedy colouring can be used to make the

example smaller (less vertices), although we could construct a similar case using
“Mycielski’s construction” where any re-colouring will not reduce the number of
colours produced by other colouring techniques, but the backtracking technique will
still work and save us from doing a lot of unnecessary steps. We will discuss this under
the “Analysis” section of that example.

3.2.2.3.3.2 Algorithm’s steps

Again we determine colour classes one by one as long as uncoloured vertices exist in a
greedy manner. Vertices are also resorted in an order they are added into colour
classes. So, vertex colouring gives the following result:

Colour class 1={1, 3, 6}
Colour class 2={2, 4, 7}
Colour class 3={5, 8};
Colour class 4={9};
Colour class 5={10};
The order of vertices is the following {10, 9, 8, 5, 7, 4, 2, 6, 3, 1}

The same notation is used as in the algorithm’s description above. A grey vertex in

the table below is a vertex under analysis and vertices in front of that are vertices that
have been already analysed and cannot participate in the forming maximum clique any
longer.

 54

The steps of the main algorithm’s part (finding the maximum clique) are described
in the next table.

Table 4. “VColor-BT-u” - Example 3 / Steps of finding the maximum clique

Depth Subgraph Step’s description
Depth 0: 10,9,8,5,7,4,2,6,3,1 To do: Start a backtrack search from the first class

by selecting vertices of it into the depth 1 and run
main steps.
i =1

Depth 1: 6,3,1 |CBC| is 0; Degree = 1, since only the first colour
class vertices exist.
d-1+Degree=1-1+1=1. Since 1>|CBC| we can
continue.

C(v11)=1 since v11 belongs to the colour class
number 1. The backtracking pruning is skipped
since C(v11)=i.

Go to the next depth: the grey vertex vdi (v11) to be
expanded.

Depth 2: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The formed
clique is {6} and |CBC|=0, so CBC becomes {6},
size=1.
b[1] =1. Go to the next iteration of the backtrack
search.

Depth 0: 10,9,8,5,7,4,2,6,3,1 To do: Start the next step of the backtrack search
by selecting into the depth 1 vertices of colour
classes 1 and 2, and run main steps. i = 2

Depth 1: 7,4,2,6,3,1 |CBC| is 1; Degree = 2, since vertices belong to
colour classes 1 and 2.
d-1+Degree=1-1+2=2. Since 2>|CBC| we can
continue.

C(v11)=2 since v11 belongs to the colour class
number 2. The backtracking pruning is skipped
since C(v11) = i.

Go to the next depth: the grey vertex vdi (v11) to be
expanded.

Depth 2: 6 |CBC| is 1; Degree = 1, since all vertices belong to
the colour class number 1.
d-1+Degree=2-1+1=2. Since 2>|CBC| we can
continue.

 55

C(v21)=1 since v21 belongs to the colour class
number 1 => We can check the backtrack pruning
condition:
d –1 + b[C(v21)] = 2-1+1 = 2 >|CBC| we can
continue.

Go to the next depth: the grey vertex vdi (v21) to be
expanded.

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The formed
clique is {7, 6} and |CBC|=1, so CBC becomes
{7, 6}, size=2.
b[2] =2. Go to the next iteration of the backtrack
search.

Depth 0: 10,9,8,5,7,4,2,6,3,1 To do: Start the next step of the backtrack search
by selecting into the depth 1 vertices of colour
classes 1, 2 and 3, and run main steps. i = 3

Depth 1: 8,5,7,4,2,6,3,1 |CBC| is 2; Degree = 3, since vertices belong to
colour classes 1, 2 and 3.
d-1+Degree=1-1+3=3. Since 3>|CBC| we can
continue.

C(v11)=3 since v11 belongs to the colour class
number 3. The backtracking pruning is skipped
since C(v11) = i.

Go to the next depth: the grey vertex vdi (v11) to be
expanded.

Depth 2: 7,3 |CBC| is 2; Degree = 2, since vertices belong to
colour classes 1 and 2.
d-1+Degree=2-1+2=3. Since 3>|CBC| we can
continue.

C(v21)=2 since v21 belongs to the colour class
number 2 => We can check the backtrack pruning
condition:
d –1 + b[C(v21)] = 2-1+2 = 3 >|CBC| we can
continue.

Go to the next depth: the grey vertex vdi (v21) to be
expanded.

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The formed
clique is {8, 7} and |CBC|=2, so CBC is not
smaller.
Go up.

 56

Depth 2: 7,3 |CBC| is 2; Degree = 1, since remaining vertex 3
belongs to the colour class 1.
We prune since d-1+Degree=2-1+1=2 ≤ 2 (size of
CBC).
Go up.

Depth 1: 8,5,7,4,2,6,3,1 |CBC| is 2; Degree = 3, since vertices belong to
colour classes 1, 2 and 3.
d-1+Degree=1-1+3=3. Since 3>|CBC| we can
continue.

C(v12)=3 since v12 belongs to the colour class
number 3. The backtracking pruning is skipped
since C(v12) = i.

Go to the next depth: the grey vertex vdi (v12) to be
expanded.

Depth 2: 4,3 |CBC| is 2; Degree = 2, since vertices belong to
colour classes 1, and 2.
d-1+Degree=2-1+2=3. Since 3>|CBC| we can
continue.

C(v21)=2 since v21 belongs to the colour class
number 2 => We can check the backtrack pruning
condition:
d –1 + b[C(v21)] = 2-1+2 = 3 >|CBC| we can
continue.
Go to the next depth: the grey vertex vdi (v21) to be
expanded.

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The formed
clique is {5, 4} and |CBC| =2, so CBC is not
smaller. Step up.

Depth 2: 4,3 |CBC| is 2; Degree = 1, since remaining vertex 3
belongs to the colour class 1.
We prune since d-1+Degree=2-1+1=2 ≤ 2 (size of
CBC).
Go up.

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The formed
clique is {4, 5} and |CBC| =2, so CBC is not
smaller. Step up.

Depth 1: 8,5,7,4,2,6,3,1 |CBC| is 2; Degree = 2, since vertices belong to
colour classes 1 and 2.
d-1+Degree=1-1+2=2. Since 2≤ 2 (size of CBC).
Since d-1=0, then b[3]=2, go to the next iteration
of the backtrack search.

 57

Depth 0: 10, 9,8,5,7,4,2,6,3,1 To do: Start the next step of the backtrack search
by selecting into the depth 1 vertices of colour
classes 1, 2, 3 and 4, and run main steps. i = 4

Depth 1: 9,8,5,7,4,2,6,3,1 |CBC| is 2; Degree = 4, since vertices belong to
colour classes 1, 2, 3 and 4.
d-1+Degree=1-1+4=4. Since 4>|CBC| we can
continue.

C(v11)=4 since v11 belongs to the colour class
number 4. The backtracking pruning is skipped
since C(v11) = i.

Go to the next depth: the grey vertex vdi (v11) to be
expanded.

Depth 2: 8,7,3 |CBC| is 2; Degree = 3, since vertices belong to
colour classes 1, 2 and 3.
d-1+Degree=2-1+3=4. Since 4>|CBC| we can
continue.

C(v21)=3 since v21 belongs to the colour class
number 3 => We can check the backtrack pruning
condition:
d –1 + b[C(v21)] = 2-1+2 = 3 >|CBC| we can
continue.

Go to the next depth: the grey vertex vdi (v21) to be
expanded.

Depth 3: 7, 3 |CBC| is 2; Degree = 2, since vertices belong to
colour classes 1, and 2.
d-1+Degree=2-1+2=3. Since 3>|CBC| we can
continue.

C(v31)=2 since v31 belongs to the colour class
number 2 => We can check the backtrack pruning
condition:
d –1 + b[C(v31)] = 2-1+2 = 3 >|CBC| we can
continue.

Go to the next depth: the grey vertex vdi (v31) to be
expanded.

Depth 4: ∅ The depth doesn’t contain any vertices ⇒ Check
if the formed clique is the largest one: The formed
clique is {9, 8, 7} and |CBC|=2, so CBC becomes
{9, 8, 7}, size=3.
b[4]=2. Go to the next iteration of the backtrack
search.

 58

Depth 0: 10,9,8,5,7,4,2,6,3,1 To do: Start the next step of the backtrack search
by selecting into the depth 1 vertices of colour
classes 1, 2, 3, 4 and 5, and run main steps.
i = 5

Depth 1: 10,9,8,5,7,4,2,6,3,1 |CBC| is 3; Degree = 5, since vertices belong to all
colour classes.
d–1+Degree=1-1+5=5. Since 5>|CBC| we can
continue.

C(v11)=5 since v11 belongs to the colour class
number 5. The backtracking pruning is skipped
since C(v11) = i.

Go to the next depth: the grey vertex vdi (v11) to be
expanded.

Depth 2: 9,5,4,3 |CBC| is 3; Degree = 4, since vertices belong to
colour classes 1, 2, 3 and 4.
d–1+Degree=2-1+4=5. Since 5>|CBC| we can
continue.

C(v21)=4 since v21 belongs to the colour class
number 4 => We can check the backtrack pruning
condition:
d–1 + b[C(v21)] = 2-1+3 = 4 >|CBC| we can
continue.

Go to the next depth: the grey vertex vdi (v21) to be
expanded.

Depth 3: 3 |CBC| is 3; Degree = 1, since vertex belongs to the
colour class 1.

d–1+Degree=3-1+1=3. Since 3≤|CBC| we prune.
Go up.

Depth 2: 9,5,4,3 |CBC| is 3; Degree = 3, since vertices belong to
colour classes 1, 2 and 3.
d–1+Degree=2-1+3=4. Since 4>|CBC| we can
continue.

C(v22)=3 since v22 belongs to the colour class
number 3 => We can check the backtrack pruning
condition:
d–1 + b[C(v22)] = 2-1+2 = 3 ≤|CBC| we prune. Go
up.

Depth 1: 10,9,8,5,7,4,2,6,3,1 |CBC| is 3; Degree = 4, since vertices belong to all
colour classes except the 5-th colour class.
d–1+Degree=1-1+4=4. Since 4>|CBC| we can
continue.

 59

C(v12)=4 since v12 belongs to the colour class
number 4 => We can check the backtrack pruning
condition:
d–1 + b[C(v12)] = 1-1+3 = 3 ≤|CBC| we prune.
Since d-1=0: b[5] =3 (|CBC|). Go to the next
iteration of the backtrack search.

Depth 0: 10,9,8,5,7,4,2,6,3,1 Since all colour classes are analysed the algorithm
stops.

The maximum clique is {9, 8, 7}, size = 3.

3.2.2.3.3.3 Analysis of this example

This example requires 30 main steps of the algorithm to find the maximum clique,
which is also quite a good result with 10 vertices. The backtracking pruning technique
worked at last steps. Potential sizes of subgraphs’ maximum cliques, which are
calculated by both pruning techniques, are highlighted at last steps by bold. You can
see that the backtracking estimation is more accurate than the direct estimation by
independent sets and it prevents the algorithm to continue searching on those
subgraphs and allows stepping out.

So, the backtracking pruning technique is not an artificial technique that is always
dominated by the independent sets pruning technique, but rather is another pruning
way. Those techniques have to be combined in the algorithm and this produced the
truly effective algorithm.

Let’s now examine why the backtracking pruning estimation is more accurate than
the independent sets one and what are those graph structures on which it occurs. As
you probably remember we made an assumption in this example’s graph construction
that we have to use the greedy colouring to produce this situation. This assumption
allowed us to receive the following distribution of vertices among colour classes:

Table 5. Values in the b array - Maximum clique sizes for each colour class of a subgraph
formed by vertices belonging to this and previous colour classes

b b[C5] b[C4] b[C3] b[C2] b[C1]
V {C5,C4,C3,C2,C1} {C4,C3,C2,C1} {C3,C2,C1} {C2,C1} {C1}
Value of b[Ci] 3 3 2 2 1

As you can see, starting from b[C3] a number of colour classes is bigger than a size

of the maximum clique formed by those colour classes. Now, each time the algorithm
has to analyse any subgraph formed by {C3,C2,C1} vertices on depths 1 or 0, having
already found the maximum clique of size 3, it will stop and go back. It happens since
the algorithm already has information that subgraphs formed by {C3,C2,C1} cannot
produce a larger clique than a clique having only two vertices (in the b array) - the
current forming clique on those depths contains 1 or 0 vertices, so in the sum with 2 it
is less that the already found clique size - 3.

So, in the previous case the size of the b array value was less than a number of
colour classes (independent sets) and the backtracking pruning worked (instead of the
independent sets pruning) when those numbers difference was more than a size of the

 60

currently forming clique. The next steps construct one example of a graph that is hard
to solve by using only independent sets in compare to using the backtracking as well:

1. Build a triangle free graph that needs a lot of colours (the more colours it needs

the more complex it will be to solve by using independent sets and even more
complex to solve without those);

2. Continue construction by introducing a triangle into this graph;
3. Continue by using the same principles as were used on the first step –

introduce more vertices and colours, but keep the graph free from the
maximum clique of size 4 (don’t increase the maximum clique size).

An algorithm without the backtracking will have to do a lot of steps trying to

prove that the maximum clique is found (having found the maximum clique) as
long as vertices that were introduced during the first step of the construction
process remain. The algorithm with backtracking will stop immediately basing on
b values.

Note, that you cannot make this graph easily solvable by independent sets by

re-colouring, since there is no colouring better than that received by the greedy
algorithm.

3.2.3 Notes on the programming technique
An algorithm work time for NP complete tasks greatly depends on the programming
techniques. All small mistakes or improper programming that might remain unmarked
in a standard, usual programming, become very time consuming in the combinatorial
tasks. All time leaks or unnecessary operations are executed again and again million
times and can dramatically decrease algorithms performance. Therefore we introduce
this subchapter containing some notes and recommendations on how to avoid improper
programming of the presented algorithms.

3.2.3.1 Calculating of a degree and recalculations
The new algorithms’ pruning technique is based on calculating the number of
remaining colour classes (independent sets) instead of just considering the number of
remaining vertices. This process is done “combinatorically”, i.e. for each analysed
subgraph. So it is especially important to program this part correctly to avoid a
sufficient decrease of algorithms speed. The number of colour classes is called a
“degree” in presented algorithms.

• Degree recalculation: The resorting of vertices during vertex colouring can be
used. We know that all vertices are grouped by colour classes and colour
classes are ordered one by one. Therefore the number of colour classes should
be calculated only once on each depth – the first time the algorithm enters into
this depth, instead of calculating it for each subgraph. Later, as number of
remaining vertices decrease, the algorithm should only adjust this number of
remaining colour classes (the degree function value) by the following rule: if

 61

the next vertex on this depth to be expanded belongs to the same colour class
as the previous one then degree remains the same, otherwise it should be
decreased on 1 (there are no more vertices from the previous vertex colour
class, so this colour class should be eliminated from the number of colour
classes).

• Degree calculation: The resorting of vertices can be used here again. The
easiest way to calculate a degree (in an ordered set of vertices) is just to count
the number of times two neighbour vertices belong to different colour classes.
This method also does not require any sufficient memory use.

3.2.3.2 Handling vertices and their sequence

3.2.3.2.1 Vertex colouring vertices sequence

It is advisable to use a special array to save/fix the order of vertices due re-colouring as
well as for the vertices selection to each depth. The vertex re-colouring requires
changing the sequence of vertices. Physical swapping of vertices’ columns in an
adjacency matrix has obvious minuses:

• It is very intensive process that might require a lot of time;
• Sometimes the adjacency matrix is passed by a reference and the meta-

algorithm calling the algorithm finding the maximum clique could expect this
matrix to remain unchanged.

Therefore the new sequence can be captured using an additional array where
vertices numbers will be stored in a new sequence – in our case in the vertex re-
colouring sequence as it is discussed above in algorithms’ descriptions.

3.2.3.2.2 Remaining vertices

It is advisable to move through existing vertices on a depth instead of direct vertices
elimination from the depth. In case of using an array for storing vertices’ numbers
remaining on the depth, the physical elimination will require shifting all those
numbers. The number of required steps equals the number of remaining vertices. These
steps again are done in the combinatorial search and therefore could mean a sufficient
time loss. The moving through the array of existing vertices just needs to establish a
cursor to point to a current vertex under analysis. The moving can be done just in one
step, that is to re-point the cursor to the next vertex, and requires just one more
memory cell on each depth to store the current position. Remaining vertices here will
be all vertices starting from a vertex the cursor points to. Therefore this method of
walking through the vertices array looks to be an acceptable technique to apply in
described algorithms. This method is used in all examples of our work.

3.3 Weighted Case
In this chapter we are going to introduce a new algorithm, explain it and bring an
example for the graphs case, where vertices have different weights. Those weights can

 62

be of any value as long as we can compare these values and calculate the difference
between them.

3.3.1 “VColor-BT-w” – An algorithm based on a vertex
colouring

3.3.1.1 Description
The previously described algorithm called “VColor-u” is the base for the maximum-
weight algorithm with the following changes. We cannot any longer determine values
of the function Degree as a number of existing colour classes on a subgraph since
vertices have different weights and a colour class’ maximum weight can differ from 1.
Therefore a degree of a subgraph will be calculated as a sum of maximum weights of
each colour class existing on this subgraph: for each existing class we have to find a
vertex of the maximum-weight and then sum up weights of those vertices.

The order of vertices here becomes even more important. Vertices should be
resorted first of all by colour classes and then by weights inside each colour class. So, a
vertex of the maximum weight in any colour class always will be the last inside this
colour class. Therefore a degree of a subgraph equals the sum of the last vertex weights
of each colour class existing on the subgraph independently of which vertices of a
colour class exist on this subgraph. Moreover, instead of calculating a degree of a
subgraph each time we will calculate it only first time on a depth and later only adjust
by the following rule: if the next vertex on this depth to be expanded is from the same
colour class as the previous one, then degree is decreased on a weight of the previous
vertex and is increased on the weight of the current vertex, otherwise it should be
decreased on a weight of the previous vertex (there is no more vertices from the
previous vertex’ colour class and the previous vertex weight was the largest in that
colour class by resorting and therefore was used to calculate the degree).

Besides one more adjustment to the base algorithm will be done. We will use ideas
of a backtrack search described by Östergård [Östergård 2001]. In the algorithm values
of a function c(i) is calculated (i is a vertex number) which denotes the weight of the
maximum-weight clique in the subgraph induced by the vertices {vi, vi+1,…,vn}.
Obviously c(n) = weight of vn and с(1) is the weight of the maximum-weight clique.
For each vertex starting from the last one and up to the first one a backtrack search is
carried out to find c(i). Those values are used to prune the search of the maximum-
weight clique. As we search for a clique with a weight greater than W, if the total
weight of the forming current clique vertices is W′ and we consider vi to be the next
expanded vertex, then we can prune the search if W′ + c(i)≤W. Östergård has also
advised using a vertex reordering by a vertex-colouring’s colour classes [Östergård
2001, Östergård 2002], therefore the ordering for the first pruning strategy will not
slow down this backtrack search.

Other steps of the algorithm remain unchanged.
Note: It is advisable to use a special array to solve the order of vertices to avoid

changing adjacency matrix during reordering vertices.

 63

3.3.1.2 Algorithm

Algorithm for the maximum – weight clique problem

N – number of vertices in the graph
W – weight of the current best (maximum-weight) clique
d – depth
Gd – subgraph of G formed by vertices existing on depth d
W(d) – weight of all vertices in the forming clique
w(i) – weight of vertex i
c – array of the backtrack search results

Step 0. Heuristic vertex-colouring: Find a vertex colouring, reorder vertices and
apply new vertices indexes (renumber vertices from 1 to N for using in the backtrack
search).

Step 1. Backtrack search runner:

For n = N downto 1
Go to the step 2
c(n) = W

Next
Go to the End

Step 2. Initialization: Form the depth 1 by selecting all vertices with an index less
than n and connected to the vertex n. d=1. W(1)= w(n)
Step 3. Check: If the current depth can contain a larger clique than already found:

If W(d) + Degree(Gd) ≤ W then go to the step 7.
Step 4. Expand vertex: Get the next vertex to expand.

If all vertices have been expanded or there are no vertices then:
Check if the current clique is the largest one. If yes then save it.
Go to the step 7.

Step 5. Check: If the current level can contain a larger clique than already found:
If W(d) + c(expanding vertex index) ≤ W then go to step 7.

Step 6. The next level: Form a new depth by selecting all remaining vertices that are
connected to the expanding vertex from the current depth;

W(d+1)=W(d) + w(expanding vertex index)
d = d + 1;
Go to the step 3.

Step 7. Step back:
d = d – 1;
if d = 0, then return to the step 1
Delete the expanded vertex from the analysis on this depth;
Go to the step 3.

End: Return the maximum-weight clique.

 64

3.3.1.3 Example
We will demonstrate here two examples. The first one will demonstrate a technique of
pruning by colour classes in weighted graphs without backtracking. The second
example will include both pruning strategies and therefore will follow the described
algorithm.

3.3.1.3.1 Example 1: Pruning technique by colour classes

3.3.1.3.1.1 Description of the example graph

Consider the graph shown in Figure 11. and
vertices’ weights that are shown in the Table 6.

Table 6. „VColor-BT-w“ – Example 1 / vertices’
weights

Vertex Weight
8, 7, 4 1
4, 3, 9, 5 3
2, 1 4
6 10

Again it is a graph used for our examples

before, which is built using the Moon-Moser
type subgraph containing vertices 1, 2 and 5
for the first class and vertices 6, 4 and 7 for the
second class plus vertices 3, 9 and 8, which are
used to make the graph’s structure a bit more
complex and contain larger cliques that the Moon-Moser subgraph produces.

3.3.1.3.1.2 Algorithm’s steps

The first step is to determine colour classes one by one as long as uncoloured vertices
exist in a greedy manner. Unlike the unweighted case, here vertices are sorted by
weights inside each colour class in addition to sorting by colour classes. So, vertex
colouring gives as the next result:

Colour 1 = {5, 9, 1, 2}
Colour 2 = {7, 4, 3, 6}
Colour 3 = {8};

We define a sequence by including the first colour class into the end, then the
second colour class in front of it, and so forth. Besides, vertices in colour classes are
listed from the biggest (by weight) up to the smallest (by weight).

Sequence of vertices: {8, 6, 3, 4, 7, 2, 1, 9, 5}

Figure 11. “VColor-BT-w” – Graph of

the colour classes pruning example

 65

Let’s use the following notation in the example: W – a weight of the current best
weighted clique, Wi is a weight accumulated on previous depths up to the i-th (incl.), d
is a depth number, c is an array of the backtrack search results. A grey vertex in the
table below is a vertex under analysis and vertices in front of that are vertices that have
been already analysed and cannot participate in the forming maximum clique any
longer.

Let’s say that all vertices exist on a depth one and we start the algorithm without

any additional information.

Table 7. „VColor-BT-w“ - Example 1 / Steps of finding the maximum clique without
backtracking

Depth Subgraph Step’s description
1: 8,6,3,4,7,2,1,9,5 Degree=1+10+4=15>W(0)

The grey vertex vdi (v11) to be expanded
W1=1 (weight of the vertex 8)

2: 3,7,2,9,5 Degree=3+4=7 +1(W1)> W(0)
The grey vertex vdi (v21) to be expanded
W2=1(W1)+3(weight of the vertex 3) =
4(accumulated)

3: 2,5 Degree=4+4(W2)> W(0)
The grey vertex vdi (v31) to be expanded
W3=4+4=8

4: Ø CBC=W3=8 ({8,3,2})
3: 2, 5 Degree=3 +4(W2)< W(8).

Go up on the previous depth
2: 3,7,2,9,5 Degree=1+4=5 +1(W1)< W(8).

Go up on the previous depth
1: 8,6,3,4,7,2,1,9,5 Degree=10+4=14 +0(W0)> W(8).

Go further. W1=10 (weight of the vertex 6)
2: 2,1,9,5 Degree=4 +10(W1)> W(8)

The grey vertex vdi (v21) to be expanded
W2=10+4=14

3: Ø W=W2=14 ({6,2})
2: 2,1,9,5 Degree=4 +10(W1)≤ W(14).

Go up on the previous depth.
1: 8,6,3,4,7,2,1,9,5 Degree=3+4=7 +0(W0)< W(14).

Go up on the previous depth. Since d=1 (is the
first depth) then goto End

The maximum weighted clique is {6,2}, and its weight is 14.

 66

3.3.1.3.2 Example 2: Full example

This second example demonstrates how the previously described algorithm works. In
other words, here both pruning techniques are included.

3.3.1.3.2.1 Description of the example graph

Consider the graph shown in Figure 12 and
vertices’ weights that are shown in the Table 8.

Table 8. „VColor-BT-w“ – Example 2 / Vertices’
weights

Vertex Weight (w)
2, 6 1
7 2
1 7
3, 5 10
4 11

This is a graph constructed to have three

colours, which is a minimum for the “VColor-BT-w” algorithm to demonstrate the
backtracking technique.

3.3.1.3.2.2 Algorithm’s steps

The first step is to determine colour classes one by one as long as uncoloured vertices
exist in a greedy manner. Unlike the unweighted case, here vertices are sorted by
weights inside each colour class in addition to sorting by colour classes. So, vertex
colouring gives as the next result:

Colour 1 = {2, 1, 3}
Colour 2 = {6, 5, 4}
Colour 3 = {7};

We define a sequence by including the first colour class into the end, then the
second colour class in front of it, and so forth. Besides vertices in colour classes are
listed from the biggest (by weight) up to the smallest (by weight).

Sequence of vertices: {7, 4, 5, 6, 3, 1, 2}

Let’s use the following notation in the example: W – a weight of the current best
weighted clique, Wi is a weight accumulated on previous depths up to the i-th (incl), d
is a depth number, c is an array of the backtrack search results. A grey vertex in the
table below is a vertex under analysis and vertices in front of that are vertices that have
been already analysed and cannot participate in the forming maximum clique any
longer.

Figure 12. “VColor-BT-w” – Graph of
the full example (example 2)

 67

Table 9. „VColor-BT-w“ - Example 2 / Steps of finding the maximum clique

Depth Subgraph Step’s description
0: 7, 4, 5, 6, 3, 1, 2 To do: Start a backtrack search from the last

vertex (which is grey) by selecting into the
depth 1 all vertices that are adjacent to it among
vertices after that.

1: Ø W1 = 1(weight of the vertex 2); d=1.
Check: W1 + Degree = 1+0=1> W(0) go further
No vertices => Check if maximum: W1 > W =>
save new record: W=1, max weighted
clique={2}.
d=d-1 => d=0 => c(vertex 2)=W=1;
Go to the next backtracking iteration.

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the
previous vertex (which is grey) by selecting into
the depth 1 all vertices that are adjacent to it
among vertices after that.

1: Ø W1 = 7(weight of vertex 1); d=1.
Check: W1 + Degree = 7+0=7> W(1) go further
No vertices => Check if maximum: W1 > W =>
save new record: W=7, max weighted
clique={1}.
d=d-1 => d=0 => c(vertex 1)=W=7;
Go to the next backtracking iteration.

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the
previous vertex (which is grey) by selecting into
the depth 1 all vertices that are adjacent to it
among vertices after that.

1: Ø W1 = 10(weight of vertex 3); d=1.
Check: W1 + Degree = 10+0=10> W(7) go
further
No vertices => Check if maximum: W1 > W =>
save new record: W=10, max weighted
clique={3}.
d=d-1 => d=0 => c(vertex 3)=W=10;
Go to the next backtracking iteration.

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the
previous vertex (which is grey) by selecting into
the depth 1 all vertices that are adjacent to it
among vertices after that.

1: 3, 2 W1 = 1(weight of vertex 6); d=1.
Degree: all vertices belong to the same colour
class so let’s use the most left vertex’s weight
Degree = 10 (weight of vertex 3)
Check: W1 + Degree = 1+10=11 > W(7) go
further.

 68

The next vertex to expand is the vertex 3
Check: W1+c(vertex 3)=1+10=11> W(7) go
further
W2= W1+w(vertex 3)=1+10=11; d=d+1=2

2: Ø Check: W2 + Degree = 11+0=11 > W(7) go
further
No vertices => Check if maximum:
W2(11)>W(7) => save new record: W=11, max
weighted clique={6,3}.
d=d-1 => d=1 => go up.

1: 3, 2 Degree: all remaining vertices belong to the
same colour class, so let’s use the most left
remaining vertex’s Degree = 1 (weight of the
vertex 2).
Check: W1 + Degree = 1+1=2 ≤ W(11) go back
d=d-1 => d=0 => c(vertex 6)=W=11;
Go to the next backtracking iteration.

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the
previous vertex (which is grey) by selecting into
the depth 1 all vertices that are adjacent to it
among vertices after that.

1: 2 W1 = 10(weight of vertex 5); d=1.
Degree: all vertices belong to the same colour
class, so let’s use the most left vertex’s weight
Degree = 1 (weight of vertex 2)
Check: W1 + Degree = 10+1=11 ≤ W(11) go
back
d=d-1 => d=0 => c(vertex 5)=W=11;
Go to the next backtracking iteration.

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the
previous vertex (which is grey) by selecting into
the depth 1 all vertices that are adjacent to it
among vertices after that.

1: 1, 2 W1 = 11(weight of vertex 4); d=1.
Degree: all vertices belong to the same colour
class, so let’s use the most left vertex’s weight
Degree = 7 (weight of vertex 1)
Check: W1 + Degree = 11+7=18 > W(11) go
further.
The next vertex to expand is the vertex 1
Check: W1+c(vertex 1)=11+7=18>W(11) go
further.
W2= W1+w(vertex 1)=11+7=18; d=d+1=2.

2: Ø Check: W2 + Degree =18+0=18>W(11) go
further.

 69

No vertices => Check if maximum:
W2(18)>W(11) => save new record: W=18, max
weighted clique={4,1}.
d=d-1 => d=1 => go up.

1: 1,2 Degree: all remaining vertices belong to the
same colour class, so let’s use the most left
remaining vertex’s Degree = 1 (weight of
vertex 2).
Check: W1 + Degree = 11+1=12 ≤ W(18) go
back.
d=d-1 => d=0 => c(vertex 4)=W=18;
Go to the next backtracking iteration.

0: 7, 4, 5, 6, 3, 1, 2 To do: Start the next backtrack search from the
previous vertex (which is grey) by selecting into
the depth 1 all vertices that are adjacent to it
among vertices after that.

1: 5, 6, 3 W1 = 2 (weight of vertex 7); d=1.
Degree: vertices belong to colour classes 1 and
2, so let’s use the most left vertices of those
classes
Degree = 10 (weight of vertex 5) + 10 (weight
of vertex 3) =20
Check: W1 + Degree = 2+20=22 > W(18) go
further
The next vertex to expand is vertex 5
Check: W1+c(vertex 5)=2+11=13 ≤ W(18) go
back
d=d-1 => d=0 => c(vertex 7)=W=18;
Go to the next backtracking iteration.

0; 7, 4, 5, 6, 3, 1, 2 No more vertices to analyse, go to End.
The maximum weighted clique is {1, 4}, and its weight is 18.

 70

3.4 Tests and Results

3.4.1 Preliminary analysis

3.4.1.1 General analysis
It is a natural way to use a chromatic graph number as an upper bound during the
maximum clique search and it is widely used [Babel and Tinhofer 1990, Wood 1997].
The maximum clique by its definition requires a special colour for each vertex.
Therefore the maximum clique size cannot be larger than a chromatic number.

There is a sandwich theorem [Knuth 1994] that is focused on a Lovasz number
θ(Ĝ), which is said to be a sandwich between the minimum number of colours required
(the chromatic number) and a size of the maximum clique:

w(G) ≤ θ(Ĝ) ≤ χ(G),

where Ĝ is the complement to G graph. The Lovasz number could be calculated in a

polynomial time [Bomze et al. 1999]. First of all this theorem shows that chromatic
number is always larger that the maximum clique size. Besides it demonstrates that
there could be some distance between those numbers. A size of this distance is a core
element defining efficiency of the proposed algorithms. The smaller this distance, the
faster algorithms are. Fortunately, in comparison to other (best) well-known
algorithms, independently of this distance, the pruning formulas based on the vertex-
colouring are able to produce a faster solution than other algorithms, especially on
dense graphs, where it is practically the only pruning technique that keeps working.
The smaller density of a graph, the more depending on this distance become the
algorithms in comparison to others. This dependency is explained by considering a
question: if we already have found the maximum clique, then how fast could we prove
somehow that it is the maximum one? This situation will be described in the
“Incomplete solution” chapter. The main thing that makes our problem so hard is not
the problem of finding the maximum clique but the problem of proving that it is the
maximum. The closer a size of the maximum clique to a chromatic number, the more
efficiently the algorithms prune and the faster it is possible to prove that the found
clique is the maximum one.

3.4.1.2 Graphs “easy” to solve
As it was shown before, the “best” graphs to be solved by the new algorithms are
graphs where the chromatic number is close to the maximum clique size. There are a
sufficient number of graphs’ classes where it is true. The most interesting example of
such graphs, if we consider the hardness to solve it by other algorithms, is a graph with
a lot of semi-parallel structures like Moon-Moser graphs. The more such structures are
there, the easier this graph is to solve by the introduced algorithms in comparison to
other algorithms since the complexity of such structures are eliminated by using the
vertex-colouring. It happens because the vertex-colouring degree function could

 71

produce a closer estimation for a potential clique size in such (sub)graphs than other
techniques.

3.4.1.3 Graphs “hard” to solve
Unfortunately there are much more graphs / graph classes where the chromatic number
sufficiently differs from the maximum clique size [West 2001]. It is even possible to
construct a graph with the chromatic number as big as you want while the maximum
clique size remains the same. See for example the “Mycielski’s construction” [West
2001] that does it. Such graphs should be “hard” to solve since the new pruning
technique that has been invited in this thesis will not help to avoid producing again the
combinatorial branch and bound search although the situation should be still better than
the pruning strategy invited by Carraghan and Pardalos [Carraghan and Pardalos
1990a]. Unfortunately this difference will not be enough for a sufficient change in a
time needed to find the maximum clique. Another property of a graph “hard” to solve
in addition to the previous one is to have as less parallel structure as possible.
Otherwise vertices producing a large chromatic number would be eliminated during
first steps and a graph will degenerate to the “easy” to solve case. Such example has
been shown as the second example of the “VColor-u” algorithm.

3.4.2 Unweighted case
In this section results showing efficiency of the new algorithms will be presented.

As it has been mentioned earlier a very simple and effective algorithm for the
maximum algorithm problem proposed by Carraghan and Pardalos [Carraghan and
Pardalos 1990a] was used as a benchmark in the Second DIMACS Implementation
Challenge [Johnson and Trick 1996]. Besides, using of this algorithm as a benchmark
is advised in one of the DIMACS annual reports [DIMACS 1999]. That’s why it will
be also used in the benchmarking below. Moreover, the proposed algorithms are
nothing else than modifications of the Carraghan and Pardalos algorithm [Carraghan
and Pardalos 1990a] (we will call it a base algorithm). It gives us possibility to
conclude that worse cases of new algorithms will not differ too much from worse cases
of the base algorithm and comparing those algorithms on random graphs will be good
enough to receive an overall picture. Later different graph classes will be checked as
well to receive more precise picture by graph classes. We are going to use DIMACS
graphs for that.

We have chosen one more algorithm proposed by Östergård [Östergård 2002] to
participate in the comparison test since this algorithm is reported to be the quickest at
the moment and this algorithm is also another modification of Carraghan and Pardalos
algorithm [Carraghan and Pardalos 1990a]. Moreover, our “VColor-BT-u” algorithm
was based on his ideas.

Results are presented as ratios of algorithms spent times on finding the maximum
clique – so the same results can be reproduced on any platforms. The compared
algorithms were programmed using the same programming language and the same
programming technique (it was possible since Östergård [Östergård 2002] algorithm
and the new algorithms are just modifications of Carraghan and Pardalos [Carraghan

 72

and Pardalos 1990a] algorithm). The greedy algorithm was used to find a vertex-
colouring.

3.4.2.1 Random graphs

3.4.2.1.1 Introduction

First of all we look at randomly generated graphs. This will give us a general picture of
the algorithms speed characteristic and it will be possible to conclude if those
algorithms are worth to use.

The number of vertices for each density is chosen so, that any algorithm’s work
time is no less than 2-3 seconds and is no more than an hour. This enables us to
eliminate a standard error of a function measuring time, which is approximately 0.01
seconds – less than 1%.

For each table’s entry 100 graphs were generated and each generated graph is used
as an input for each algorithm to be compared.

3.4.2.1.2 Graphs generation model

A meta-algorithm was used to test different algorithms. It includes a graph generation
subtask and a subtask that runs algorithms to be researched and measures a spent time.
The graph generation subtask uses a density and a number of vertices that a graph
should have as an input. The next generation procedure, which is written in “Basic”,
was used:

ReDim arr(1 To Vertices, 1 To Vertices)
Randomize
For i = 1 To Vertices * (Vertices - 1) / 100 * Density / 2
 Do
 j = Int((Vertices * Rnd) + 1)
 k = Int((Vertices * Rnd) + 1)
 Loop Until arr(k, j) = False And j <> k
 arr(j, k) = True
 arr(k, j) = True
Next

where:
Vertices is the number of vertices to be generated,
Density is the density a graph should have (for example, if the density should be

70%, then this parameter should be 70),
arr is a Boolean array representing a generated graph’s adjacency matrix, i.e. for

any vertices j, k - arr(j, k) is true if and only if those vertices are connected.

 73

As it is easy to see, main functions that provide random numbers are Rnd and
Randomize. Both functions are native Microsoft random numbers’ generators. Let’s
examine them more:

Randomize – a function that is used to initialise or reseed a sequence returned by
Rnd using a value returned by the system timer as a new seed value.

Rnd – a function that returns random single-precision numbers between 0.000000
and 1.000000. It uses the linear-congruential method for random-number generation.
The following pseudo code documents the algorithm used:

x1 = (x0 * a + c) MOD (224)

where:

x1 is a new value,
x0 is a previous value (for the first iteration it is called an initial value or seed),
a equals 1140671485,
c equals 12820163,
MOD is an operator that returns the integer remainder after an integer division.

[http://support.microsoft.com/default.aspx?scid=kb;en-us;231847, 2005-08-29].

This random numbers generation algorithm produces numbers that are surprisingly

good quality. It is used even for high security cryptography, although some newer
modules can provide a higher security. The integer constant, a, is approximately factor
2 less than the square root of the maximum integer value (represented by 224) [Bennett
1976]. It is not recommended to change the values of a and c without careful study and
experimentation, since choosing the “wrong” values for a and c may compromise the
pseudorandom characteristics. Often the choice of those values is "more of an art than
a science", although this can be accomplished via specific algorithms [Schildt 1987].

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

i

j

Figure 13. Distribution of randomly generated coordinates (adjacency matrix)

 74

The above graph shows a randomly generated adjacency matrix to illustrate how the
above algorithm generates graphs. A graph having 100 vertices and 60% density was
produced. The x-axis here contains the first array dimension, the y-axis the second one
and a dot is presented if there is an edge between vertices. As you see, numbers are
distributed quite equally through the plot area and don’t tend to be grouping in some
areas producing special graphs. Two examples of graphs having 10% density and 100
vertices are shown below.

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

i

j

Figure 14. Example 1 of edges of a graph having 10% density and 100 vertices

(adjacency matrix)

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

i

j

Figure 15. Example 2 of edges of a graph having 10% density and 100 vertices

(adjacency matrix)

Those examples demonstrate that our graph generation function produce different

graphs, therefore running the meta-algorithm enough times should test algorithm on

 75

sufficiently different graphs and give acceptable average to make a general conclusion
on algorithms efficiency.

3.4.2.1.3 Time spent on the maximum clique finding

Here a time spent on finding the maximum clique is presented for all algorithms, which
participate in tests.

PO – time needed to find the maximum clique by Carraghan and Pardalos [Carraghan
and Pardalos 1990a] algorithm divided by time needed to find the maximum clique by
Östergård [Östergård 2002] algorithm.
VColor-u – time needed to find the maximum clique by Carraghan and Pardalos
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the
maximum clique by the “VColor-u” algorithm.
VColor-BT-u – time needed to find the maximum clique by Carraghan and Pardalos
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the
maximum clique by the “VColor-BT-u” algorithm.

Note that the density parameter is shown first of all and only then the number of
vertices since the second parameter depends on the first one as we stated earlier – the
number of vertices is chosen so, that the time spent on finding the maximum clique for
a corresponding density is no less than 2-3 seconds and also is not too big (in our
experiments no more than 1 hour). That’s why the lower density is, the more vertices
are in use.

Table 10. Unweighted case / Benchmark results at random graphs – General view – average
ratios of time spent on the maximum clique finding / the base algorithm’s time divided by a
corresponding algorithm’s time

Edge density Vertices PO VColor-u VColor-BT-u
0.1 1800 0.8 0.8 1.0
0.2 1200 1.0 1.0 1.5
0.3 750 1.1 1.0 1.6
0.4 500 1.1 1.1 1.8
0.5 300 1.2 1.3 2.3
0.6 200 1.3 1.7 3.5
0.7 150 1.5 2.5 5.6
0.8 120 1.9 8.5 16.2
0.9 100 4.2 50.1 102.1

For example, 8.5 in the column marked VColor-u means that Carraghan and

Pardalos [Carraghan and Pardalos 1990a] algorithm requires 8.5 times more time to
find the maximum clique than the “VColor-u” algorithm.

It is easy to see that all algorithms are faster than the base algorithm on densities
more than 10%. The base algorithm is better on very small densities – 10% than others
except “VColor-BT-u”. The “VColor-u” algorithm is slightly slower than Östergård
[Östergård 2002] algorithm on densities up to 40%, but starting from 50% it becomes

 76

better. The “VColor-BT-u” algorithm that inherits strong sides from both of those
algorithms is the best one on all densities except 10% and smaller where it is
approximately the same as the base one. The biggest speed difference is reached on
dense graphs, where algorithms based on colour classes are 50-100 times faster than
the base algorithm and 13-25 times faster than Östergård algorithm. The reason of that
lies in a fact that on those densities the “colour classes” pruning technique still works
while other algorithms’ pruning techniques don’t practically prune branches of the
search tree.

Now it looks to be interesting to see more details of the algorithms’ spent times and
see extreme cases – minimum and maximum speed differences, i.e. the difference in
time spent on analysing randomly occurred “good”/“bad” cases.

Table 11. Unweighted case / Benchmark results at random graphs – Detailed view – ratios
deviation of the time spent on the maximum clique finding / the base algorithm’s time divided
by a corresponding algorithm’s time

Edge density Vertices Type of
measure PO VColor-u VColor-

BT-u
0.1 1800 minimum 0.7 0.7 0.8

 average 0.8 0.8 1.0
 maximum 0.8 0.8 1.1

0.2 1200 minimum 0.9 1.0 1.0
 average 1.0 1.0 1.5
 maximum 1.1 1.0 2.0

0.3 750 minimum 0.9 1.0 1.1
 average 1.1 1.0 1.6
 maximum 1.3 1.2 2.6

0.4 500 minimum 0.9 1.0 1.2
 average 1.1 1.1 1.8
 maximum 1.4 1.2 2.9

0.5 300 minimum 0.9 1.2 1.2
 average 1.2 1.3 2.3
 maximum 1.5 1.5 3.5

0.6 200 minimum 0.9 1.4 1.8
 average 1.3 1.7 3.5
 maximum 2.0 2.1 5.0

0.7 150 minimum 1.0 1.7 3.0
 average 1.5 2.5 5.6
 maximum 2.6 4.2 11.0

0.8 120 minimum 1.0 2.5 4.4
 average 1.9 8.5 16.2
 maximum 4.5 12.2 29.0

0.9 100 minimum 1.4 14.9 25.2
 average 4.2 50.1 102.1
 maximum 8.9 88.9 287.0

 77

The picture is practically the same as for averages. The “VColor-u” algorithm is
never slower that Carraghan and Pardalos algorithm starting from 20% density and
competes with Östergård [Östergård 2002] algorithm up to 40-50% starting from
which it becomes also better. The “VColor-BT-u” algorithm surely wins all cases for
all densities except densities smaller or equal to 10%, where is competes with the base
algorithm. We are not presenting results of each our experiment here, but we should
note that in all experiments this “VColor-BT-u” algorithm was never slower than either
the “VColor-u” or Östergård algorithms.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

10 20 30 40 50 60 70
Density

S
pe

nt
 ti

m
e

ra
tio

PO minimum PO average PO maximum

VColor-u minimum VColor-u average VColor-u maximum

VColor-BT-u minimum VColor-BT-u average VColor-BT-u maximum

Figure 16. Unweighted case / Benchmark results at random graphs – Detailed view

This graph view containing results from the previous table by densities up to 70%

provides most benefits for a graphical understanding of algorithms’ spent time ratios
behaviour. Results on higher densities are easily extrapolateable from this graph, and
only make presentation of results on low densities unclear – therefore those are
omitted.

The only algorithm, which is better than the base algorithm by the average and the
maximum ratio of time spent on the maximum clique finding is the “VColor-BT-u”
one. It means that this is the only algorithm, which is quicker than the best one by
those ratios on any density. The minimum ratio for that algorithm is more than 1 only

 78

starting from the 20% density, so the base algorithm is still sometimes better on low
densities than the “VColor-BT-u” one. Another interesting part here are high densities,
where even the minimum ratio for the “VColor-BT-u” algorithm more than the
maximum ratio of Östergård [Östergård 2002] algorithm, so the first one is always
quicker than the Östergård algorithm, and of course than the base Carraghan and
Pardalos algorithm [Carraghan and Pardalos 1990a]. The “VColor-u” algorithm is not
so good as the “VColor-BT-u” and is slower than Östergård’s algorithm up to high
densities where it starts to perform much better and overcomes Östergård’s algorithm
but do not reach the performance of the “VColor-BT-u” one.

3.4.2.1.4 Vertex colouring

Accordingly to the first step of our algorithms we should mark that the problem of
finding an efficient vertex colouring can be treated as a separate problem. The problem
of colouring a graph by the minimum number of colours (i.e. pure vertex colouring
problem) is an NP-hard task; therefore we had to use a heuristic algorithm to do this.
The heuristic algorithm is an algorithm that:

• Doesn’t guarantee the best result, but finds a result that is close enough to the
best one;

• Is quicker than an exact algorithm.
In our case we use a polynomial heuristic – a result is found in a polynomial time.

The vertex-colouring step affects the overall result in the following ways:
1. The closer number of colour classes to the size of the maximum clique, the quicker

the maximum clique will be found because of more effective pruning;
2. The more time we spent on vertex colouring, the slower our algorithm works in

general (since the vertex colouring is a subroutine, which is included into the main
algorithm and its time should be taken into account).

Note that the presented algorithms can evolve without changing core steps by

inventing a new and more effective heuristic algorithm for the vertex colouring.

Table 12. Number of colour classes by a greedy vertex colouring

Edge
density Vertices Average size of the

maximum clique
Number of

colour classes

Number of colour
classes containing only

1 vertex
0.1 100 3.88 7.16 0.40
0.2 100 5.08 10.36 0.48
0.3 100 6.52 13.88 0.64
0.4 100 8.24 17.20 0.92
0.5 100 10.44 20.76 1.12
0.6 100 13.60 24.80 1.56
0.7 100 18.00 30.00 1.76
0.8 100 24.04 37.24 3.16
0.9 100 34.36 46.08 4.80
0.99 100 69.56 71.20 42.48

 79

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

10 20 30 40 50 60 70 80 90 99
Density

N
um

be
r o

f v
er

tic
es

 (s
iz

e)

Average size of the maximum clique
Average number of colour classes
Average number of colour classes containing only 1 vertex

Figure 17. Number of colour classes by a greedy vertex colouring (for a graph with 100

vertices)

It is easy to see that quite effective results of the new algorithms were reached not

on the best splitting vertices into colour classes – an average number of colour classes
is larger approximately on 50% (25% on dense graphs) than an average size of the
maximum clique. This difference can be explained easily by the fact that we used a
very simple greedy heuristic to find a graph’s vertices colouring. From another point of
view there are a lot of graphs, where a number of colours will always be far from the
maximum clique size [West 2001]. So, we cannot expect that the colours’ number will
be very close to the maximum clique size and therefore there is no point to use an
expensive heuristic if it will not provide us with a sufficient decrease of a number of
colour classes. Therefore, it looks like the greedy heuristic is a reasonable choice for
the moment to use in our algorithms.

3.4.2.1.5 Number of analysed branches / subgraphs

Another important characteristic that helps us to understand the invented algorithms’
work efficiency is a number of analysed branches. This characteristic can also be seen
as an efficiency factor of pruning techniques – how many branches one or another
technique (set of techniques) was able to prune – the less the number of analysed
branches is, the more branches were pruned. This factor could demonstrate why one or
another algorithm is faster and when it becomes faster than others. All algorithms that we

 80

are comparing are nothing else than “branch and bounds” algorithms with different
modifications, i.e. algorithms that are searching through all branches. That’s why the
fewer branches we have to go through, the better an algorithm could be and therefore
the factor is so important.

A ratio of analysed branches is used again since we test on randomly generated
graphs and a particular number of branches is less important than information on how
more/less branches were analysed by one or another algorithm.

PO – the number of branches analysed by Östergård [Östergård 2002] algorithm
divided by the number of branches analysed by Carraghan and Pardalos [Carraghan
and Pardalos 1990a] algorithm.
VColor-u – the number of branches analysed by the “VColor-u” algorithm divided by
the number of branches analysed by Carraghan and Pardalos [Carraghan and Pardalos
1990a] algorithm.
VColor-BT-u – the number of branches analysed by the “VColor-BT-u” algorithm
divided by the number of branches analysed by Carraghan and Pardalos [Carraghan
and Pardalos 1990a] algorithm.

Note that this branches’ ratio is calculated by dividing a target algorithm analysed
branches number on the analysed branches number of Carraghan and Pardalos
algorithm unlike previously used time spent ratios.

Table 13. Unweighted case / Benchmark results at random graphs – Analysed branches ratios /
a corresponding algorithm’s number of branches divided the base algorithm’s number of
branches

Edge density Vertices PO VColor-u VColor-BT-u
0.1 1000 98% 83% 59%
0.2 800 96% 81% 55%
0.3 500 96% 75% 50%
0.4 500 94% 67% 44%
0.5 300 90% 55% 36%
0.6 200 88% 42% 27%
0.7 100 75% 26% 16%
0.8 100 62% 13% 6%
0.9 100 35% 2% >1%

For example, 55% in the column marked VColor-u means that the “VColor-u“

algorithm has analysed 55% of branches analysed by Carraghan and Pardalos
[Carraghan and Pardalos 1990a] algorithm.

 81

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Density

A
na

ly
se

d
br

an
ch

es
 ra

tio

PO VColor-u VColor-BT-u

Figure 18. Unweighted case / Benchmark results at random graphs – Analysed branches
ratios

All algorithms analyse fewer branches than the base algorithm [Carraghan and

Pardalos 1990a]. The higher the density is, the fewer branches are analysed. The best
algorithm from the fewer branches point of view is the “V-Color-BT-u” algorithm on
all densities and the difference is sufficient! The number of analysed branches is
almost twice smaller on low densities than for the base algorithm or the “PO” one and
is almost 30–100 smaller on high densities. The “V-Color-u” algorithm is not very
efficient on low or average densities, but is starting to be closer and closer on high
densities to the “V-Color-BT-u” algorithm. The diagram shows that the combination of
the “V-Color-u” and the “PO” pruning strategies inside the “V-Color-BT-u” algorithm
leads to very good results. Those strategies do not compete, but rather support one
another (in different situation one or another works), although additional tests have
shown that the “V-Color-u” strategy works more often. The same can be seen on the
diagram – the “V-Color-u” number of analysed branches is always smaller than for the
“PO” algorithm – approximately 2–3 times. All this allows saying that a suggestion we
had before this test, that the “PO” pruning strategy will never work as it will be
covered by the “V-Color-u” pruning strategy, was completely wrong and those
strategies can be used simultaneously.

 82

3.4.2.1.6 Conclusion

Below we will concentrate into one graph view the ratios of time spent on the
maximum clique finding and analysed branches numbers’ ratios for algorithms, which
are under analysis.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density

A
na

ly
se

d
br

an
ch

es
 ra

tio

0.1

1.0

10.0

100.0

S
pe

nt
 ti

m
e

ra
tio

PO branches ratio VColor-u branches ratio
VColor-BT-u branches ratio PO spent time ratio
VColor-u spent time ratio VColor-BT-u spent time ratio
CP level line

Figure 19. Concluding view on unweighted maximum clique finding algorithms’
performance on random graphs

An additional line is added – a “CP” level line, i.e. “Carraghan and Pardalos” line.

A level of this line is always 1, since the ratio of spent time by the “Carraghan and
Pardalos” algorithm [Carraghan and Pardalos 1990a] divided by the same number is
always 1. This line allows seeing if other algorithms are faster or slower than the base
algorithm and how big is this difference. The right y-axis is logarithmic to fit all data
on the graph.

It is easy to see that the fewer branches should be analyzed by an algorithm, the
faster it is. An algorithm starts to be much faster (i.e. its time spent ratio line starts to
grow very fast) as soon as fewer than approximately 40% of branches should be
analysed. All algorithms are faster than the base one on average density and dense
graphs, while the “V-Color-BT-u” algorithm is the best one. Algorithms are much
faster than the base one on the dense graphs, where their pruning strategies are starting
to be especially efficient. The “V-Color-BT-u” is faster than the base one in hundred
times. The “V-Color-u” algorithm and the “PO” algorithm compete on average graphs,
where those are approximately identical from the spent time point of view. The “V-
Color-u” starts to be faster from the 70% density and move quickly to the “V-Color-
BT-u” direction, while the “PO” algorithm’s time spent ratio line grows slower. An-
other interesting part of this diagram, that should be noted, locates at very low
densities. Here the base algorithm is very efficient. It is practically as good on densities

 83

10%–20% as others and is the best on densities less than 10% (with the “V-Color-BT-
u” algorithm). Sometimes it is even better than the “V-Color-BT-u” algorithm, which
analyses 1.5–2 times less branches. So, it means that for very low densities the easiest
base algorithm is the most efficient and additional steps that all remaining algorithms
do to decrease number of branches to be analysed is rather unnecessary waste of time
than valuable features.

The general conclusion for random graphs is:
• If the density is less than 10% then the best algorithm to use is the base one

[Carraghan and Pardalos 1990a];
• If the density is higher, then the best choice is the “V-Color-BT-u” algorithm,

which is especially efficient on average and high densities.

 84

3.4.2.2 DIMACS graphs
Here the same algorithms are analysed on DIMACS graphs, which are a special
package of graphs used in the Second DIMACS Implementation Challenge [DIMACS
1999; Johnson and Trick 1996] to test different algorithms and find out which of them
is the best one on one or another type of graphs.

PO – time needed to find the maximum clique by Carraghan and Pardalos [Carraghan
and Pardalos 1990a] algorithm divided by time needed to find the maximum clique by
Östergård [Östergård 2002] algorithm.
VColor-u – time needed to find the maximum clique by Carraghan and Pardalos
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the
maximum clique by the “VColor-u” algorithm.
VColor-BT-u – time needed to find the maximum clique by Carraghan and Pardalos
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the
maximum clique by the “VColor-BT-u” algorithm

Table 14. Unweighted case / Benchmark results at DIMACS graphs – ratios of time spent on
the maximum clique finding / the base algorithm’s time divided by a corresponding algorithm’s
time

Graph name Edge
density Vertices Maximum

clique size PO VColor-u VColor-
BT-u

brock200_1 75% 200 21 2.1 2.5 8.4
brock200_2 50% 200 12 2.3 1.0 4.0
brock200_3 61% 200 15 1.2 1.6 3.2
brock200_4 66% 200 17 2.0 1.6 6.0
c-fat200-5 43% 200 58 58.2 91.4 49.2
c-fat500-1 4% 500 14 0.7 1.0 0.8
c-fat500-2 7% 500 26 1.2 2.2 2.2
c-fat500-5 19% 500 64 72.1 185.0 85.4
Hamming6-2 90% 64 32 493.0 4 930.0 493.0
Hamming8-4 64% 256 16 247.8 7.9 7848.3
johnson8-4-4 77% 70 14 11.9 32.0 53.3
johnson16-2-4 76% 120 8 4.4 21.6 20.9
keller4 65% 171 11 2.8 4.2 11.8
MANN_a9 93% 45 16 12.5 42 400.0 42 400.0
p_hat300-1 24% 300 8 1.0 1.0 1.3
p_hat300-2 49% 300 25 2.0 0.8 6.6
p_hat500_1 25% 500 9 0.9 0.8 1.5
p_hat700_1 25% 700 11 1.1 0.8 1.9
sanr400_0.7 70% 400 21 1.7 2.5 5.6
2dc.256* 47% 256 7 4.6 12.5 14.5

* - An original task for those graphs is to find the maximum independent set, so the

maximum clique is found from the complement graph.

 85

Note: An advantage of using spent time ratios – independency from a platform –
was fully used in applying algorithms to DIMACS graphs. Graph instances are very
different and some of them can be solved on the platform we used as a standard in less
than 0.01 seconds. Therefore an older and slower computer was used sometimes.
Anyway, the ratio remains the same and it is not important to mark where and which
platform was used.

Some graph instances were too hard for solving by Carraghan and Pardalos

algorithm. Other algorithms were more than 10 000 times faster on those instances.
Therefore, we have isolated them into another table presented below, where we
calculated spent time ratios using Östergård algorithm as the base one.

VColor-u – time needed to find the maximum clique by Östergård [Östergård 2002]
algorithm divided by time needed to find the maximum clique by the “VColor-u”
algorithm.
VColor-BT-u – time needed to find the maximum clique by Östergård [Östergård 2002]
algorithm divided by time needed to find the maximum clique by the “VColor-BT-u”
algorithm

Table 15. Unweighted case / Benchmark results at DIMACS graphs – ratios of time spent on
the maximum clique finding / the base algorithm’s time divided by a corresponding algorithm’s
time / hard cases

Graph name Edge
density Vertices Maximum

clique size VColor-u VColor-BT-u

c-fat500-10 50% 200 12 6.9 0.9
Hamming10-2 99% 1024 512 389.5 6.1
san400_0.5_1 50% 400 13 284.3 958.2

2dc.512* 58% 512 11 12.5 14.5

* - An original task for those graphs is to find the maximum independent set, so the

maximum clique is found from the complement graph.

The following table provides a brief description of the used graphs:

Table 16. Unweighted case / Description of DIMACS graphs

Graph
type

Description

Bro

Instances from Mark Brockington and Joe Culberson’s generator that
attempts to “hide” cliques in a graph where the expected clique size is much
smaller. For more instances, see their generator in
graph/contributed/brockington. From Mark Brockington
brock@cs.ualberta.ca.

CFat
Problems based on fault diagnosis problems [Berman and Pelc 1990].

For more instances, see the generator in graph/contributed/pardalos. From
Panos Pardalos pardalos@math.uflorida.edu.

 86

Joh*

Problems based on problem in coding theory. A Johnson graph with
parameters n, w, d has a node for every binary vector of length n with
exactly w 1s. Two vertices are adjacent if and only if their hamming
distance is at least d. A clique then represents a feasible set of vectors for a
code. For more instances, see the generator in graph/contributed/Pardalos.
From Panos Pardalos pardalos@math.uflorida.edu.

Ham*

Another coding theory problem. A Hamming graph with parameters n
and d has a node for each binary vector of length n. Two nodes are adjacent
if and only if the corresponding bit vectors are hamming distance at least d
apart. For more instances, see the generator in graph/contributed/pardalos.
It has been noted by participants that n--2 graphs have a maximum clique of
size 2n-1. For a proof of this, see the note in
graph/contributed/bourjolly/hamming.

From Panos Pardalos pardalos@math.uflorida.edu.

Kel*

Problems based on Keller’s conjecture on tilings using hypercubes
[Lagarias and Shor 1992]. For more instances (though they get very large
very fast) see either the generator in graph/contributed/shor or the generator
in graph/contributed/pardalos. From Peter Shor shor@research.att.com

MANN*
(Stein)

Clique formulation of the set covering formulation of the Steiner Triple
Problem. Created using Mannino’s code to convert set covering problems
to clique problems. From Carlo Mannino mannino@iasi.rm.cnr.it

PHat*

Random problems generated with the p hat generator which is a
generalization of the classical uniform random graph generator. Uses 3
parameters: n, the number of nodes, and a and b, two density parameters
verifying 0 ≤ a ≤ b ≤ 1. Generates problem instances having wider node
degree spread and larger clique sizes [Gendreau et al. 1993]. From Patrick
Soriano and Michel Gendreau patrick@crt.umontreal.ca.

San* Instances based on Sanchis paper [Sanchis 1992] From Laura Sanchis
laura@cs.colgate.edu

SanR* These are random instances with sizes similar to those in San. From
Laura Sanchis laura@cs.colgate.edu

2dc* Graphs From Two-Deletion-Correcting Codes. From N. J. A. Sloane
njas@research.att.com

The first result we see in previous result tables is that either the “VColor-u” or the

“VColor-BT-u” algorithm is the quickest one in all graph instances. The only instances
where the “VColor-u” is the best one are “CFat” type graphs and “hamming6-2”,
“hamming10-2”, which are Hamming graphs having a high density. This occurs
because the backtracking pruning technique is decreasing performance of the applying
colour classes in these instances.

Another interesting result is an extremely good performance of new algorithms for
MANN and hamming type graphs. Those graphs are again graphs of a high density,
where the “VColor-BT-u” is the best for a bit lower density and the “VColor-u” for
very high densities.

 87

Note that ratios numbers (i.e. proportions of times spent on finding the maximum
clique) remain the same for “2dc” type graphs – for both 256 and 512 vertices cases.

3.4.3 Weighted case
Usually two types of test cases are used: randomly generated graphs and fixed
instances like the DIMACS test graphs. Unfortunately for the later type such instances
are lacking for the maximum-weight clique problem. The DIMACS graphs are not
weighted and cannot be therefore used for our testing. That’s why only random graphs
are tested.

3.4.3.1 Graphs generation model
The graph (vertices and edges) generation model remains the same as for the
unweighted case. The only difference here is weights that we should also have. We
could simplify the task by using only integer numbers from 1 to 100 since there is no
big difference what numbers to use as long as we can compare them and find a
difference.

A special array is used to store weights for each vertex. The following code was
used to generate those weights in addition to the randomly generated graph.

 ReDim w(1 To Nodes)
 Randomize
 For i = 1 To Nodes
 w(i) = Int((100 * Rnd) + 1)
 Next

Refer to the “Graphs generation model” part of the “Unweighted case” - “Random

graphs” subchapter for more details on Rnd and Randomize functions that are random
number generators. Int is a function that returns only the integer part of a number.

 88

Figure 20. Distribution of randomly generated weights

Here you see a distribution of 1000 times generated weights. Different weights

occur again quite random number of times and do not tend to be grouped somewhere.

3.4.3.2 Time spent on the weighted maximum clique finding
Several algorithms were published since the 1975s. The easiest and effective one was
presented in an unpublished paper by Carraghan and Pardalos [Carraghan and Pardalos
1990b]. This algorithm is nothing else that their earlier algorithm [Carraghan and
Pardalos 1990a] for the unweighted case applied to the weighted case. They have
shown that their algorithm outperforms algorithms that they had compared it with. One
more algorithm was published by Östergård [Östergård 2001] recently. He also has
compared his algorithm with earlier published algorithms and had shown that his
algorithm works better than other best known algorithms.

Results are presented as a ratio of algorithms’ spent times on finding the maximum-
weight clique – so the same results can be reproduced on any platforms. Compared
algorithms were programmed using the same programming language and the same
programming technique (since the new and Östergård algorithms are just modifications
of Carraghan and Pardalos algorithm). The greedy algorithm was used to find a vertex-
colouring.

For each vertices/density case 100 graphs were generated and average time was
measured.

PO – time needed to find the maximum-weight clique by Carraghan and Pardalos
algorithm [Carraghan and Pardalos 1990b] divided by time needed to find the
maximum-weight clique by Östergård algorithm [Östergård 2001].

0
2

4
6

8
10

12
14

16
18

0 10 20 30 40 50 60 70 80 90 100

Weight

H
ow

 m
uc

h
tim

e
th

e
w

ei
gh

t i
s

ge
ne

ra
te

d

 89

VColor-BT-w – time needed to find the maximum-weight clique by Carraghan and
Pardalos algorithm [Carraghan and Pardalos 1990b] divided by time needed to find the
maximum-weight clique by the “VColor-BT-w” algorithm.

Table 17. Weighted case / Benchmark results at random graphs - average ratios of time spent
on the maximum-weight clique finding / the base algorithm’s time divided by a corresponding
algorithm’s time

Edge density Vertices PO VColor-BT-w
0.1 1000 1.12 1.28
0.2 800 1.23 1.93
0.3 500 1.42 2.78
0.4 300 1.63 2.81
0.5 200 1.73 2.81
0.6 200 1.90 4.90
0.7 150 2.12 5.54
0.8 100 2.27 6.83
0.9 100 11.25 69.85

For example, 6.83 in the column marked VColor-BT-w means that Carraghan and

Pardalos [Carraghan and Pardalos 1990b] algorithm requires 6.83 times more time to
find the maximum clique than the “VColor-BT-w” algorithm. Presented results show
that the “VColor-BT-w” algorithm performs very well on any density. It is faster than
both algorithms we compare it with. Especially great results are shown on the dense
graphs, where the new algorithm is 69 times faster than Carraghan and Pardalos
algorithm [Carraghan and Pardalos 1990b] and 6 times faster than Östergård algorithm
[Östergård 2001].

3.5 Summary
Here we have proposed several new algorithms for finding the maximum clique both
for the unweighted and the weighted graphs. Those algorithms were best on all
densities for all graph types that we have researched using for the comparative testing
best general type algorithms, i.e. those, which should solve any graph types. The
highest difference is reached on dense graphs. The main new technique we used to
make algorithms to be quick is the pruning formula based on the vertex colouring, i.e.
independent sets using the fact that vertices of the same independent set cannot be
included into the same clique. This new technique sufficiently decreases a number of
branches that the algorithms have to analyse in finding the maximum clique and that is
the main reason why those perform better than previous algorithms. Several new
algorithms were produced from a composition of using the backtracking search and
independent sets.

Other advantages of the invented algorithms are:
• They require less memory since they are oriented on the colour classes’ number

rather than on the vertices number, and this number is sufficiently smaller.
Usually programs are allocating memory for all possible depth etc. at the start
and it is where we are saving memory by allocating less;

 90

• Algorithms inherit simplicity of programming and studying / explaining from
the original branch and bound algorithm. This makes an algorithms’ realisation
simpler; a risk of making bugs decreases also; algorithms are simpler to test
since number of source code’s branches is smaller in comparison to many other
algorithms’ source codes. So the new algorithms are easy and efficient.

One component of the new algorithms is a heuristic vertex-colouring. We used the

simple greedy heuristic because we wanted to concentrate mainly on the pruning
technique using colours rather than on different vertex colouring heuristics. The
heuristic’s result was 2 times more colours than the size of the maximum clique in
average. We believe that this result could be slightly improved on random graphs,
although those numbers will never match on average and the difference is expected to
be around 30% on average. Another important result here is a concatenation of those
two main classical problems inside one algorithm: finding the maximum clique and the
vertex-colouring. The vertex colouring here is not just a subtask providing a bound that
loses quickly actuality, but is an essential and important part of the algorithms.

All those advantages make the proposed algorithms to be the best by the time spent
on finding the maximum clique and from the applying point of view.

 91

4 TESTING ENVIRONMENT

4.1 General Description
Here we describe the testing environment we used to test algorithms. In other

words, it is the environment that is figured out during our work on the new algorithms.
This discussion can be seen as the next step of experimental analysis of algorithms’
discussion started by Johnson in the year 2002 [Johnson 2002].

The goal of the testing environment, which is discussed here, is to test different
algorithms for finding the maximum clique and mainly measure a time needed to find a
solution, although some other parameters can be measured if corresponding parts are
implemented for each module (algorithm) to be tested.

The following requirements have figured out as essential needs for a testing

environment of our type:
1. It should be able to test different types of graph classes, like:

a. Random graphs – in other words the system should have a module
that is able to generate random graphs. Note that a „true”
randomisation is required, since each time a lot of graphs of the
same type should be provided. There is no point to generate graphs
that are very similar and moreover it should not happen that
randomisation is restarted each time a graph is generated and it
leads to generating exactly the same graphs;

b. It should be possible to load into the environment external graphs.

Note that there are different standards therefore the following types
of graphs’ definitions should be supported:

i. DIMACS format graphs – both compressed and
decompressed versions;

ii. Adjacency matrix graphs, i.e. graphs that are defined by an
adjacency matrix.

2. It should be able to solve both problems: finding the maximum clique and

finding the maximum independent set using the same modules (algorithms),
since those problems are equivalent and there are different graphs for both
problems.

Taking into account those requirements the testing environment that contains the

following main parts is proposed:
1. Algorithms or modules that implement one or another algorithm;
2. Utilities’ module that generates graphs, saves results etc.;
3. A meta-algorithm that makes tests by rerunning algorithms with the same

graphs;

 92

4. A user interface
a. Providing a feedback, i.e. info on events and the current processes

status;
b. Allowing selecting algorithms to be tested and graphs to be used

for testing.

Let’s now review each of those modules separately.

4.2 Modules
Modules are parts of the environment that are implementing algorithms. Each module
should have two main properties:

• It should be standard from the input/output interface point of view;
• It should be written using the same programming language and techniques as

other modules, as much as possible. This will ensure that neither algorithm is
better due to the better programming. All tunings made for any algorithm
should be transferred to others if it is possible.

So, each algorithm is implemented as a standard module and can be easily added
into / removed from the testing environment. The input parameter is a graph to be
solved and the output is the size of the maximum clique. It is necessary to control
during tests if all algorithms are working correctly and the size of the maximum clique
obtained by different algorithms is the same. Note that we are mainly concentrating on
spent times and sizes of the maximum clique, here in tests, rather than on actual
maximum clique vertices as an output.

It is also possible to measure some other parameters by programming into modules
a standard block for that. The block is programmed once and then adopted inside each
algorithm. The ideally programmed block should not require any adaptation since
otherwise similarity of algorithms will decrease because of such unequal measuring.
This is a way we have measured a number of analysed branches / iterations made by
algorithms. An ideal method to activate such blocks is a global variable. Although it is
not advised to have global variable, here it seems to be the best approach to go with as
it allows controlling the algorithms work from one central place and makes algorithms
easily moveable between the meta–algorithms slots that are activating algorithms’
modules.

4.3 Utilities
This is a part of the environment that provides a general level functionality. First of all
those are input/output functions:

1. Function allowing reading external graphs;
2. Function allowing generating a random graph;
3. Function allowing saving results in an output file.

As we already stated before two main formats have to be used: DIMACS and the

adjacency matrix. The first one is the main format that is used in researches. Graphs of
this format are often compressed and stored in so called binary format, although the

 93

decompression algorithm can be easily found from the Internet or in the same ftp folder
of the DIMACS program, where graphs are stored. The second format is used in some
university classes, since a graph definition using the adjacency matrix is more visual
and therefore is easily understandable by students.

The question of generating a random graph is discussed under the “Graphs
generation model” subchapter. The only note that we can do on that - we used to
generate fully random graphs in this study, although sometimes it is necessary to
generate random graphs of some type (with some properties). So, it is possible to use
more than one graphs generation technique and choose one of them using an option
somewhere on the main user interface.

Note that whatever way a graph is generated or whatever format of an external
graph is used, internally the graph should be saved in one way, which is a “standard”
for a particular test environment. This ensures that all graphs are treated in the same
manner by modules. Besides, the graph’s reference, i.e. the input parameter stream for
modules will be the same for all cases.

4.4 Meta-algorithm
A meta-algorithm is a main part of the testing environment that mainly glues parts
together and manages those parts’ work. The main function of the meta-algorithm is to
run algorithms one by one using the same parameters and capture a time spent on
finding the maximum clique and check correctness of algorithms work by comparing
results – the size of the maximum clique produced by different algorithms. The testing
process is done in iterations for all densities and numbers of vertices that are required
to be tested as many times as it is required. An alternative testing process is providing
algorithms with an externally defined graph and capturing the same output parameters,
as it was defined above. Anyway, each time exactly the same graph should be provided
for each algorithm to be tested. Note that each testing iteration should be able to use (or
activate) different modules. There should be a set of options in the user interface that
defines which algorithms to test.

Another important feature of the meta-algorithm is a possibility to store result and
calculate statistic – minimal, maximal and average results. We have found that it is
useful to output both individual numbers and the statistical information since the
statistical information is the main research result while individual numbers allow
understanding trends and make other calculations in case those were not planned in
advance.

An ideal structure of activating modules can be the next:
• Modules should be built using the same base class, which will have a

starting function having the same set of input/output parameters – those
have been described earlier;

• The meta-algorithm should have a set of slots (an array or a collection),
which can contain base classes, so any module can be placed into any slot.
Modules are put into slots if and only if those should be tested and this is
defined by options at the user interface;

 94

• Modules from each slot should be run one by one either for each generated
graph or for an external graph and modules’ outputs captured. Note that
ideally slots should be able to store those output parameters as well;

• The activation, which is described on the previous step, should be done as
many times as it is defined in the user interface. For example, this thesis’
comparative tests used to run each test 100 times to collect enough data to
make a trustable statistic. The result of this process is an output using the
utilities’ module to an external file;

• If randomly generated graphs are tested then the previous step should be
done for each vertices number / density. Densities should be defined as a
range allowing testing more than one density at once (during one test
process). Note that best practises make us to advise defining a vertices’
number for each density rather than one vertices number for all densities,
since a time spent on finding the maximum clique on different densities for
the same time differs dramatically. Therefore it is useful to orient on the
spent time you want to have rather than on a particular number of vertices.

The meta-algorithm should also produce events allowing seeing a status of the
testing process.

So, the meta-algorithm is a core part of the testing environment that manipulates
modules and storing results of the test process.

4.5 User Interface
This is the last element of the testing environment but not least. Of course, it looks like
the testing, i.e. the meta-algorithm and modules are main important parts, but it isn’t
quite true. The visual feedback is very important as well as a possibility to define
options in an easy and comprehensive manner. It makes the environment to be user
friendly and allows testing more and does it quicker.

The user interface should allow defining the following:
• Should graphs be generated or provided externally;
• If the graph is provided externally then:

o The source of the file containing the graph description;
o The type of the graph’s definition: DIMACS or the adjacency matrix;
o The type of task: the “maximum clique finding” or the “maximum

independent set finding”;
• If graphs are to be generated then:

o A range of densities and the step of moving inside the range. For
example densities from 10% to 90% with a step equal to 10%;

o A range of numbers of vertices and the step of moving inside the range
or numbers of vertices for each density you are planning to have in the
testing;

o A number of times graphs should be produced and tested for each
density / number of vertices;

• A destination’s file for the output of the testing;
• Options defining which algorithms to test – one for each algorithm / module;
• Buttons allowing starting and cancelling of the testing process.

 95

The user interface should also show the status of the testing process and a message
on the end of it. It is practically impossible to calculate the time needed for all planned
tests since different densities could require different time for finding the maximum
clique, therefore the full testing time cannot be estimated. Under the status of the
process we mean:

• How many test iterations of the total iterations number has been done;
• What algorithm is running now;
• What graph case is being tested now: density / number of vertices.

This helps to orient in the testing process workflow and detect as soon as possible if

the test process has been poorly planned and if the graph case could require much more
time to find the maximum clique than you have been expecting.

The size of the maximum clique and the spent time should be shown on a message
when the process is completed in case of running an algorithm for an external graph. It
will save the tester from opening the results file to see this information.

4.6 Integration
This last subchapter gathers all modules together and shows how those are integrated /
work together. Let us list parts of the environment once again:

• Algorithms or modules that implement one or another algorithm;
• Utilities module that generates graphs, etc.;
• A meta-algorithm that run tests by rerunning algorithms with the same graphs;
• A user interface providing a feedback and allowing defining options of the

testing process.

The integration can be done if and only if all modules are using the same standards
/ interfaces, raising standard events and returning expected outputs. It was shown
earlier in the “Modules” and the “Meta-algorithm” subchapters what the
standardisation means for the modules’ structure and in the utilities’ part for graphs to
be read or generated. It must be mentioned that the adjacency matrix was used as an
internal structure to hold graphs. It is easier to manipulate with, although requires more
memory than e.g. the DIMACS format. The integration of different parts can be
illustrated using the following scheme:

 96

Figure 21. High-level structure of the test environment

The high-level model presented in the figure has three layers. The first layer is the

user interface, which provides a user with possibilities to operate with the meta-
algorithm. This first layer is an intermediate layer between users and the meta-
algorithm that disables users to work directly with the meta-algorithm or modules (for
example in a DOS like mode). This layer verifies correctness of input parameters. The
second layer is the meta-algorithm’s layer – the core of the system that receives
parameters from the user interface and runs tests. It is a testing logic layer. The third
layer contains both utilities and modules. Those parts are indirectly interacting using a
graph object that is created by utilities and consumed by modules (implementing
algorithms), which are finding the maximum clique in it.

This three layers’ model, with all standards defined earlier, fully describes the
proposed testing environment.

 97

4.7 Summary
This chapter contains a description of the testing environment we used to test
algorithms that were proposed and described in this work. This topic is usually
undervalued in different researches, although it is an essential part of any research,
even of a mathematical one, as it allows proving results and modelling real
dependencies between different parameters, e.g. the graph type and the number of
branches to be analysed. During our tests some guidelines where worked out in an
enormous number of different experiments, mistakes and mis-modellings of the test
environment. We hope that this model can be useful for other developers and
researches at least as a starting point. Anyway it contains all our experience as a set of
suggestions and as our vision of the testing environment.

One of the most interesting topics for the future researches in this area can be
building international standards on programming algorithms (for example by inheriting
algorithms from a standard base class), graphs presentation, storing and outputting
data. Of course there are some standards, for example the DIMACS standard for
graphs, but no more. Under international standards we mean such as the ones used in
the XML for data exchange, activating services remotely, etc.

 98

5 ALGORITHM’S INTELLIGENCE
Each complex problem has different aspects, varies in parameters and internal
complexity. It is common for those problems that different problem cases can be
solved using different algorithms or their variations. Besides problem “solving” can
also mean different things in details, although a general problem remains the same.

This chapter’s aim is to put together different ideas, possibilities and needs arising
in the maximum clique finding and to synthesize an intelligent algorithm that could
address all those issues. Here we look on the maximum clique finding problem again
from the programming, i.e. applying point of view rather than from a poor
mathematical point of view. Ideas about an intelligence of algorithms are widely
discussed in data analyses, data mining and similar areas, and less in the NP-problems;
although some ideas are used in heuristic algorithms – see for example a paper
published by Jagota and Sanchis in 2001. An idea of a meta-algorithm that we are
going to describe here sometimes is discussed in conference halls, but hasn’t been
formalised until now.

5.1 Incomplete Solution

5.1.1 Description
First of all we introduce an “incomplete solution” term that helps us to analyse
algorithms. A term “most effective” algorithm classically means the quickest algorithm
in finding a complete solution, see for example a review provided by Johnson and
Trick in 1996, in other words a solution after all vertices of the graph have been
analysed. But usually an algorithm finds the maximum clique somewhere in the middle
of its work, and then tries to prove that it is the maximum one by looking through all

Figure 22. Process of finding the maximum clique bounded to the time scale

Time

Size of clique

Size of the
maximum clique

Time needed to find a
maximum clique

Time needed to find a
complete solution

 99

remaining vertices. Moreover, some algorithms are able to find the best solution even
on the first or second iteration [Carraghan and Pardalos 1990a], although sometimes it
depends on vertices sorting.

An “incomplete solution” is defined by us as a solution, which is already
best/maximum for a particular graph, although it is not yet proved. As you see, it is
rather a state of the maximum clique finding process than a type of solution, since at
the end of ends the incomplete solution, will become a complete one. This state occurs
as soon as the maximum clique is found and lasts up to the algorithm’s work end. So it
is a question of time – how soon this state will occur and how long it will lasts. This is
a new algorithm characteristic that can be important for some types of applications
[Musliner et al. 1995, Gat et al. 1990]. For example, there can be a real-time system,
which runs a maximum clique finding algorithm. After a certain time the maximum
clique algorithm could be interrupted as no more time can be spent on it and the current
solution will be used as the best one.

It means that there can be a requirement to optimise the time needed to find the
maximum clique in scope of the incomplete solution’s definition. Besides, it is possible
to define a task to optimise the time needed to find a solution in the predefined interval
from the best solution as well as by speed of moving towards the best solution.

Figure 23. Incomplete solution: optimisation points

So, we have two questions of optimisation:
1. Optimise the time needed to find a solution, which is at least x% from the best,

where x is a number from 0 to 100;
Note that this is a general definition. The “incomplete solution” is a case when
x equals 100.

2. Optimise an overall speed of moving toward the maximum clique finding.

Those optimisation tasks are not exactly the same. For example, an algorithm could

be efficient in finding a maximal clique that is 75% from the maximum one, but the
maximum clique will be found just on last steps.

Note that we don’t mean that using heuristic solutions is a bad idea. We just mean
that in some cases exact algorithms can perform as a heuristic one in finding a solution

Time

Size of clique

Size of the
maximum clique

Time needed to find a
maximum clique

Time needed to find a
complete solution

Predefined x% level
from the maximum
clique

Speed

 100

and then continue trying to prove that this solution is optimal. Besides, it is always
better to tune one algorithm to come up with a solution as soon as possible if there is a
certain probability that the algorithm will work up to the end, than to run two
algorithms: a heuristic and an exact. In our work we will research a question of how
fast algorithms, analysed in this work, find the incomplete solution, i.e. 100%.

5.1.2 Tests
Here we are going to test algorithms that we used before to find how those perform in
finding the “incomplete solution” to get a first overview of connections between
existing algorithms and the “incomplete solution” concept. Two properties will be
measured – time of finding the “incomplete solution” and the number of times an
algorithm was the best. It shows an overall performance of algorithms and how close
algorithms are to each other in finding the “incomplete solution”.

5.1.2.1 Preliminary analysis
The following preliminary results can be obtained from analysing examples that we
played through in the “New algorithms” chapter before. The “VColor-u” algorithm
should suit very well for finding the “incomplete solution” as it is efficient and is able
to find a solution during first iterations. Especially it should be true for the dense
graphs, since graphs with low densities can be efficiently solved by the Carraghan and
Pardalos algorithm as well due to its speed of the direct solution’s search. The
backtracking model is not very good here as it is starting from the “end” of a graph
adding vertices one by one into analysis. It should lead to finding a solution
somewhere in the middle or at the end of its work – at least it will not be found until all
vertices of the maximum clique are added into the backtrack analysis.

The question of vertices sorting could become especially important here. Different
algorithms can be used. Generally saying the finding “incomplete solution” task is the
sorting task much more than the maximum clique finding one, since here we don’t
have to prove that the found clique is the maximum one, but rather have to speed up
finding it. Unfortunately the question of finding the best sorting has the same
complexity as the problem of finding the “incomplete solution” since the number of
different sortings is exponential. Therefore we have to choose some sorting to be used
by all algorithms. Different sorting algorithms can be more or less suitable for
particular graph cases, so the question of choosing a better sorting algorithm is rather a
topic to be discussed under the “Adoptive Algorithm” and the “Algorithm Learning
and Results Knowledge Base” subchapters. Now we are going to investigate the
general algorithms’ behaviour in terms of finding an “incomplete decision” and see
what algorithms don’t perform well from this point of view. Therefore we are going to
apply for algorithms the same vertices sorting algorithm as we did for “VColor-u” or
“VColor—BT-u” algorithms – sorting by colouring. The question of finding a sorting
technique will be postponed for later studies.

 101

5.1.2.2 Results
We use randomly generated graphs. See the “Graphs generation model” subsection for
more details on the generation model. For each case 100 graphs of the case’s density
and number of vertices were produced, i.e. each case contained 100 iterations. The first
step of each iteration was to find out the maximum clique size and then to run
algorithms analysed. As soon as an algorithm found a clique of the maximum clique
size, it was stopped.

The first property we are about to measure is a number of times one or another
algorithm is the quickest one.

CP – Carraghan and Pardalos [Carraghan and Pardalos 1990a] algorithm;
PO – Östergård [Östergård 2002] algorithm;
VColor-u – a new algorithm invited in this study – see the “VColor-u” algorithm.

Note that here only the “VColor-u” algorithm is used, as the “VColor” type pruning for
the “incomplete solution” is to be measured, and therefore the “VColor-u” and the
“VColor-BT-u” are not wanted to compete.

Table 18. Number of times algorithms are the quickest in finding an “incomplete solution”

Edge density Vertices CP PO VColor-u
0.1 1600 100 0 0
0.2 1200 68 0 32
0.3 750 48 0 52
0.4 500 44 0 56
0.5 300 41 0 59
0.6 200 33 0 67
0.7 150 24 0 76
0.8 120 13 0 87
0.9 100 5 0 95

For example 41 in the CP column means that the Carraghan and Pardalos algorithm

was the quickest in finding the “incomplete solution” 41 times for graphs of this row
density and number of vertices.

The first result seen in the table is zeroes in the “PO” column of Östergård
algorithm that uses the backtracking search. It means that this algorithm, very efficient
for finding the maximum clique, is not very good in finding the “incomplete solution”
(as we were expecting). So results are distributed between the Carraghan and Pardalos
algorithm – see the CP column, and the “VColor-u” algorithm – see the VColor-u
column. The Carraghan and Pardalos algorithm was always the best on densities less
than 10% and the best on the 20% density. The “VColor-u” has won more starting
from 40% but was surely the best starting from the 60-70% densities. We should
conclude that those algorithms were competing on densities starting from 30% and up
to 50%.

 102

The next property to be measured is the time spent on finding the “incomplete
solution”. Again we are using the ratios of time to make result easily reproducible on
any platforms – see “Appendix” for algorithms’ program codes.

CP – time needed to find the “incomplete solution” by Carraghan and Pardalos
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the
“incomplete solution” by Carraghan and Pardalos [Carraghan and Pardalos 1990a]
algorithm.
Note that we use this as a normalising line needed for the later presentation of results
on the graph view, since this ratio is 1 always by definition.
PO – time needed to find the “incomplete solution” by Carraghan and Pardalos
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the
“incomplete solution” by Östergård [Östergård 2002] algorithm.
VColor-u – time needed to find the maximum clique by Carraghan and Pardalos
[Carraghan and Pardalos 1990a] algorithm divided by time needed to find the
“incomplete solution” by the “VColor-u” algorithm.

Table 19. How fast algorithms are in finding an “incomplete solution” – spent time

Edge density Vertices CP PO VColor-u
0.1 1600 1.0 0.1 0.2
0.2 1200 1.0 0.3 0.8
0.3 750 1.0 0.3 3.4
0.4 500 1.0 0.2 5.4
0.5 300 1.0 0.3 6.9
0.6 200 1.0 0.3 8.5
0.7 150 1.0 0.86 10.9
0.8 120 1.0 0.75 17.5
0.9 100 1.0 1.8 140.48

For example 8.5 in the VColor-u column means that the Carraghan and Pardalos

algorithm requires 8.5 times more time than the “VColor-u” algorithm to find the
“incomplete solution”.

First of all the PO column – the Östergård algorithm – is the slowest in finding the
“incomplete solution” on all densities except 90%. We expected this result basing on
zeroes in this column in the previous table showing number of times the algorithm was
the quickest. It is surprising that this algorithm was quicker than that of Carraghan and
Pardalos on average on the highest density, even when using the backtracking search.
It should mean that the Carraghan and Pardalos algorithm’s pruning technique
degenerated fully on this density allowing the Östergård algorithm be quicker on
average. The fact that the Carraghan and Pardalos algorithm still was 5 times the
quickest on this density of 90% should mean that for those won cases the sorting was
“right” for finding the solution during first iterations and those 5 times are rather a
statistical deviation, since a right sorting cannot be easily found.

 103

Figure 24. Incomplete solution finding: number of

wins and time spent by algorithms

This graphical view contains results from both

tables for two main algorithms that have been
winning on different densities. It is easy to see that
the number of wins and ratios of time for the
“VColor-u” algorithm are growing proportionally
with the density and therefore the same proportions
are valid for the Carraghan and Pardalos algorithm
but in the decreasing direction for the number of

wins. The Carraghan and Pardalos algorithm is clearly the best by all parameters on
low densities and the “VColor-u” algorithm is clearly the best starting from the middle-
high densities. So, both algorithms are worse to use on different densities for general
graphs, although for a particular graph cases those graphics could be different. This
question will be discussed in the next subchapters both for the general problem of
finding the maximum clique and for finding the “incomplete solution”.

5.2 Adaptive Algorithm
Here we are going to present a philosophy of building an algorithm that concentrates
inside itself all the best algorithms and is intelligent enough to apply the right one. This
idea means that we need a meta-algorithm that will collect data and have some
intelligence. Different types of intelligence could be used. The easiest way is to have
an “expert systems” type meta-algorithm, which will have fixed type rules. The more
complex one could be clever enough to learn like, for example, neural networks do.

5.2.1 “Expert” type intelligence
As we have already seen in the “Tests and results” chapter, there is no universal
algorithm that solves all graphs cases faster than other algorithms. It is rather common
to have a set of algorithms or modifications of those that have different strong sides
and therefore are good in solving one or another particular graph case.

So, it is possible to build a meta-algorithm with fixed rules that will select the best
algorithm basing on the preliminary information about a graph to be solved, or basing
on an initial analysis of the graph. The easiest information that we usually have before
running the main algorithm is the graph’s density. The “Test and Results” chapter has
shown that if the density is no bigger than 10% then there is no better algorithm than
the trivial and powerful Carraghan and Pardalos one that will solve the problem of
finding the maximum clique directly without spending valuable time to any
unnecessary additional steps. Otherwise use the “VColor-BT-u” algorithm to solve all
others densities in common case. The results of this work have shown that this
algorithm is sufficiently faster than others.

Another kind of information that we can have is the type of a graph. This
information is not always available, but if you have it or know how the graph is built

40

60

80

100

120

W
in

s

 104

then it is possible to save a lot of time by applying the right algorithm to find the
maximum clique. For example, there are permutation and interval graphs that can be
easily solved by corresponding algorithms in the polynomial time and there are no
points to apply for them algorithms targeted to solve all possible types/structures of
graphs. Certainly only some graphs can be solved in the polynomial time, but even for
graphs that are hard to solve there could be algorithms that suit more. We have
analysed some graph cases in the “DIMACS” subchapter of the “Tests and Results”
chapter for the unweighted graphs and you can see, which algorithm is better for which
graph’s type. Moreover, we never tuned our algorithms to perform better on one or
another graph type, but this could be done. Reasons why we never did it are:

• We tried to come up with a common solution/algorithm that will find the
maximum clique on any graph;

• We have compared our algorithms with other algorithms that we are not going
to tune and those were not tuned by their authors; therefore we should not tune
our algorithms as well to be honest in comparison tests.

So there are a lot of possibilities to come up with tuning ideas for our main
algorithm “VColor-BT-u” to make it better on certain graph types as well as for other
algorithms. It is logical that all those modifications should be available for the meta-
algorithm to choose which of them to run.

Another question we have been discussing before is the “incomplete solution” case,
i.e. when it is necessary to provide with a maximal or even the maximum clique even if
the algorithm will be interrupted somewhere in the middle of its work. An algorithm,
that is chosen to be the best one, sometimes is not able to find the “incomplete
solution” fast and could require running some other algorithms before to ensure
returning of an acceptable solution in case it is interrupted.

The meta-algorithm should follow the next general rules:
1. If the type of a graph is known then it should run the best algorithm for that

type;
Note: It means that the meta-algorithm should have some knowledge base in
addition to available algorithms that will allow choosing the right algorithm to
run.

2. Choose an algorithm basing on the graph’s density;
3. If there is a probability that the maximum clique finding algorithm will be

stopped and the algorithm chosen on the previous step is not known to be good
in finding the “incomplete solution”, then run either a heuristic algorithm or an
exact algorithm (and stop it after some time);
Note: The obtained result will not only ensure that the algorithm will return an
acceptable result, but also should be used as a low bound for the main exact
algorithm.

4. Run the algorithm that was chosen on the second step.

We have figured out the following meta-algorithm rules basing on results published

in this work for the unweighted case:

1. If the type of graph is known then it should run the best algorithm for that type;

 105

2. If the density of graph is smaller or equal to 10% then run Carraghan and

Pardalos algorithm;

3. If there is a probability that the maximum clique finding algorithm will be

stopped then:
a. If the density is up to 25%, run the Carraghan and Pardalos algorithm

for some time and then go to the next step;
b. If the density is between 25% and 60%, run the “VColor-u” algorithm

for some time and then go to the next step;
c. Otherwise go to the next step directly.
Note that different heuristics can be useful here if any is reported to be the
best for a particular case to be solved.

4. Run the “VColor-BT-u” algorithm.

Note that if the “VColor-u” algorithm was used on the previous step then the
“VColor-u” algorithm’s colouring can be directly reused by the “VColor-BT-
u” algorithm.

5.2.2 Algorithm learning and results knowledge base
In the previous chapter possibilities to use fixed type rules have been reviewed . We
have built the meta-algorithm, which is an expert in the maximum clique finding. We
used “Expert systems” ideas and provided our meta-algorithm with all knowledge we
have at the moment. Unfortunately, the same assumption is made again that we have to
invent an algorithm that will deal with very different graphs and that should solve any
graphs. There is one motto that is widely used nowadays – “Think globally, operate
locally”. Any particular case could have its own aspects, properties etc. of graphs to be
solved. We could not foresee all those aspects and, moreover, these can be opposite to
what we were expecting, or those requirements could be opposite to an algorithm
building point of view. Therefore the ideal case will be a self-learning algorithm. Of
course, we do not talk about a meta-algorithm that will invent new algorithms to find
the maximum clique. Probably it is too self-confidently to try invent such right know.
What we mean is a meta-algorithm that will be able to collect some statistics about
algorithms’ performance on graphs that were solved and later, basing on this statistics,
will be able to choose, which algorithm to run. This meta-algorithm will adapt to a
particular environment and graphs existing in this environment, to the environment
where it has to operate. This adaptation will mean that we move from the general
“expert system” to a more evolving algorithm, which is able to “survive” in any
particular environment in the best way.

Collecting information on which algorithm/modification is better generally means
that the meta-algorithm will try to run all algorithms/modification with all graphs.
Otherwise it will not be possible to answer a question: “Will any other algorithm
perform better than the one we are going to use?” Another important aspect we should
think about is providing more information than the meta-algorithm can collect by itself

 106

like a graph’s density or number of vertices. Is there any additional information on the
graph? Are all graphs the same or you know their types? Is it possible to distinguish a
source of the graph? Any such information will be useful to keep statistics and better
adapt for any particular graph cases.

Now, we know all additional information and we can pass these details into the
meta-algorithm. The main question is how to start collecting data. This can be done in
two ways:

Run other algorithms while in the stand-by mode

The meta-algorithm that finds the maximum clique is rarely asked to do it
continuously. So it doesn’t have to resolve immediately another problem after the
previous one. In this case, after returning an answer, the meta-algorithm can use
available free resources. It can try all other algorithms not used to give the answer, to
find if there was a better/quicker way to perform the task. Basing on the collected
information each algorithm could receive points (for example 1 point each time to the
fastest one). Basing on those points an algorithm to be used next time should be
chosen. If there is a high probability that a new task will arrive soon then the meta-
algorithm should try algorithms in the already obtained points’ sequence. This will
allow trying first the most probable one to be the fastest, then the next probable one
and so forth.

Learn the meta-algorithm to use available algorithms

Another idea is to train the meta-algorithm use its algorithms for finding the
maximum clique prior to the real using. The idea allows collecting statistics before you
start to use the meta-algorithm and it will not be necessary to spend resources on
collecting statistics later while in operation.

The training could be done by asking to solve as many different types of graphs as
possible in all required modes if any exists – like a requirement to stop after e.g. 10
seconds and provide the best found solution etc. For any type/mode as many graph
examples as possible should be used. Instead of using artificial examples, it is always
advisable to use such examples that will likely occur later during the real using of the
meta-algorithm.

It is also important to monitor the performance and changes in the environment. If
graphs to be solved are changing due some changes in the requirements or you suspect
that the meta-algorithm is not providing its best, then it is time to re-train the meta-
algorithm.

Both ways have another very important advantage in addition to the described –

those ways allow collecting information that makes it (also for you) possible to learn
how well graphs are solved and which algorithms are used to solve any particular
graph case. This gives a possibility to analyse collected statistics and to invent even
better modifications of existing algorithms.

 107

5.3 Summary
This chapter has described some ideas of building an intelligent meta-algorithm that is
able to adapt for graphs that have to be resolved in a particular environment and to
apply the best variation of maximum clique finding algorithms for each individual
graph case. We do not mean using special algorithms separately for any particular case,
but rather using a universal meta-algorithm, which is able to adapt. These ideas came
from expert systems and data analyses and can be successfully used in the maximum
clique finding from our point of view. This discussion is more an applying part of the
maximum clique finding, although this cannot be done without understanding of what
the maximum clique finding problem is and which properties should be tracked by the
meta-algorithm. Using such methods should increase the general performance of
algorithms that are applied in this or another science area.

Another area discussed was finding the maximum clique in the real-time
environment when an algorithm can be stopped at any moment. The term “incomplete
solution” has been introduced and embedded into the overall logic of the meta-
algorithm. The “incomplete solution” is nothing else than the maximum clique, which
is not yet proved to be the maximum one. It means that although we know that the
maximum clique is found, we have to scan all remaining branches to ensure that. Some
tests have also been done to get the general overview of how existing best algorithms
perform in the “incomplete solution” finding. These tests have shown that internal
structures of algorithms are very different and some algorithms suit more for operating
in the real-time environment than others. We also came up with some suggestions
about meta-algorithm’s rules, which can take those properties into account.

Using such meta-algorithm will allow automating the selection of the best
maximum clique finding algorithm to run. This process could save a lot of time since
we are dealing with NP-complete problems. Besides, it saves a lot of man-hours when
a system is intelligent enough to make decisions.

 108

6 SUMMARY

6.1 Researched Problem
The main topic of this study as it has been stated in the subchapter 1.3 is the maximum
clique finding from an arbitrary undirected graph. Both weighted and unweighted
graphs were researched. It has been shown in the thesis’ introduction that the studied
maximum clique finding problem is important first of all from two points of view:
complexity and applications. The problem’s complexity is reviewed in the subchapter
1.4, where it has been demonstrated that this problem belongs to the class of NP-hard
problems. It has also been shown in the subchapter (1.4) that a better understanding of
this problem lets us understand better all other NP problems as well as a better and
quicker algorithm can provide us with better ways of solving practically any other NP
problem including main NP complete problems. Applications of the maximum clique
finding are the second important implication of this problem and those were reviewed
in the subchapter 1.6. The treated problem has a lot of extremely important
applications in a variety of areas like biology, circuits’ design and testing, medicine,
etc. This occurs because the theory of graphs provides all other science areas with a
very good and sophisticated abstract model and the maximum clique problem is one of
the central problems of the graph’s theory. Here it should be noted again that the
maximum clique finding problem belongs to the NP problems’ class, i.e. is extremely
time consuming for solving. That’s why any better algorithm is able to save hours,
days of maybe even months of work time. This shows importance of this task and why
achieving the main objectives of this thesis, declared in the subchapter 1.3, could have
a strong economical impact if applied in any business, economical, transportation etc.
applications.

6.2 Thesis Summary
It has been defined in subchapters 1.3 and 1.5 that the goals of this thesis are:
proposing new algorithms for the maximum clique finding in an arbitrary undirected
graph (both weighted and unweighted cases) through identifying graphs properties that
should accelerate the maximum clique search; developing a methodology for building
a suitable test environment for new algorithms and then concentrating the experience
obtained so far by working out a philosophy of building a meta-algorithm for solving
the maximum clique finding problem. That’s why the thesis has been divided into three
major logical parts: the new algorithms, testing, and algorithms’ intelligence.

During our researches we have detected a graphs’ property that provided us with
better algorithms – very simple and therefore having so big impact: any vertices of an
independent set cannot be included into the same clique. This property is used for a
pruning formula of the simple but efficient branch and bounds algorithm. We have
suggested in the presented thesis finding those independent sets using a vertex-
colouring algorithm. The last task is also NP-hard; therefore we used a heuristic

 109

algorithm to find the vertex-colouring of a graph. We demonstrated using of this new
approach directly by describing three new algorithms – the “VColor-u” and the
“VColor-BT-u” for the unweighted graph case and the “VColor-BT-w” for the
weighted graph case. Generally our algorithms are a very successful evolution of the
classical algorithm invited by Carraghan and Pardalos [Carraghan and Pardalos 1990a].
We have demonstrated in this work that a number of colour classes (independent sets
produced by a vertex-colouring algorithm) much better estimates a possible maximum
clique size of any (sub)graph than the number of vertices used so far. A special
algorithm for recalculating the number of existing colour classes on a subgraph has
been proposed here serving the pruning formula. This algorithm is another important
contribution of this paper since it makes possible to use the vertex-colouring measure
quickly and effectively. It includes vertices reordering accordingly to their colours and
a sub-procedure for recalculating the number of existing colours by shifting a
previously obtained result. In addition, it includes reordering of vertices by weights in
each colour class for the weighted case. All this has been demonstrated inside an
extended explanation of each algorithm’s description, which makes the algorithms easy
to implement and understand. A set of examples have been provided in addition to
explanations and a formal formulation of the algorithm, which are simple to follow.
We also have analysed each example to demonstrate what was important inside it and
what knowledge could be derived from it. Our experience with other algorithm has
shown that it is easy to mis-implement an algorithm by making a small mistake
somewhere in algorithm’s details. Such mistake can lead to dramatic decrease in the
performance. In order to eliminate such possibilities we have worked out a set of
guidelines on our algorithms implementation, which are provided in the 3.2.3
subchapter. We also have inherited a backtracking search idea invited by Östergård
[Östergård 2002, Östergård 2001] into the algorithms having “BT” in their names.
Here we have proposed using colour classes instead of individual vertices and have
demonstrated that concatenation of the colour classes’ approach and the backtracking
idea makes the algorithms’ work much more efficient.

In the subchapter 3.4 we conducted a comparative study of the new algorithms. We
used an algorithm proposed to be used for benchmarking by DIMACS [Johnson and
Trick 1996, DIMACS 1999], which is invited by Carraghan and Pardalos [Carraghan
and Pardalos 1990a] and called in the thesis - “base” algorithm. In order to demonstrate
that the proposed algorithms are the quickest at the moment we picked up also
algorithms, which are reported to be the quickest right now – invited by Östergård
[Östergård 2002, Östergård 2001] – both weighted and unweighted cases. It is enough
to use Östergård’s algorithms since he recently has done his comparative study with a
lot of others algorithms and we fully trust into those results. We conducted our tests for
the unweighted case both on randomly generated graphs – see the subchapter 3.4.2.1,
and on special types of graphs mainly provided by DIMACS Challenges [DIMACS
1999] – see the subchapter 3.4.2.2. We used only randomly generated graphs for the
weighted case – see the subchapter 3.4.3, since there is a lack of special graph cases
right now. It was shown, that all our algorithms behave very good on all graph cases,
and always outperform the compared algorithms. Especially good results are shown on
dense graphs, where a lot of other algorithms degenerate to the exhaustive search.
Usage of this new pruning technique gave us algorithms, which are better than the base
algorithm in hundreds times on dense graphs. The colour classes’ approach made the

 110

backtracking search perform much better as we have shown through our test. We
moved the backtracking search on another, a higher level of the operation and
performance. The algorithms “VColor-BT-u” (unweighted case) and “VColor-BT-w”
(weighted case) were best in most cases although for some graph cases we have seen
that “VColor- u” out perform others. We also investigated a reason of this increase in
the performance and have demonstrated that a number of subgraphs analysed during
the maximum clique finding using colour classes fall dramatically.

The algorithms proposed by us in this thesis also remain simple for understanding
and implementation. This is an important property that is inherited from the branch and
bound type of algorithms. Therefore the algorithms are not just the quickest (which is
important by itself), but also are simple and this makes it possible to use those by
universities for studying by students and effectively apply in real tasks. A lot of
practical suggestions and examples are provided in this work to make implementation
of those algorithms to be simple and quick.

We concentrated in our thesis a lot on practical aspects of the maximum clique
finding instead of been limited by researching only mathematical or theoretical aspects
of this problem because of the high implication on the real economical problems
described in the subchapter 1.6. Our aim was to make thesis’ results easily applicable
and motivate further interest in this research from an applications point of view. That’s
why there is fewer maths than somebody could expect. The same is about algorithms
that could be very good from a mathematical complexity point of view but are hard to
apply. That’s why we used for our comparative tests in the subchapter 3.4.2 best
algorithms that are not only best from the mathematical point of view but are also can
be really used in different applications – algorithms invited by Carraghan and Pardalos
[Carraghan and Pardalos 1990a and Carraghan and Pardalos 1990b] and by Östergård
[Östergård 2002, Östergård 2001].

Different versions of the presented algorithms have been recently published and
presented on conferences [Kumlander 2003, Kumlander 2004a, Kumlander 2004b,
Kumlander 2005a].

We continued our thesis in the next thesis part by describing a test environment, i.e.
a methodology of building it. This topic is usually undervalued although is an essential
part of any research in the graph theory since any mathematical model should be
usually proved by practical results. A philosophy of constructing the test environment
is discussed in the chapter 4 basing on a huge number of experiments and tests that
have been done to test the new invited algorithms. The proposed model has been
divided into several independent parts, which are grouped into several layers. The
following parts have been identified as parts of the model: modules implementing
algorithms – see the subchapter 4.2; a utilities library that enables reading graphs,
generating graphs and outputting results – is described in the subchapter 4.3; a meta-
algorithm and a user interface are core elements of the model and are responsible for
running tests – those are explained in subchapters 4.4 and 4.5. Those model parts are
integrated using internal standards and a special architecture of the test environment.
The model and data flows are presented in the subchapter 4.6. A lot of advices based
on our experience are provided and the architecture is discussed in this chapter. This
discussion is the next step of experimental analysis of algorithms discussion started by
Johnson in the year 2002 [Johnson 2002].

 111

Finally an algorithms’ intelligence has been discussed in the subchapter 5 and
several ideas of a meta-algorithm implementation are proposed. This chapter
concentrates ideas derived from the meta-algorithm, which was described as a part of
the test environment in the chapter 4 and the algorithms we started our thesis from. We
have shown in this 5th chapter a philosophy of building the meta-algorithm and this
study was initially influenced by different modifications of the new algorithms, which
we wanted to have for some special graph cases. Here we proposed a model of the
meta-algorithm, containing maximum clique finding algorithms, that can decide basing
on some additional information, which of those algorithms to run. Although such meta-
algorithms are widely used in other data analyses areas, there are not adopted for the
maximum clique problem until now or at least are rather weak. In this part of our thesis
we collected different ideas and applied them to the maximum clique finding. The
meta-algorithm can increase the performance of the system mostly by applying “right”
algorithms for a particular graph case. Again it occurs mainly because of the
complexity of the maximum clique finding problem since applying the best algorithm
can save a lot of time in solving NP-hard problems.

We started this topic with reviewing a case when an algorithm can be suddenly
stopped during the maximum clique finding and a current best clique has to be returned
as the best solution. A new term called “incomplete solution” has been introduced in
the subchapter 5.1.1 meaning a clique, which is already the maximum one for a graph
although it is not proved yet, i.e. a lot of branches should be analysed further until this
clique will be returned as an answer. This helps us to fix a point of finding the
maximum clique without proving its maximality and was used to test currently best
algorithms, which have been used in the previous comparative testing, for such real-
time environment. This is a type of information that the intelligent meta-algorithm
should certainly get into account. Results of the test are presented in the subchapter
5.1.2.2.

In the end of ends we concentrated all meta-algorithm’s issues in the subchapter 5.2
where different meta-algorithms are proposed and a philosophy of those is discussed.
The first type of the meta-algorithm announced in the subchapter 5.2.1 is the meta-
algorithm, which is implemented like expert systems containing some rules. The next
proposed model is much more sophisticated and is able to train by collecting a statistic
by main graph properties. Such self-learning meta-algorithm is presented in the
subchapter 5.2.2. The strongest side of that meta-algorithm is its capability to adapt to
any environment it should work in and resolve graphs in this environment in the best
way. We have shown that this meta-algorithm acting locally rather than getting into
account all possible cases that can exist in other environments. In addition to the
intellectual way of working the described meta-algorithm collects statistic and provides
a lot of interesting information for further development of the maximum clique finding
algorithms used in it. The described approach to the algorithms intelligence in the
maximum clique finding have been recently announced on the “Operational Research
2005” conference [Kumlander 2005b].

 112

6.3 Future Research Work
The main direction of future researches would be in the maximum clique algorithms
field. We should continue looking for more properties of graphs that can be efficiently
used for building new algorithms for finding the maximum clique. We hope that
information of none existing edges is undervalued in algorithms based on analysing
existing edges. Another interesting research topic would be to analyse further
performance of the new algorithms on different types of graphs. This hopefully would
enable to detect a new type of graphs, where the algorithms work especially well or
bad. We should also investigate more dense graphs in further attempts to increase
performance of algorithms there. Even the proposed algorithms’ performance there is
not as good as we would like to have. Another type of graphs where algorithms are
having problems is graphs where all so far developed estimations show that a larger
maximum clique could be found than there really exists. Usually those graphs have
quite a small maximum clique having average density, for example see error correction
code graphs [Sloane 2002].

A necessary research topic to investigate could be whether there could be found a
better heuristic vertex-colouring technique than the greedy colouring that we could use
in our algorithms. From one hand we cannot expect much better results than the greedy
algorithm can produce in general as we have shown in our analyses in the subchapters
3.4.1 and 3.4.2.1.4. From another hand there could be a vertex-colouring algorithm that
fits more into the new technique of pruning by colour classes. Besides it is important to
check different colouring algorithms for different types of graphs since this
information could be very useful to include into algorithms intelligence as well as for
the general vertex-colouring problem researches.

We should continue researching the meta-algorithm approach described in this
dissertation. An interesting topic to investigate will be a number of iterations for the
“incomplete solution” case for different algorithms. We also would like to find more
properties basing on which graphs can be spread across different groups.

Another area of researches could be developing an online maximum clique solver
exposing web-services for the maximum clique problem. Inside this project both test
environments ideas and algorithms intelligence principles could be combined. In the
scope of this project we also would try to develop some standards for different areas of
maximum clique finding like for example there is for the finance sector – a standard
XML format’s data exchange – see XBRL. Those standards can be defined to make
modules, which should be inherited from a base class or implement certain interfaces;
standards on calling a service for finding the maximum clique via Internet and returned
output etc. A free online service would promote using those standards and enable to
gather opinions of the open society on further standards development. Another idea
could be to release a component that can be used online on the customer side – this
would decrease a load of the server. Anyway all those researches could promote further
development the algorithms’ intelligence ideas described so far.

 113

REFERENCES

Babel L, Tinhofer G (1990) A branch and bound algorithm for the maximum clique
problem. Methods and Models of Operations Research, 34:207-217

Ballard DH, Brown M (1982) Computer Vision. Prentice-Hall, Englewood Cliffs, NJ

Bennett, William RJr. (1976) Scientific and Engineering Problem - Solving
with the Computer. Englewood Cliffs: Prentice-Hall

Berge C, Chv'atal V, eds. (1984) Topics on Perfect Graphs. Ann. Discrete Math. vol
21, North-Holland, Amsterdam

Berman P, Pelc A (1990) Distributed fault diagnosis for multiprocessor systems. In
Proc. of the 20th Annual Intern. Symp. on Fault-Tolerant Computing, pp 340–346,
Newcastle, UK

Bomze M, Budinich M, Pardalos PM, Pelillo M (1999) The maximum clique problem.
Handbook of Combinatorial Optimization, vol. 4, In D.-Z. Du and P. M. Pardalos, eds.
Kluwer Academic Publishers, Boston, MA

Bonner RE (1964) On some clustering techniques. IBM J. of Research and
Development, 8: 22-32

Borodin A, Nielsen MN, Rackoff C (2003) (Incremental) Priority Algorithms.
Algorithmica 37(4): 295-326

Brelaz D (1979) New Methods to Color the Vertices of a Graph, Communications of
the ACM, 22: 251-256.

Brglez F, Fujiwara H (1985) A neutral netlist of 10 combinational benchmark circuits
and a target translator in fortran. Proceedings of the IEEE International Symposium on
Circuits and Systems

Brouwer AE, Shearer JB, Sloane NJA, Smith WD (1990) A new table of constant
weight codes. J.IEEE Trans. Information Theory, 36: 1334-1380

Butenko S, Festa P, Pardalos PM (2001) On the chromatic number of graphs. Journal
of Optimization Theory and Applications, 109: 51-67

Carraghan R, Pardalos PM (1990a) An exact algorithm for the maximum clique
problem. Op. Research Letters 9: 375-382

 114

Carraghan R. and Pardalos PM (1990b) A parallel algorithm for the maximum weight
clique problem. Technical report CS-90-40, Dept of Computer Science, Pennsylvania
State University

Cook SA (1971) The complexity of theorem proving procedures, Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, pp 151-158

Corradi K, Szabo S (1990) A combinatorial approach for Keller’s Conjecture.
Periodica Mathematica Hungarica, 21: 95-100

Culberson JC (1992) Iterated Greedy Graph Colouring and the Difficulty Landscape,
University of Alberta Computing Science Technical Report TR92-07

DIMACS, Center for Discrete Mathematics and Theoretical Computer Science, Annual
Report (1999) Dec, http://dimacs.rutgers.edu/About/Reports/ann00.ps (2005-09-18)

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of
NP-completeness, Freeman, New-York

Garey MR, Johnson DS (2003) Computers and Intractability: A Guide to the Theory of
NP-completeness, Freeman, New-York

Gat E, Slack MG, Miller DP, Firby RJ (1990) Path planning and execution monitoring
for a planetary rover. In Proc. IEEE International Conference on Robotics and
Automation, Cincinnati (USA), pp 20-25

Gendreau A, Salvail L, Soriano P (1993) Solving the maximum clique problem using a
tabu search approach, Ann. Oper. Res., 41: 385-403

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, Massachusetts

Guignard M, Kim S (1987) Lagrangian decomposition: a model yielding stronger
Lagrangian bounds. Mathematical Programming, 39: 215-228

Hertz A, de Werra D (1987) Using Tabu Search Techniques for Graph Colouring, In
Computing, 39: 345-351

Hifi M (1997) A Genetic Algorithm-Based Heuristic for Solving the Weighted
Independent Set and Some Equivalent Problems. Journal of the Operations Research
Society, 48: 612-622

Horaud R, Skordas T (1989) Stereo correspondence through feature grouping and
maximal cliques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:
1168-1180

 115

Jagota A, Sanchis LA (2001) Adaptive, Restart, Randomized Greedy Heuristics for
Maxi-mum Clique, Journal of Heuristics 7(6): 565-585

Jansen K, Scheffler P, Woeginger G (1997) The disjoint cliques problem. Operations
Research, 31: 45-66

Johnson DS (2002), A Theoretician's Guide to the Experimental Analysis of
Algorithms, in Data Structures, Near Neighbor Searches, and Methodology: Fifth and
Sixth DIMACS Implementation Challenges, M. H. Goldwasser, D. S. Johnson, and C.
C. McGeoch, eds, American Mathematical Society, Providence, pp 215-250

Johnson DS, Trick MA, eds (1996) Cliques, Coloring and Satisfiability: Second
DIMACS Implementation Challenge, Vol. 26 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical Society.
Karp RM (1972) Reducibility among combinatorial problems. In complexity of
Computer Computations, RE Miller and JW Thatcher eds. Plenum Press, New York,
pp 85-103

Klotz W (2002) Graph coloring algorithms, Mathematics Report, Technical University
Clausthal, May, pp 1-9

Knuth DE (1994) The sandwich theorem, Electr. J. Comb., 1(A1)

Korman SM (1979) The Graph-Colouring Problem. In Combinatorial Optimization,
Christofides, Mingozzi, Toth and Sandi Editors, pp 211-235

Kim H (1990) Finding a Maximum Independent Set in a Permutation Graph. Inf.
Process. Lett. 36(1): 19-23

Kucera L (1991), The greedy colouring is a bad probabilistic algorithm, J. Algorithms
12(4): 674-684.

Kumlander D (2003) Problems of optimisation: an exact algorithm for finding a
maximum clique optimized for the dense graphs. ISMP2003: Program and Abstracts
book, Copenhagen, pp 114

Kumlander D (2004a) An exact algorithm for the maximum-weight clique problem
based on a heuristic vertex-coloring. Modelling, Computation and Optimization in
Information Systems and Management Sciences, Le Thi Hoai An and Pham Dinh Tao
eds, Hermes Science Publishing, pp 202-208

Kumlander D (2004b) A new exact algorithm for the maximum-weight clique problem
based on a heuristic vertex-coloring and a backtrack search. Proceedings of The Forth
International Conference on Engineering Computational Technology, Civil-Comp
Press, pp 137-138

 116

Kumlander D (2005a) Problems of optimization: an exact algorithm for finding a
maximum clique optimized for dense graphs. Proceedings of the Estonian Academy of
Sciences, 54 (2): 79-86

Kumlander D (2005b) Algorithms Intelligence in the Maximum Clique Finding.
OR2005: Program and Abstracts book, Bremen, 2005, pp 87

Lagarias JC, Shor PW (1992) Keller’s Cube–Tiling Conjecture is False in High
Dimensions. Bulletin of the AMS, 27: 279–283

MacWilliams J, Sloane NJA (1979) The theory of error correcting codes. North-
Holland, Amsterdam

Marchiori E (1998) A Simple Heuristic Based Genetic Algorithm for the Maximum
Clique Problem. Proc. ACM Symposium on Applied Computing (SAC98), pp. 366-
373

Miller W (1992) Building multiple alignments from pairwise alignments. Computer
Applications in the Biosciences

Mitchell EM, Artymiuk PJ, Rice DW, Willet P (1989) Use of techniques derived from
graph theory to compare secondary structure motifs in proteins. Journal of Molecular
Biology, 212: 151-166

Moon JW, Moser L (1965) On cliques in graphs. Israel Journal of Mathematics, 3:23-
28

Motzkin TS, Straus EG (1965) Maxima for graphs and a new proof of a theorem of
Tur'an. Canadian Journal of Maths, 17(4): 533-540

Musliner DJ, Hendler JA, Agrawala AK, Durfee EH (1995) The Challenges of Real-
Time AI. IEEE Computer 28(1)

Murthy AS, Parthasarathy G, Sastry VUK (1994) Clique finding - A genetic approach.
Proc. 1st IEEE Conf. Evolutionary Comput, pp 18-21

Pardalos PM, Resende MGC, Rappe J (1998) An exact parallel algorithm for the
maximum clique problem, In R. De Leone, A. Murli, P.M. Pardalos, and G. Toraldo,
eds, High performance algorithms and software in nonlinear optimization, pp 279-300.
Kluwer Academic Publishers

Pelillo M (1995) Relaxation labeling networks for the maximum clique problem, In J.
Artif. Neural Networks, 2: 313-328

Prestwich S (2001) Local search and backtracking vs non-systematic backtracking. In
AAAI 2001 Fall. Symposium on Using Uncertainty within Computation

 117

Robson JM (1986) Algorithms for maximum independent sets. J. of Algorithms,
7:425-440

Sanchis L (1992) Test Case Construction for Vertex Cover Problem. DIMACS
Workshop on Computational Support for Discrete Mathematics

Schildt H (1987) Advanced Turbo Pascal. Berkeley: Osborne McGraw Hill

Sloane NJA (1989) Unsolved problems in graph theory arising from the study of codes.
Graph Theory Notes of New York XVIII, pp 11–20
http://www.research.att.com/~njas/doc/graphs.html (2005-09-18)

Sloane NJA (2001) On Single-Deletion-Correcting Codes. D. Ray-Chaudhuri.
Festschrift, available at. http://www.research.att.com/njaa/doc/dijen.pdf (2005-09-18)

Östergård PRJ (2002) A fast algorithm for the maximum clique problem, Discrete
Applied Mathematics, 120: 197-207

Östergård PRJ (2001) A new algorithm for the maximum-weight clique problem.
Nordic Journal of Computing, 8: 424-436

Walshaw C (2001) A Multilevel Approach to the Graph Colouring Problem. Tech.
Rep. 01/IM/69, Comp. Math. Sci., Univ. Greenwich, London SE10 9LS, UK

Welsh D, Powell M (1967) An Upper bound for the Chromatic Number of a Graph and
Its Application to Timetabling Problems. In Computer Journal, 10: 85-86

West DB (2001) Introduction to Graph Theory (2nd edition), Prentice Hall

Wood DR (1997) An algorithm for finding a maximum clique in a graph. Operations
Research Letters, 21: 211-217

 118

APPENDIX A: PROGRAMS LISTINGS

Unweighted Case

VColor-u
Option Explicit

' Optimised Carraghan, R., Pardalos, P. M. algorithm
' by using a heuristic vertex colouring classes for pruning

Private moClasses() As Long, mnClassesCount As Long
Private nLevelDegree() As Long
Private level_nodes() As Long, nStart() As Long, NodesNum() As Long
Private t As Long, mnMaxClique As Long
'

Public Function Start() As Long
 Dim i As Long, t_minus_1 As Long

 ReDim level_nodes(1 To Nodes, 1 To Nodes)

 mnMaxClique = 0
 '''''' each level has its own set of nodes
 For i = 1 To Nodes
 level_nodes(1, i) = i
 Next

 '''''
 DefineClasses

 ReDim NodesNum(1 To mnClassesCount)
 ReDim nStart(1 To mnClassesCount)
 ReDim nLevelDegree(1 To mnClassesCount)
 NodesNum(1) = Nodes

 t = 1
 nStart(t) = 0
 '''''''''''''''''''''''''''''''''''
 While t >= 1
 nStart(t) = nStart(t) + 1

 ''' Degree control
 If NodesNum(t) < nStart(t) Then

 119

 t = t - 1
 Else
 ''' if it is not first node (for fist node degree can not be adjusted)
 ''' and prev. node class is not the same then decrease degree
 ''' (can be done since vertices are sorted
 ''' and if cur. vertex class is not the same as for previous then
 ''' the prev. class is not any longer existing)
 If nStart(t) > 1 Then
 If (moClasses(level_nodes(t, nStart(t))) <> _

moClasses(level_nodes(t, nStart(t) - 1))) Then
 nLevelDegree(t) = nLevelDegree(t) - 1
 End If
 Else
 ''' calculate degree on new depth
 nLevelDegree(t) = LevelDegree()
 End If
 If (t - 1 + nLevelDegree(t)) > mnMaxClique Then
 t_minus_1 = t
 t = t + 1
 nStart(t) = 0
 NodesNum(t) = 0
 ''' define nodes for the next level
 For i = nStart(t_minus_1) + 1 To NodesNum(t_minus_1)
 If arr(level_nodes(t_minus_1, nStart(t_minus_1)), _

level_nodes(t_minus_1, i)) Then
 NodesNum(t) = NodesNum(t) + 1
 level_nodes(t, NodesNum(t)) = level_nodes(t_minus_1, i)
 End If
 Next
 If NodesNum(t) = 0 Then
 t = t - 1
 If t > mnMaxClique Then
 mnMaxClique = t
 End If
 End If

 Else
 t = t - 1
 End If
 End If

 Wend

 ''' return size of maximum clique
 Start = mnMaxClique
End Function

 120

Private Function LevelDegree() As Long
 Dim res As Long, i As Long, nClass As Long, aClass As Long

 For i = nStart(t) To NodesNum(t)
 ''' for node on level define class (moClasses) and mark it as existing
 nClass = moClasses(level_nodes(t, i))
 If nClass <> aClass Then
 aClass = nClass
 res = res + 1
 End If
 Next

 LevelDegree = res
End Function

Private Sub DefineClasses()
 Dim class_init() As Boolean '' show if node exist
 Dim i As Long, k As Long
 Dim mnRemainNodes As Long, bFirstNode As Boolean, nkNode As Long
 Dim nNodeNum As Long

 mnClassesCount = 0
 ReDim class_init(1 To Nodes)
 ''' get info about existing nodes
 ReDim moClasses(1 To Nodes)
 '''''
 mnRemainNodes = Nodes
 While True
 ''' build up new class
 mnClassesCount = mnClassesCount + 1
 bFirstNode = True
 ''' position of first node
 i = mnRemainNodes
 While i > 0
 ''' swap nodes
 nNodeNum = level_nodes(1, i)
 If i <> mnRemainNodes Then
 ''' swap rows
 level_nodes(1, i) = level_nodes(1, mnRemainNodes)
 level_nodes(1, mnRemainNodes) = nNodeNum
 End If
 '''
 moClasses(nNodeNum) = mnClassesCount

 mnRemainNodes = mnRemainNodes - 1
 If mnRemainNodes = 0 Then Exit Sub

 121

 If bFirstNode Then
 For k = 1 To mnRemainNodes
 nkNode = level_nodes(1, k)
 class_init(nkNode) = arr(nNodeNum, nkNode)
 Next
 Else
 For k = 1 To mnRemainNodes
 nkNode = level_nodes(1, k)
 class_init(nkNode) = arr(nNodeNum, nkNode) Or class_init(nkNode)
 Next
 End If
 bFirstNode = False
 For i = mnRemainNodes To 1 Step -1
 If Not class_init(level_nodes(1, i)) Then Exit For
 Next
 Wend
 Wend
End Sub

 122

VColor-BT-u

Option Explicit

' Optimised Carraghan, R., Pardalos, P. M. algorithm
' by using a heuristic vertex colouring classes for pruning' and a backtrack search for
' colour classes

Private moClasses() As Long, mnClassesCount As Long
Private nLevelDegree() As Long
Private level_nodes() As Long, nStart() As Long, NodesNum() As Long
Private t As Long, mnMaxClique As Long
'
Public Function Start() As Long
 Dim i As Long, t_minus_1 As Long

 ReDim level_nodes(1 To Nodes, 1 To Nodes)

 mnMaxClique = 0

 '''''' each level has its own set of nodes
 For i = 1 To Nodes
 level_nodes(1, i) = i
 Next

 DefineClasses

 ReDim NodesNum(1 To mnClassesCount)
 ReDim nStart(1 To mnClassesCount)
 ReDim nLevelDegree(1 To mnClassesCount)
 NodesNum(1) = Nodes

 t = 1
 nStart(t) = 0
 '''''''''''''''''''''''''''''''''''
 While t >= 1
 nStart(t) = nStart(t) + 1

 ''' Degree control
 If NodesNum(t) < nStart(t) Then
 t = t – 1
 Else
 ''' if it is not first node (for first node degree can not be adjusted)
 ''' and prev. node class is not the same then decrease degree
 ''' (can be done since vertices are sorted
 ''' and if the cur. vertex class is not the same as for previous then prev class is
 ''' not any longer existing)

 123

 If nStart(t) > 1 Then

 If (moClasses(level_nodes(t, nStart(t))) <> _
 moClasses(level_nodes(t, nStart(t) - 1))) Then
 nLevelDegree(t) = nLevelDegree(t) – 1
 End If

 Else

 ''' calculate degree on new depth
 nLevelDegree(t) = LevelDegree()
 End If

 If (t - 1 + nLevelDegree(t)) > mnMaxClique Then

 t_minus_1 = t
 t = t + 1
 nStart(t) = 0
 NodesNum(t) = 0

 ''' define nodes for the next level
 For i = nStart(t_minus_1) + 1 To NodesNum(t_minus_1)

 If arr(level_nodes(t_minus_1, nStart(t_minus_1)), _
 level_nodes(t_minus_1, i)) Then
 NodesNum(t) = NodesNum(t) + 1
 level_nodes(t, NodesNum(t)) = level_nodes(t_minus_1, i)
 End If

 Next

 If NodesNum(t) = 0 Then

 t = t – 1
 If t > mnMaxClique Then
 mnMaxClique = t
 End If

 End If

 Else
 t = t – 1
 End If
 End If
 Wend

 ''' return size of maximum clique
 Start = mnMaxClique

End Function

 124

Private Function LevelDegree() As Long
 Dim res As Long, i As Long, nClass As Long, aClass As Long

 For i = nStart(t) To NodesNum(t)
 ''' for node on level define class (moClasses) and mark it as existing
 nClass = moClasses(level_nodes(t, i))
 If nClass <> aClass Then
 aClass = nClass
 res = res + 1
 End If
 Next

 LevelDegree = res
End Function

Private Sub DefineClasses()
 Dim class_init() As Boolean '' show if node exists
 Dim i As Long, k As Long
 Dim mnRemainNodes As Long, bFirstNode As Boolean, nkNode As Long
 Dim nNodeNum As Long

 mnClassesCount = 0
 ReDim class_init(1 To Nodes)
 ''' get info about existing nodes
 ReDim moClasses(1 To Nodes)
 '''''
 mnRemainNodes = Nodes
 While True
 ''' build up new class
 mnClassesCount = mnClassesCount + 1
 bFirstNode = True
 ''' position of first node
 i = mnRemainNodes
 While i > 0
 ''' swap nodes
 nNodeNum = level_nodes(1, i)
 If i <> mnRemainNodes Then
 ''' swap rows
 level_nodes(1, i) = level_nodes(1, mnRemainNodes)
 level_nodes(1, mnRemainNodes) = nNodeNum
 End If
 '''
 moClasses(nNodeNum) = mnClassesCount

 mnRemainNodes = mnRemainNodes – 1
 If mnRemainNodes = 0 Then Exit Sub
 If bFirstNode Then
 For k = 1 To mnRemainNodes
 nkNode = level_nodes(1, k)
 class_init(nkNode) = arr(nNodeNum, nkNode)
 Next

 125

 Else
 For k = 1 To mnRemainNodes
 nkNode = level_nodes(1, k)
 class_init(nkNode) = arr(nNodeNum, nkNode) Or class_init(nkNode)
 Next
 End If
 bFirstNode = False
 For i = mnRemainNodes To 1 Step -1
 If Not class_init(level_nodes(1, i)) Then Exit For
 Next
 Wend
 Wend
End Sub

 126

Weighted Case

VColor-BT-w

Option Explicit

' Optimised Carraghan, R., Pardalos, P. M.
' by using a heuristic vertex colouring and a backtrack search

Private moClasses() As Long, mnClassesCount As Long
Private level_nodes() As Long, nStart() As Long, NodesNum() As Long ' number of
nodes on level
Private t As Long, mnMaxClique As Long
Private nLevelWAcc() As Long
Private nLevelDegree() As Long
Private nMaxCliques() As Long
'

Public Function Start() As Long
 Dim i As Long, t_minus_1 As Long, nn As Long, wt As Long

 ReDim level_nodes(1 To Nodes, 1 To Nodes, 0 To 1)
 ReDim nMaxCliques(1 To Nodes)
 '''''' each level has its own set of nodes
 For i = 1 To Nodes
 level_nodes(1, i, 0) = i
 Next
 '''''''''''''''''''''''''''''''''''
 DefineClasses
 ResortByWeights
 For i = 1 To Nodes
 level_nodes(1, i, 1) = i
 Next
 ReDim NodesNum(1 To mnClassesCount)
 ReDim nStart(1 To mnClassesCount)
 ReDim nLevelDegree(1 To mnClassesCount)
 ReDim nLevelWAcc(1 To mnClassesCount)
 NodesNum(1) = Nodes

 For nn = Nodes To 1 Step -1
 t = 2
 NodesNum(t) = 0
 nLevelWAcc(t) = w(level_nodes(1, nn, 0))
 For i = nn + 1 To Nodes
 If arr(level_nodes(1, nn, 0), level_nodes(1, i, 0)) Then

 127

 NodesNum(t) = NodesNum(t) + 1
 level_nodes(t, NodesNum(t), 0) = level_nodes(1, i, 0)
 level_nodes(t, NodesNum(t), 1) = level_nodes(1, i, 1)
 End If
 Next
 If NodesNum(t) = 0 Then
 t = t - 1
 If nLevelWAcc(t + 1) > mnMaxClique Then
 mnMaxClique = nLevelWAcc(t + 1)
 End If
 Else
 nStart(t) = 0
 End If

 While t >= 2
 nStart(t) = nStart(t) + 1

 If NodesNum(t) < nStart(t) Then
 t = t - 1
 Else
 If (nLevelWAcc(t) + nMaxCliques(level_nodes(t, nStart(t), 1))) > _
 mnMaxClique Then

 If nStart(t) > 1 Then
 If (moClasses(level_nodes(t, nStart(t), 0)) <> _
 moClasses(level_nodes(t, nStart(t) - 1, 0))) Then
 nLevelDegree(t) = nLevelDegree(t) - w(level_nodes(t, nStart(t) - 1, 0))
 Else
 nLevelDegree(t) = nLevelDegree(t) – (w(level_nodes(t, nStart(t) - 1, 0)) _
 + w(level_nodes(t, nStart(t), 0)))
 End If
 Else
 ''' calculate degree on new depth
 nLevelDegree(t) = LevelDegree()
 End If

 If (nLevelWAcc(t) + nLevelDegree(t)) > mnMaxClique Then
 t_minus_1 = t
 t = t + 1
 nStart(t) = 0
 NodesNum(t) = 0
 nLevelWAcc(t) = nLevelWAcc(t_minus_1) + _
 w(level_nodes(t_minus_1, nStart(t_minus_1), 0))
 ''' define nodes for the next level
 For i = nStart(t_minus_1) + 1 To NodesNum(t_minus_1)
 If arr(level_nodes(t_minus_1, nStart(t_minus_1), 0), _
 level_nodes(t_minus_1, i, 0)) Then

 128

 NodesNum(t) = NodesNum(t) + 1
 level_nodes(t, NodesNum(t), 0) = level_nodes(t_minus_1, i, 0)
 level_nodes(t, NodesNum(t), 1) = level_nodes(t_minus_1, i, 1)
 End If
 Next
 If NodesNum(t) = 0 Then
 t = t - 1
 If nLevelWAcc(t + 1) > mnMaxClique Then
 mnMaxClique = nLevelWAcc(t + 1)
 End If
 End If
 Else
 t = t - 1
 End If
 Else
 t = t - 1
 End If
 End If
 Wend
 nMaxCliques(nn) = mnMaxClique
 Next

 ''' return size of maximu clique
 Start = mnMaxClique
End Function

Private Sub DefineClasses()
 Dim class_init() As Boolean '' show if node exists
 Dim i As Long, k As Long
 Dim mnRemainNodes As Long, bFirstNode As Boolean, nkNode As Long
 Dim nNodeNum As Long

 mnClassesCount = 0
 ReDim class_init(1 To Nodes)
 ''' get info about existing nodes
 ReDim moClasses(1 To Nodes)
 '''''
 mnRemainNodes = Nodes
 While True
 ''' build up new class
 mnClassesCount = mnClassesCount + 1
 bFirstNode = True
 ''' position of first node
 i = mnRemainNodes
 While i > 0
 ''' swap nodes
 nNodeNum = level_nodes(1, i, 0)

 129

 If i <> mnRemainNodes Then
 ''' swap rows
 level_nodes(1, i, 0) = level_nodes(1, mnRemainNodes, 0)
 level_nodes(1, mnRemainNodes, 0) = nNodeNum
 End If
 '''
 moClasses(nNodeNum) = mnClassesCount

 mnRemainNodes = mnRemainNodes - 1
 If mnRemainNodes = 0 Then Exit Sub
 If bFirstNode Then
 For k = 1 To mnRemainNodes
 nkNode = level_nodes(1, k, 0)
 class_init(nkNode) = arr(nNodeNum, nkNode)
 Next
 Else
 For k = 1 To mnRemainNodes
 nkNode = level_nodes(1, k, 0)
 class_init(nkNode) = arr(nNodeNum, nkNode) Or class_init(nkNode)
 Next
 End If
 bFirstNode = False
 For i = mnRemainNodes To 1 Step -1
 If Not class_init(level_nodes(1, i, 0)) Then Exit For
 Next
 Wend
 Wend
End Sub

Private Function LevelDegree() As Long
 Dim res As Long, i As Long, nClass As Long, aClass As Long

 For i = NodesNum(t) To nStart(t) Step -1
 ''' for node on level define class (moClasses) and mark it as existing
 nClass = moClasses(level_nodes(t, i, 0))
 If nClass <> aClass Then
 res = res + w(level_nodes(t, i, 0))
 aClass = nClass
 End If
 Next

 LevelDegree = res

End Function

 130

Public Sub ResortByWeights()
 Dim i As Long, j As Long, maxi As Long, maxw As Long, aClass As Long
 Dim nNode As Long
 For i = Nodes To 2 Step -1
 maxi = i
 nNode = level_nodes(1, maxi, 0)
 maxw = w(nNode)
 aClass = moClasses(nNode)
 For j = i - 1 To 1 Step -1
 nNode = level_nodes(1, j, 0)
 If moClasses(nNode) <> aClass Then Exit For
 If maxw < w(nNode) Then
 maxi = j
 maxw = w(nNode)
 End If
 Next
 If i <> maxi Then
 nNode = level_nodes(1, i, 0)
 level_nodes(1, i, 0) = level_nodes(1, maxi, 0)
 level_nodes(1, maxi, 0) = nNode
 End If
 Next
End Sub

 131

APPENDIX B: CURRICULUM VITAE
1. Personal Data

 Name: Deniss Kumlander
 Date of birth and place: 29.08.1976, Ivangorod, Russia
 Citizenship: Estonian
 Marital status: Married
 Children: -

2. Contact Data
 Address: pk 617, Tallinn 26, 12602
 Phone: +372 5175942
 E-mail: kumlander@gmail.com

3. Education

4. Language Skills (basic, intermediate or high level)

Language Level
Estonian High Level
English High Level
Russian Mother tongue
Swedish Basic Level

5. Special Courses

Course and time Educational institution or organisation
Business Administration
(organisation and management)
02-03.2003

Tallinn Technical University

Educational Institution Graduation
time

Speciality / grade

Tallinn Technical
University

1998 Informatics / Graduate Engineer (cum
laude)

Tallinn Technical
University

1999 Informatics / Master of Science in
Engineering

 132

6. Professional employment

Period Institution Position
08/1996 - 11/1997 Nordica Insurance Co. Software Engineer
11/1997 - 06/1999 Claims Handling Bureau Ltd IT Manager

06/1999 - Simple Concepts Estonia Project Manager
10/2004 - 05/2005 Tallinn University of Technology Extraordinary Assistant

09/2005 - Tallinn University of Technology Extraordinary Assistant

8. Scientific Work

D. Kumlander, Algorithms Intelligence in the Maximum Clique Finding, OR2005:
Program and Abstracts book, Bremen, 2005, p. 87

D. Kumlander, Problems of optimization: an exact algorithm for finding a maximum
clique optimized for dense graphs, Proceedings of the Estonian Academy of Sciences,
vol. 54 No. 2 2005, p. 79-86

D. Kumlander, Providing a Correct Software Design in an Environment with Some Set
of Restrictions in a Communication between Product Managers and Designers,
Proceedings of the Fourteenth International Conference on Information Systems
Development: Pre-Conference, Karlstad University Studies, 2005, p. 1-11

D. Kumlander, A new exact algorithm for the maximum-weight clique problem based
on a heuristic vertex-coloring and a backtrack search, Proceedings of The Forth
International Conference on Engineering Computational Technology, Civil-Comp
Press, 2004, p. 137-138

D. Kumlander, An exact algorithm for the maximum-weight clique problem based on a
heuristic vertex-coloring, Modelling, Computation and Optimization in Information
Systems and Management Sciences (edited by Le Thi Hoai An & Pham Dinh Tao),
Hermes Science Publishing, 2004, p. 202-208

D. Kumlander, Problems of optimization: an exact algorithm for finding a maximum
clique optimized for the dense graphs, ISMP2003: Program and Abstracts book,
Copenhagen, 2003, p. 114

9. Theses Accomplished and Defended

Graduate Engineer Thesis (1998): Maximum clique finding.

M. Sc. Thesis (1999): Maximum clique finding from arbitrary undirected graphs.

 133

10. Research Interests Maximum clique, Graph theory, NP-hard problems,

Info systems.

11. Research Projects –

Signature: Date:

 134

1. Isikuandmed
 Ees- ja perekonnanimi: Deniss Kumlander
 Sünniaeg ja –koht: 29.08.1976, Jaanilinn, Venemaa
 Kodakondsus: Eesti
 Perekonnaseis: Abielus
 Lapsed: pole

2. Kontaktandmed
 Aadress: pk 617, Tallinn 26, 12602
 Telefon: +372 5175942
 E-posti aadress: kumlander@gmail.com

3. Hariduskäik

4. Keelteoskus (alg-, kesk- või kõrgtase)

Keel Tase
Eesti Kõrgtase
Inglise Kõrgtase
Vene Emakeel
Rootsi Algtase

5. Täiendõpe

Kursus ja õppimise aeg Õppeasutuse või muu organisatsiooni nimetus

Ärrikorraldus (organisatsioon
ja juhtimine) 02-03.2003

Tallinna Tehnikaülikool

Õppeasutus
(nimetus lõpetamise ajal)

Lõpetamise
aeg

Haridus
(eriala/kraad)

Tallinna Tehnikaülikool 1998 Informaatika / Insener (cum laude)
Tallinna Tehnikaülikool 1999 Informaatika / Tehnikateaduste

magister

 135

6. Teenistuskäik

Töötamise aeg Ülikooli, teadusasutuse või
muu organisatsiooni nimetus

Ametikoht

08/1996 – 11/1997 Nordika Kindlustus AS Programmeerija
11/1997 – 06/1999 Kahjukäsitsus AS IT juht

06/1999 – Simple Concepts Eesti OÜ Projektijuht
10/2004 – 05/2005 Tallinna Tehnikaülikool Erakorraline teadur

09/2005 – Tallinna Tehnikaülikool Erakorraline teadur

8. Teadustegevus

D. Kumlander, Algorithms Intelligence in the Maximum Clique Finding, OR2005:
Program and Abstracts book, Bremen, 2005, p. 87

D. Kumlander, Problems of optimization: an exact algorithm for finding a maximum
clique optimized for dense graphs, Proceedings of the Estonian Academy of Sciences,
vol. 54 No. 2 2005, p. 79-86

D. Kumlander, Providing a Correct Software Design in an Environment with Some Set
of Restrictions in a Communication between Product Managers and Designers,
Proceedings of the Fourteenth International Conference on Information Systems
Development: Pre-Conference, Karlstad University Studies, 2005, p. 1-11

D. Kumlander, A new exact algorithm for the maximum-weight clique problem based
on a heuristic vertex-coloring and a backtrack search, Proceedings of The Forth
International Conference on Engineering Computational Technology, Civil-Comp
Press, 2004, p. 137-138

D. Kumlander, An exact algorithm for the maximum-weight clique problem based on a
heuristic vertex-coloring, Modelling, Computation and Optimization in Information
Systems and Management Sciences (edited by Le Thi Hoai An & Pham Dinh Tao),
Hermes Science Publishing, 2004, p. 202-208

D. Kumlander, Problems of optimization: an exact algorithm for finding a maximum
clique optimized for the dense graphs, ISMP2003: Program and Abstracts book,
Copenhagen, 2003, p. 114

9. Kaitstud lõputööd

Diplomitöö (1998): Suurima kliki leidmine.

Magistritöö (1999): Lõplikest lihtgraafidest suurima kliki leidmine.

 136

12. Teadustöö põhisuunad Suurima kliki ülesanne, graafi teooria, NP-keerulised

ülesanned, infosüsteemid.

10. Teised uurimisprojektid -

 Allkiri: Kuupäev:

